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Abstract
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1 Introduction and preliminaries
Fixed point theory is still a central topic with a broad focus on applications of fixed point
models not only in mathematical analysis, but also in other branches of natural sciences.
The Banach contraction theorem continues to be generalized in other metric settings. For
more related results, see [1–23].

Following the generalizations made by Matthews [24], Hitzler and Seda [25], and Amini-
Harandi [26], Alghamdi et al. [27] introduced the concept of b-metric-like spaces. Many
authors have obtained interesting results in these areas associated with many more appli-
cations in the field of nonlinear analysis and main areas of interdisciplinary research.

In our work, we use the notions of α-admissible functions, (α,ψ ,ϕ)-contractive map-
pings, F-contractions, and Kannan type contractions. In this paper, we introduce αsp –
F contractive mappings by means of αsp -admissible functions and auxiliary functions,
named as C-class functions. We also provide two wide classes of contractions selected
among b-metric and b-metric-like settings, giving knew extensions of αsp – F contrac-
tions and Kannan type contractions. These new generalized classes not only generalize
the known ones, but also include and unify a huge number of existing ones selected in the
corresponding literature, and the corresponding results are supported by an application
on boundary value problems.

Let T be a nonempty set and s ≥ 1 be a given real number. Let σb : T × T → [0,∞) be a
mapping satisfying the following conditions for each h, k, z ∈ T :
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I. σb(h, k) = 0 if and only if h = k;
II. σb(h, k) = 0 implies h = k;

III. σb(h, k) = σb(k, h);
IV. σb(h, k) ≤ σb(h, z) + σb(z, k);
V. σb(h, k) ≤ s[σb(h, z) + σb(z, k)].

Definition 1.1 ([28]) A pair (T ,σb) satisfying axioms I, III, and V is called a b-metric space
with parameter s.

Definition 1.2 ([26]) A pair (T ,σb) satisfying axioms II, III, and IV is called a metric-like
space.

Definition 1.3 ([27]) A pair (T ,σb) satisfying axioms II, III, and V is called a b-metric-like
space with parameter s.

It is true that if h, k ∈ T and σb(h, k) = 0, then h = k; however, the converse need not be
true, and σb(h, h) may be positive for h ∈ T .

Example 1.4 Let T = R and σb : T2 → [0,∞) be a given function as σb(h, k) = (|h| + |k|)2

for all h, k ∈ T . Then (T ,σb) is a b-metric-like space with parameter s = 2.

Definition 1.5 ([27]) Let (T ,σb) be a b-metric-like space.
(a) A sequence {hn} in T is called convergent to a point h ∈ T if

limn→∞ σb(hn, h) = σb(h, h);
(b) A sequence {hn} in T is called Cauchy if limn,m→∞ σb(hn, hm) exists and is finite;
(c) The b-metric-like space (T ,σb) is called complete if, for every Cauchy sequence {hn}

in T , there exists h ∈ T such that limn,m→∞ σb(hn, hm) = limn→∞ σb(hn, h) = σb(h, h).

In 2012, the introduction of α-admissible functions by Samet et al. in [29] leads to an
extensive development of many notions and properties related to fixed point theory and
its applications.

Definition 1.6 Let T be a nonempty set. Let f : T → T and α : T × T → R
+ be given

functions. We say that f is an α-admissible mapping if α(h, k) ≥ 1 implies that α(fh, fk) ≥ 1
for all h, k ∈ T .

Further, Aydi [30] extended this definition to a pair of mappings.

Definition 1.7 For a nonempty set T , let f , g : T → T and α : T × T → R
+ be mappings.

We say that (f , g) is an α-admissible pair if, for all h, k ∈ T we have

α(h, k) ≥ 1 ⇒ α(fh, gk) ≥ 1 and α(gk, fh) ≥ 1.

We here summarize the most important lemmas and results very useful in the main
section of the paper.
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Lemma 1.8 ([21]) Let (T ,σb) be a b-metric-like space with parameter s ≥ 1. If a given
mapping f : T → T is continuous at h∗ ∈ T , then we have

σb
(
fhn, fh∗) → σb

(
fh∗, fh∗) whenever σb

(
hn, h∗) → σb

(
h∗, h∗) for each {hn}in T .

The following is a short revised version of the lemma in [22].

Lemma 1.9 Let (T ,σb) be a b-metric-like space with parameter s ≥ 1, and suppose that
{hn} is σb-convergent to h with σb(h, h) = 0. Then, for each j ∈ T , we have

s–1σb(h, j) ≤ lim inf
n→∞ σb(hn, j) ≤ lim sup

n→∞
σb(hn, j) ≤ sσb(h, j).

Lemma 1.10 ([21]) In a b-metric-like space (T ,σb) with parameter s ≥ 1, for h, k ∈ T and
{hn} ⊂ T , we have:

(a) σb(h, k) = 0 ⇒ σb(h, h) = σb(k, k) = 0;
(b) If limn→∞ σb(hn, hn+1) = 0, then limn→∞ σb(hn, hn) = limn→∞ σb(hn+1, hn+1) = 0;
(c) h 
= k ⇒ σb(h, k) > 0.

Lemma 1.11 ([22]) Let (T ,σb) be a complete b-metric-like space and {hn} be a sequence
such that

lim
n→∞σb(hn, hn+1) = 0.

If, for such a sequence {hn}, limn,m→∞ σb(hn, hm) 
= 0, then there are ε > 0 and subse-
quences of positive integers {m(i)}; {n(i)} with ni > mi > i such that

ε ≤ lim sup
i→∞

σb(h2ni , h2mi ) ≤ εs, ε/s ≤ lim sup
i→∞

σb(h2mi , h2ni–1) ≤ εs,

ε/s2 ≤ lim sup
i→∞

σb(h2ni–1, h2mi+1) ≤ εs2,

ε/s ≤ lim sup
i→∞

σb(h2mi+1, h2ni ) ≤ εs2.

Lemma 1.12 ([22]) Let {hn} be a sequence in a b-metric-like space (T ,σb) with parameter
s ≥ 1 such that σb(hn, hn+1) ≤ λσb(hn–1, hn) for all n > 0, for some λ, where 0 ≤ λ < 1/s.
Then:

1. limn→∞ σb(hn, hn+1) = 0,
2. {hn} is a Cauchy sequence in (T ,σb) and limn,m→∞ σb(hn, hm) = 0.

Definition 1.13 ([22]) Let (T ,σb) be a b-metric-like space, f , g : T → T and α : T × T →
R

+ be given mappings, and let p ≥ 1 be an arbitrary constant. We say that (f , g) is an αsp -
admissible pair if α(h, k) ≥ sp implies min{α(fh, gk),α(gk, fh)} ≥ sp for all h, k ∈ T .

Examples 2 and 3 in [22] illustrate Definition 1.13.

Definition 1.14 ([22]) Let (T ,σb) be a b-metric-like space, f : T → T and α : T × T →
R

+ be given mappings, and let p ≥ 1 be an arbitrary constant. We say that f is an αsp -
admissible mapping if α(h, k) ≥ sp implies min{α(fh, fk),α(fk, fh)} ≥ sp for all h, k ∈ T .
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Also, in the sequel, we recall additional properties given in [22].
(Hsp ): If {hn} is a sequence in T such that hn → h ∈ T as n → ∞ and α(hn, hn+1) ≥ sp

and α(hn+1, hn) ≥ sp, then there exists a subsequence {hni} of {hn} with α(hni , h) ≥ sp and
α(h, hni ) ≥ sp for all i ∈N.

(Usp ): For all h, k ∈ CF(f , g), we have α(h, k) ≥ sp, where CF(f , g) denotes the set of com-
mon fixed points of f and g (also Fix(f ) is the set of fixed points of f ).

Definition 1.15 ([31]) A mapping F : R+ ×R
+ →R is called a C-class function if

1) F(m, n) ≤ m for all m, n ≥ 0;
2) F(m, n) = m implies that either m = 0 or n = 0 for all m, n ≥ 0;
3) F(m, n) is continuous on its variables m, n ≥ 0.

2 Main results
In this section we present two main theorems. The first is a general result in a larger am-
bient of spaces that extends and unifies a number of well-known corresponding results
related to fixed point theory. The second is an extension of the outstanding classical result
of Kannan contraction to the setting of b-metric-like spaces.

Let f : T → T be a mapping. We denote

N(h, k) = max

{
σb(h, k),σb(h, fh),σb(k, fk), σb(h,fk)+σb(k,fh)

4s , σb(h,fh)σb(h,fk)
1+s[σb(h,fh)+σb(k,fk)] ,

σb(k,fk)[1+σb(h,fh)]
1+σb(h,k) , σb(h,fh)[1+σb(k,fk)]

1+σb(fh,fk)

}

(1)

and the following sets of functions:

I :=
{
ψ : [0, +∞) → [0, +∞) is strictly increasing, continuous such that ψ(m) = 0

iff m = 0
}

;

� :=
{
θ : [0, +∞) → [0, +∞) is continuous with θ (m) < ψ(m) for all m > 0

}
;

� :=

{
(β ,γ , δ)/β ,γ , δ : R+ → [0, 1) satisfying
lim supn→m β(n) + lim supn→m γ (n) + lim supn→m δ(n) < 1, for all m > 0

}

.

Definition 2.1 Let (T ,σb) be a b-metric-like space with parameter s ≥ 1. A mapping f :
T → T is said to be an αsp – (C, N ,�) contraction if f is an αsp -admissible mapping (p > 1)
and it satisfies

α(h, k)σb(fh, fk) ≤ F
(
N(h, k), θ

(
N(h, k)

))
(2)

for all h, k ∈ T , where F ∈ C, θ ∈ � and N(h, k) is defined by (1).

We now state the following general result.

Theorem 2.2 Let (T ,σb) be a complete b-metric-like space with parameter s > 1, and f :
T → T be an αsp – (C, N ,�) contraction. Suppose that the following conditions hold:

(i) there exists h0 ∈ T such that min{α(h0, fh0),α(fh0, h0)} ≥ sp;
(ii) the properties Hsp and Usp are satisfied.

Then f has a unique fixed point h ∈ T .
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Proof From assumption (i) there exists h0 ∈ T such that α(h0, fh0) ≥ sp. We construct a
sequence {hn} in T by hn = f nh0 = f (hn–1) for all n ∈ N. If we suppose that σb(hn, hn+1) = 0
for some n, then hn+1 = hn, and so f has a fixed point. Consequently, throughout the proof,
we assume that

σb(hn, hn+1) > 0 for all n ∈N. (3)

By the αsp -type admissibility of f , we observe that

α(h0, h1) = α(h0, fh0) ≥ sp,

α(fh0, fh1) = α(h1, h2) ≥ sp and α(fh1, fh2) = α(h2, h3) ≥ sp.

Then, inductively,

α(hn, hn+1) ≥ sp for all n ∈N. (4)

By (1) and condition (2), we have

spσb(hn, hn+1) = spσb(fhn–1, fhn)

≤ α(hn–1, hn)σb(fhn–1, fhn)

≤ F
(
N(hn–1, hn), θ

(
N(hn–1, hn)

))

≤ N(hn–1, hn), (5)

where

N(hn–1, hn) = max

⎧
⎪⎪⎨

⎪⎪⎩

σb(hn–1, hn),σb(hn–1, fhn–1),σb(hn, fhn), σb(hn–1,fhn)+σb(hn ,fhn–1)
4s ,

σb(hn–1,hn)σb(hn–1,fhn)
1+s[σb(hn–1,fhn–1)+σb(hn ,fhn)]

σb(hn ,fhn)[1+σb(hn–1,fhn–1)]
1+σb(hn–1,hn) ,

σb(hn–1,fhn–1)[1+σb(hn ,fhn)]
1+σb(fhn–1,fhn)

⎫
⎪⎪⎬

⎪⎪⎭

= max

⎧
⎪⎪⎨

⎪⎪⎩

σb(hn–1, hn),σb(hn–1, hn),σb(hn, hn+1), σb(hn–1,hn+1)+σb(hn ,hn)
4s ,

σb(hn–1,hn)σb(hn–1,hn+1)
1+s[σb(hn–1,hn)+σb(hn ,hn+1)]

σb(hn ,hn+1)[1+σb(hn–1,hn)]
1+σb(hn–1,hn) ,

σb(hn–1,hn)[1+σb(hn ,hn+1)]
1+σb(hn ,hn+1)

⎫
⎪⎪⎬

⎪⎪⎭

≤ max

⎧
⎪⎨

⎪⎩

σb(hn–1, hn),σb(hn–1, hn),σb(hn, hn+1),
s[σb(hn–1,hn)+σb(hn ,hn+1)]+2sσb(hn–1,hn)

4s ,
σb(hn–1,hn)s[σb(hn–1,hn)+σb(hn ,hn+1)]

1+s[σb(hn–1,hn)+σb(hn ,hn+1)] ,σb(hn, hn+1),σb(hn–1, hn)

⎫
⎪⎬

⎪⎭

= max
{
σb(hn–1, hn),σb(hn, hn+1)

}
. (6)

If we have

σb(hn–1, hn) < σb(hn, hn+1) for some n ∈N,

then, from inequality (6), we get

N(hn–1, hn) ≤ σb(hn, hn+1). (7)
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Using (5), we obtain

spσb(hn, hn+1) ≤ σb(hn, hn+1).

Hence σb(hn, hn+1) = 0, that is a contradiction.
Thus, for all n ∈N, σb(hn, hn+1) ≤ σb(hn–1, hn) and by (5), we can establish that

spσb(hn, hn+1) ≤ σb(hn–1, hn).

As a result, the above inequality can be written as

σb(hn, hn+1) ≤ λσb(hn–1, hn), (8)

where λ = 1/sp ∈ [0, 1/s). By Lemma 1.12 and using (8), we claim

lim
n→∞σb(hn, hn+1) = 0, (9)

and the sequence {hn} is Cauchy. (T ,σb) is complete, so there is some h ∈ T such that {hn}
converges to h. That is,

lim
n→∞σb(hn, h) = σb(h, h) = lim

n,m→∞σb(hn, hm) = 0. (10)

The self-map f is not continuous, then from (4) and property Hsp , there exists a subse-
quence {hni} of {hn} such that α(hni , h) ≥ sp for all i ∈ N. Applying contractive condition
(2) to hni and h, we obtain

spσb(hni+1, fh) = spσb(fhni , fh)

≤ α(hni , h)σb(fhni , fh)

≤ F
(
N(hni , h), θ

(
N(hni , h)

))

≤ N(hni , h), (11)

where

N(hni , h) = max

⎧
⎪⎪⎨

⎪⎪⎩

σb(hni , h),σb(hni , fhni ),σb(h, fh),
σb(hni ,fh)+σb(h,fhni )

4s , σb(hni ,h)σb(hni ,fh)
1+s[σb(hni ,fhni )+σb(h,fh)]

σb(h,fh)[1+σb(hni ,fhni )]
1+σb(hni ,h) , σb(hni ,fhni )[1+σb(h,fh)]

1+σb(fhni ,fh)

⎫
⎪⎪⎬

⎪⎪⎭

= max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σb(hni , h),σb(hni , hni+1),σb(h, fh),
σb(hni ,fh)+σb(h,hni+1)

4s , σb(hni ,h)σb(hni ,fh)
1+s[σb(hni ,hni+1)+σb(h,fh)]

σb(h,fh)[1+σb(hni ,hni+1)]
1+σb(hni ,h) , σb(hni ,hni+1)[1+σb(h,fh)]

1+σb(hni+1,fh)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (12)

By the upper limit in (12) and due to Lemma 1.9, Lemma 1.10, and Eq. (10), we derive

lim sup
i→∞

N(hni , h) ≤ max

{
0, 0,σb(h, fh),

sσb(h, fh)
4s

, 0,σb(h, fh), 0
}

= σb(h, fh). (13)
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Letting i → ∞ in (11), and in view of (13) and Lemma 1.9, it follows that

sp–1σb(h, fh) = sp 1
s
σb(h, fh) ≤ sp lim sup

i→∞
σb(hni , fh)

≤ lim sup
i→∞

N(hni , h) ≤ σb(h, fh). (14)

From (14) we get σb(h, fh) = 0, which implies that fh = h. Hence h is a fixed point of f .
If h, z ∈ Fix(f ), by the hypothesis Usp , α(h, z) ≥ sp, and applying (2), we have

spσb(h, h) = spσb(fh, fh) ≤ α(h, h)σb(fh, fh)

≤ F
(
N(h, h), θ

(
N(h, h)

))

≤ N(h, h) = σb(h, h), (15)

where

N(h, h) = max

{
σb(h, h),σb(h, fh),σb(h, fh), σb(h,fh)+σb(h,fh)

4s , σb(h,fh)σb(h,fh)
1+s[σb(h,fh)+σb(h,fh)] ,

σb(h,fh)[1+σb(h,fh)]
1+σb(h,h) , σb(h,fh)[1+σb(h,fh)]

1+σb(fh,fh)

}

= max

{
σb(h, h),σb(h, h),σb(h, h), σb(h,h)+σb(h,h)

4s , σb(h,h)σb(h,h)
1+s[σb(h,h)+σb(h,h)] ,

σb(h,h)[1+σb(h,h)]
1+σb(h,h) , σb(h,h)[1+σb(h,h)]

1+σb(h,h)

}

= σb(h, h). (16)

By (15) it follows spσb(h, h) ≤ σb(h, h). (17)

Since s > 1, the inequality above implies σb(h, h) = 0 (similarly, σb(z, z) = 0).
Again by condition (2), we have

spσb(h, z) = spσb(fh, fz) ≤ α(h, z)σb(fh, fz)

≤ F
(
N(h, z), θ

(
N(h, z)

))

≤ N(h, z)

= σb(h, z), (18)

where

N(h, z) = max

{
σb(h, z),σb(h, fh),σb(z, fz), σb(h,fz)+σb(z,fh)

4s , σb(h,fh)σb(h,fz)
1+s[σb(h,fh)+σb(z,fz)] ,

σb(z,fz)[1+σb(h,fh)]
1+σb(h,z) , σb(h,fh)[1+σb(z,fz)]

1+σb(fh,fz)

}

= max

{
σb(h, z),σb(h, h),σb(z, z), σb(h,z)+σb(z,h)

4s , σb(h,h)σb(h,z)
1+s[σb(h,h)+σb(z,z)] ,

σb(z,z)[1+σb(h,h)]
1+σb(h,z) , σb(h,h)[1+σb(z,z)]

1+σb(h,z)

}

= max

{
σb(h, z), 0, 0,

σb(h, z)
2s

, 0, 0, 0
}

= σb(h, z).

Inequality (18) implies that σb(h, z) = 0. Therefore, h = z and the fixed point is unique. �
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Remark 2.3
(i) The proof of Theorem 2.2 is simply constructive somewhat shorter, and avoid the

use of Lemma 1.11.
(ii) The above result reduces to other settings of spaces for the choice of parameters s

and p.
(iii) Many applications of Theorem 2.2 are attributed to the variety of class C that

makes it to contain many known theorems as special cases.

In the sequel, we provide an illustrative example of Theorem 2.2.

Example 2.4 In T = [0, +∞), we take σb(h, k) = (h + k)2 for all h, k ∈ T . Clearly, (T ,σb) is
a b-metric-like space with coefficient s = 2. Let us define the mappings f : T → T and
α : T × T → [0, +∞[ by

fh =

⎧
⎪⎪⎨

⎪⎪⎩

1
5 h if h ∈ [0, 1),
1

10 h if h ∈ [1, 2),

2h if h ≥ 2

and α(h, k) =

⎧
⎨

⎩
h + k + 4 if h, k ∈ [0, 2],

0 otherwise.

Let h, k ∈ T , if α(h, k) ≥ 4 = s2, then h, k ∈ [0, 2), and also we have fh, fk ∈ [0, 1/5) and
α(fh, fk) ≥ s2. Thus we have shown that f is an αsp -admissible mapping. Choosing F ∈ C
as F(m, n) = m – n, we discuss the following cases:

Let h, k ∈ [0, 1), then we get

α(h, k)σb(fh, fk) = s2σb(fh, fk) = 4σb

(
1
5

h,
1
5

k
)

= 4
(

1
5

h +
1
5

k
)2

=
4

25
(h + k)2 <

1
6
σb(h, k) ≤ 1

6
N(h, k) = N(h, k) –

5
6

N(h, k)

= N(h, k) – θ
(
N(h, k)

)

= F
(
N(h, k), θ

(
N(h, k)

))
.

Let h, k ∈ [1, 2), then we get

α(h, k)σb(fh, fk) = s2σb(fh, fk) = 4σb

(
1

10
h,

1
10

k
)

= 4
(

1
10

h +
1

10
k
)2

=
4

100
(h + k)2 <

1
6
σb(h, k) ≤ 1

6
N(h, k) = N(h, k) –

5
6

N(h, k)

= N(h, k) – θ
(
N(h, k)

)

= F
(
N(h, k), θ

(
N(h, k)

))
.

Let h ∈ [0, 1), k ∈ [1, 2), then we get

α(h, k)σb(fh, fk) = s2σb(fh, fk) = 4σb

(
1
5

h,
1

10
k
)

= 4
(

1
5

h +
1

10
k
)2

≤ 4
(

1
5

h +
1
5

k
)2

=
4

25
(h + k)2 <

1
6
σb(h, k) ≤ 1

6
N(h, k) = N(h, k) –

5
6

N(h, k)
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= N(h, k) – θ
(
N(h, k)

)

= F
(
N(h, k), θ

(
N(h, k)

))
.

The other case k ∈ [0, 1), h ∈ [1, 2) is the same as the previous case.
Obviously, the other assumptions of Theorem 2.2 can be verified and f has h = 0 as a

unique fixed point.
On the other hand, if we refer to the metric space with the standard metric d(h, k) =

|h – k| for points h = 0, k = 2 in case N(0, 2) = d(0, 2), we see that

4 = d(f 0, f 2) ≤ F
(
d(0, 2), θ

(
d(0, 2)

))
= F

(
2, θ (2)

)
,

that is, there exists no function F ∈ C that satisfies the inequality (and also the Banach
contraction principle).

Theorem 2.5 Let (T ,σb) be a complete b-metric-like space with parameter s > 1 and f :
T → T be a mapping satisfying

spσb(fh, fk) ≤ F
(
N(h, k), θ

(
N(h, k)

))

for all h, k ∈ T , where θ ∈ �, F ∈ C, p > 1 and N(h, k) is defined by (1). Then f has a fixed
point in T .

Proof It is obtained from Theorem 2.2 by setting α(h, k) = sp (p > 1). �

Some applications of Theorem 2.2 are the following results by choosing the function
F ∈ C, based on Example 2.13 (see [31]).

Corollary 2.6 Let f : T → T be an αsp -admissible mapping on a complete b-metric-like
space (T ,σb) with parameter s > 1. Suppose that the following assertions hold:

(i) There exists a function β : [0,∞) → [0, 1) satisfying the condition: β(hn) → 1 as
n → ∞ implies that hn → 0 as n → ∞ such that

α(h, k)σb(fh, fk) ≤ β
(
N(h, k)

)(
N(h, k)

)

for all h, k ∈ T ;where N(h, k) is defined by (1);
(ii) There exists h0 ∈ T with min{α(h0, fh0),α(fh0, h0)} ≥ sp;

(iii) Properties Hsp ; Usp are satisfied.
Then f has a unique fixed point h ∈ T .

Proof It follows from Theorem 2.2 by setting the function F ∈ C as F(m, n) = β(m)m. �

Corollary 2.7 Let f : T → T be an αsp -admissible mapping on a complete b-metric-like
space (T ,σb) with parameter s > 1. Suppose that the following conditions are satisfied:

(i) There exists a continuous function ϕ : R+ →R
+ such that ϕ(t) < t for all t > 0,

satisfying

α(h, k)σb(fh, fk) ≤ ϕ
(
N(h, k)

)
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for all h, k ∈ T , where N(h, k) is defined by (1);
(ii) There exists h0 ∈ T with min{α(h0, fh0),α(fh0, h0)} ≥ sp;

(iii) Properties Hsp ; Usp are satisfied.
Then f has a unique fixed point h ∈ T .

Proof It is derived from Theorem 2.2 by setting F(m, n) = ϕ(m) where ϕ : R+ → R
+ is

continuous such that ϕ(m) < m for all m > 0. �

The next theorem is a new extension of Kannan type contraction and is concerned with
common fixed points for a pair of self-mappings. It uses the following definitions.

Definition 2.8 Let (T ,σb) be a complete b-metric-like space with parameter s ≥ 1, and
f , g : T → T , α : T × T → R

+ be given mappings. The pair (f , g) is called a generalized
αsp – (I,�,�)-Kannan contraction pair if there exist ψ ∈ I , θ ∈ �, β ,γ , δ ∈ � satisfying

ψ
(
α(h, k)σb(fh, gk)

) ≤ β
[
σb(h, k)

]
θ
[
σb(h, k)

]

+ γ
[
σb(h, k)

]
θ
[
σb(h, fh)

]

+ δ
[
σb(h, k)

]
θ
[
σb(k, gk)

]
(19)

for all h, k ∈ T with α(h, k) ≥ sp(p > 1) and θ (m) < ψ(m) for all m > 0.

Remark 2.9 If we put g = f , then Definition 2.8 can be stated as generalized αsp – (I,�,�)
Kannan contraction for one mapping.

Theorem 2.10 Let (f , g) be a pair of self-mappings on a complete b-metric-like space
(T ,σb) with coefficient s ≥ 1. If (f , g) is a generalized αsp – (I,�,�) Kannan contraction
pair, and the following conditions hold:

(i) There exists h0 ∈ T with min{α(h0, fh0),α(fh0, h0)} ≥ sp;
(ii) (f , g) is an αsp -admissible pair;

(iii) Properties Hsp ; Usp are satisfied.
Then f and g have a unique common fixed point h ∈ T .

Proof Since condition (i) holds, there exists h0 ∈ T with α(h0, fh0) ≥ sp and α(fh0, h0) ≥ sp.
Take h1 = fh0 and h2 = gh1. By induction, we construct an iterative sequence {hn} in T such
that h2n+1 = fh2n and h2n+2 = gh2n+1 for all n ≥ 0. Then α(h0, h1) ≥ sp and α(h1, h0) ≥ sp, by
condition (ii) (f , g) is an αsp -admissible pair, so we obtain that

α(h1, h2) = α(fh0, gh1) ≥ sp and α(h2, h1) = α(gh1, fh0) ≥ sp.

Also, we have

α(h3, h2) = α(fh2, gh1) ≥ sp and α(h2, h3) = α(gh1, fh2) ≥ sp.

Proceeding inductively, we obtain

α(hn, hn+1) ≥ sp and α(hn+1, hn) ≥ sp for all n ≥ 0. (20)
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If, for some n ∈ N , σb(h2n+1, h2n) = 0, then by (19) we have

ψ
(
σb(h2n+1, h2n+2)

) ≤ ψ
(
spσb(h2n+1, h2n+2)

)
= ψ

(
spσb(fh2n, gh2n+1)

)

≤ ψ
(
α(h2n, h2n+1)σb(fh2n, gh2n+1)

)

≤ β
[
σb(h2n, h2n+1)

]
θ
[
σb(h2n, h2n+1)

]

+ γ
[
σb(h2n, h2n+1)

]
θ
[
σb(h2n, fh2n)

]

+ δ
[
σb(h2n, h2n+1)

]
θ
[
σb(h2n+1, gh2n+1)

]

= β
[
σb(h2n, h2n+1)

]
θ
[
σb(h2n, h2n+1)

]

+ γ
[
σb(h2n, h2n+1)

]
θ
[
σb(h2n, h2n+1)

]

+ δ
[
σb(h2n, h2n+1)

]
θ
[
σb(h2n+1, h2n+2)

]

= δ
[
σb(h2n, h2n+1)

]
θ
[
σb(h2n+1, h2n+2)

]
< θ

[
σb(h2n+1, h2n+2)

]
.

By properties of ψ , θ , we get σb(h2n+1, h2n+2) = 0, that is, h2n+1 = h2n+2. Furthermore, that
is h2n = h2n+1 = fh2n and h2n = h2n+2 = gh2n+1 = gfh2n = gh2n. Hence, the proof is concluded.
Now, we assume that σb(hn, hn+1) > 0 for all n ≥ 0. By (20), applying condition (19), we have

ψ
(
σb(h2n+1, h2n)

) ≤ ψ
(
spσb(h2n+1, h2n)

)
= ψ

(
spσb(fh2n, gh2n–1)

)

≤ ψ
(
α(h2n, h2n–1)σb(fh2n, gh2n–1)

)

≤ β
[
σb(h2n, h2n–1)

]
θ
[
σb(h2n, h2n–1)

]

+ γ
[
σb(h2n, h2n–1)

]
θ
[
σb(h2n, fh2n)

]

+ δ
[
σb(h2n, h2n–1)

]
θ
[
σb(h2n–1, gh2n–1)

]

= β
[
σb(h2n, h2n–1)

]
θ
[
σb(h2n, h2n–1)

]

+ γ
[
σb(h2n, h2n–1)

]
θ
[
σb(h2n, h2n+1)

]

+ δ
[
σb(h2n, h2n–1)

]
θ
[
σb(h2n, h2n–1)

]
. (21)

If we suppose that θ [σb(h2n–1, h2n)] ≤ θ [σb(h2n, h2n+1)] for some n ∈ N, then inequality (21)
takes the form

ψ
(
σb(h2n+1, h2n)

)

≤ ψ
(
spσb(h2n+1, h2n)

)

= ψ
(
spσb(fh2n, gh2n–1)

)

≤ (
β
[
σb(h2n, h2n–1)

]
+ γ

[
σb(h2n, h2n–1)

]
+ δ

[
σb(h2n, h2n–1)

])
θ
[
σb(h2n, h2n+1)

]

< θ
[
σb(h2n, h2n+1)

]
,

that is, a contradiction. Hence

θ
[
σb(h2n, h2n+1)

]
< θ

[
σb(h2n–1, h2n)

]
. (22)
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By (22) and the properties of ψ , θ , we get

ψ
[
σb(h2n+1, h2n)

] ≤ θ
[
σb(h2n, h2n+1)

]
< θ

[
σb(h2n–1, h2n)

]
< ψ

[
σb(h2n–1, h2n)

]
. (23)

Inequality (23) implies σb(h2n, h2n+1) ≤ σb(h2n–1, h2n) for all n ∈N.
That is, the sequence {σb(h2n+1, h2n)} is decreasing. Thus, it is convergent to inf{σb(h2n+1,

h2n)} = r ≥ 0. That is, limn→∞ σb(hn, hn+1) = r, and also limn→∞ σb(h2n, h2n+1) =
limn→∞ σb(h2n–1, h2n) = r.

If we suppose r > 0, then we consider

ψ
(
σb(h2n+1, h2n)

) ≤ ψ
(
spσb(h2n+1, h2n)

)
= ψ

(
spσb(fh2n, gh2n–1)

)

≤ ψ
(
α(h2n, h2n–1)σb(fh2n, gh2n–1)

)

≤ β
[
σb(h2n, h2n–1)

]
θ
[
σb(h2n, h2n–1)

]

+ γ
[
σb(h2n, h2n–1)

]
θ
[
σb(h2n, h2n+1)

]

+ δ
[
σb(h2n, h2n–1)

]
θ
[
σb(h2n–1, h2n)

]
(24)

and, letting n → ∞ in (24), we obtain ψ(r) ≤ θ (r), which implies that r = 0, that is,

lim
n→∞σb(hn, hn+1) = lim

n→∞σb(hn–1, hn) = 0. (25)

Now, we prove that limn,m→∞ σb(hn, hm) = 0. It is sufficient to show that limn,m→∞ σb(h2n,
h2m) = 0. If we assume limn,m→∞ σb(h2n, h2m) 
= 0 then, using Lemma 1.11, there exists ε > 0,
and we can find subsequences {mi} and {ni} of positive integers, with ni > mi > i, such that

ε ≤ lim sup
i→∞

σb(h2ni , h2mi ) ≤ εs,
ε

s
≤ lim sup

i→∞
σb(h2mi , h2ni–1) ≤ εs,

ε

s2 ≤ lim sup
i→∞

σb(h2ni–1, h2mi+1) ≤ εs2,
ε

s
≤ lim sup

i→∞
σb(h2mi+1, h2ni ) ≤ εs2.

(26)

Since α(h2mi , h2ni–1) ≥ sp from (19), we have

ψ
(
spσb(h2mi+1, h2ni )

) ≤ ψ
(
spσb(fh2mi , gh2ni–1)

)

≤ ψ
(
α(h2mi , h2ni–1)σb(fh2mi , gh2ni–1)

)

≤ β
[
σb(h2mi , h2ni–1)

]
θ
(
σb(h2mi , h2ni–1)

)

+ γ
[
σb(h2mi , h2ni–1)

]
θ
(
σb(h2mi , fh2mi )

)

+ δ
[
σb(h2mi , h2ni–1)

]
θ
(
σb(h2ni–1, gh2ni–1)

)

= β
[
σb(h2mi , h2ni–1)

]
θ
(
σb(h2mi , h2ni–1)

)

+ γ
[
σb(h2mi , h2ni–1)

]
θ
(
σb(h2mi , h2mi+1)

)

+ δ
[
σb(h2mi , h2ni–1)

]
θ
(
σb(h2ni–1, h2ni )

)
. (27)
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Hence, by (26), (27), and (25), we obtain

ψ(εs) ≤ ψ
(
εsp–1) = ψ

(
sp ε

s

)
≤ ψ

(
lim sup

i→∞
σb(hmi , hni )

)

≤ lim sup
i→∞

β
[
σb(h2mi , h2ni–1)

]
θ
(

lim sup
i→∞

σb(h2mi , h2ni–1)
)

+ lim sup
i→∞

γ
[
σb(h2mi , h2ni–1)

]
θ
(

lim sup
i→∞

σb(h2mi , h2mi+1)
)

+ lim sup
i→∞

δ
[
σb(h2mi , h2ni–1)

]
θ
(

lim sup
i→∞

σb(h2ni–1, h2ni )
)

= lim sup
i→∞

β
[
σb(h2mi , h2ni–1)

]
θ (εs) + lim sup

i→∞
γ
[
σb(h2mi , h2ni–1)

]
θ (0)

+ lim sup
i→∞

δ
[
σb(h2mi , h2ni–1)

]
θ (0)

≤ θ (εs),

which implies ε = 0, a contradiction. Thus, limn,m→∞ σb(hn, hm) = 0, and the sequence {hn}
is Cauchy. (T ,σb) is complete, so there exists h ∈ T such that {hn} is convergent to h, that
is,

lim
n→∞σb(hn, h) = lim

n→∞σb(hn, hm) = σb(h, h) = 0. (28)

By property Hsp , there exists a subsequence {hni} of {hn} with α(hni , h) ≥ sp and α(h, hni ) ≥
sp for all i ∈N. Then, from condition (19), we have

ψ
(
spσb(h2ni+1, gh)

)
= ψ

(
spσb(fh2n(i), gh)

) ≤ ψ
(
α(h2n(i), h)σb(fh2n(i), gh)

)

≤ β
[
σb(h2n(i), h)

]
θ
(
σb(h2n(i), h)

)

+ γ
[
σb(h2n(i), h)

]
θ
(
σb(h2n(i), fh2n(i))

)

+ δ
[
σb(h2n(i), h)

]
θ
(
σb(h, gh)

)

= β
[
σb(h2ni , h)

]
θ
(
σb(h2ni , h)

)

+ γ
[
σb(h2ni , h)

]
θ
(
σb(h2ni , h2ni+1)

)

+ δ
[
σb(h2ni , h)

]
θ
(
σb(h, gh)

)
. (29)

Considering limit superior as i → ∞ in (29), and due to (25), (28), and Lemma 1.9, we
obtain

ψ
(
sp–1σb(h, gh)

)
= ψ

(
sps–1σb(h, gh)

) ≤ ψ
(

sp lim sup
i→∞

σb(h2ni+1, gh)
)

≤ lim sup
i→∞

β
[
σb(h2ni , h)

]
θ
(

lim sup
i→∞

σb(h2ni , h)
)

+ lim sup
i→∞

γ
[
σb(h2ni , h)

]
θ
(

lim sup
i→∞

σb(h2ni , h2ni+1)
)

+ lim sup
i→∞

δ
[
σb(h2ni , h)

]
θ
(

lim sup
i→∞

σb(h, gh)
)

≤ θ
(
σb(h, gh)

)
. (30)
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Inequality (30) yields that σb(h, gh) = 0, so gh = h. Similarly, fh = h.
If h, j ∈ C(f , g) with h 
= j, then, by hypothesis Usp and applying (19), we obtain

ψ
(
spσb(h, h)

)

≤ ψ
(
α(h, h)σb(fh, gh)

)

≤ β
[
σb(h, h)

]
θ
(
σb(h, h)

)
+ γ

[
σb(h, h)

]
θ
(
σb(h, fh)

)
+ δ

[
σb(h, h)

]
θ
(
σb(h, gh)

)

= β
[
σb(h, h)

]
θ
(
σb(h, h)

)
+ γ

[
σb(h, h)

]
θ
(
σb(h, h)

)
+ δ

[
σb(h, h)

]
θ
(
σb(h, h)

)

=
(
β
[
σb(h, h)

]
+ γ

[
σb(h, h)

]
+ δ

[
σb(h, h)

])
θ
(
σb(h, h)

)

< θ
(
σb(h, h)

)
,

that implies σb(h, h) = 0 (also σb(j, j) = 0).
Again from (19), we have

ψ
(
spσb(h, j)

) ≤ ψ
(
α(h, j)σb(fh, gj)

)

≤ β
[
σb(h, j)

]
θ
(
σb(h, j)

)
+ γ

[
σb(h, j)

]
θ
(
σb(h, fh)

)

+ δ
[
σb(h, j)

]
θ
(
σb(j, gj)

)

≤ θ
(
σb(h, j)

)
,

a contradiction. Hence, h = j. �

Corollary 2.11 Let (f , g) be an αsp -admissible pair of self-mappings on a complete b-
metric-like space (T ,σb) with coefficient s ≥ 1. If there exist ψ ∈ I , θ ∈ � and c1,c2, c3 ∈ R

+

with c1 + c2 + c3 < 1 such that

ψ
(
α(h, k)σb(fh, gk)

) ≤ c1θ
[
σb(h, k)

]
+ c2θ

[
σb(h, fh)

]
+ c3θ

[
σb(k, gk)

]

for all h, k ∈ T ; furthermore, the following conditions hold:
(i) there exists h0 ∈ T such that min{α(h0, fh0),α(fh0, h0)} ≥ sp;

(ii) properties Hsp ; Usp are satisfied,
then f and g have a unique common fixed point h ∈ T .

Proof Take in Theorem 2.10, β(m) = c1, γ (m) = c2, δ(m) = c3, m ≥ 0. �

Corollary 2.12 Let f be an αsp -admissible self-mapping on a b-metric-like space (T ,σb)
with coefficient s ≥ 1. If f is a generalized αsp – (I × � × �)-Kannan contraction, and the
following assertions hold:

(i) there exists h0 ∈ T such that min{α(h0, fh0),α(fh0, h0)} ≥ sp;
(ii) conditions Hsp ; Usp are satisfied,

then f has a unique fixed point h ∈ T .

Proof The proof follows from Theorem 2.10 if we take g = f . �

Corollary 2.13 Let (f , g) be an αsp -admissible pair of self-mappings on a complete b-
metric-like space (T ,σb) with coefficient s ≥ 1. If there exist ψ ∈ I , θ ∈ �, and β ∈ � such
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that

ψ
(
α(h, k)σb(fh, gk)

) ≤ β
[
σb(h, k)

](
θ
[
σb(h, k)

]
+ θ

[
σb(h, fh)

]
+ θ

[
σb(k, gk)

])

for all h, k ∈ T and θ (m) < ψ(m) for all m > 0; and the following assertions hold:
(i) there exists h0 ∈ T such that min{α(h0, fh0),α(fh0, h0)} ≥ sp;

(ii) conditions Hsp ; Usp are satisfied,
then f and g have a unique common fixed point h ∈ T .

Proof By taking γ (m) = δ(m) = β(m). �

Remark 2.14 It is evident that we can generate a variety of other corollaries as special cases
by putting α(h, k) = sp (p > 1), or g = f or ψ(m) = m, or defining β ,γ , δ ∈ � as constant
functions.

3 Applications
In this section, we discuss an application that attributes the solvability of boundary value
problems of second order ordinary differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

h′′(u) = M1(u, h(u)), u ∈ [0, 1],

h′′(u) = M2(u, h(u)), u ∈ [0, 1],

h(0) = h(1) = 0

(31)

for given continuous functions M1; M2 : [0, 1] ×R →R.
Let T = �([0, 1],R) be the set of real continuous functions defined on [0, 1], endowed

with the b-metric-like

σb(h, k) = max
u∈[0,1]

(∣∣h(u)
∣∣ +

∣∣k(u)
∣∣)n for all h, k ∈ T .

It is evident that (T ,σb) is a complete b-metric-like space with parameter s = 2n–1 where
n > 1.

The equivalent system of integral equations corresponding to boundary value problems
(31) is the following:

⎧
⎪⎪⎨

⎪⎪⎩

h(u) =
∫ 1

0 G(u,ρ)M1(ρ, h(ρ)) dρ,

h(u) =
∫ 1

0 G(u,ρ)M2(ρ, h(ρ)) dρ,

for u ∈ [0, 1]

(32)

and G(u,ρ) is the Green function given as

G(u,ρ) =

⎧
⎨

⎩
ρ(u – ρ) 0 ≤ ρ ≤ u ≤ 1,

u(ρ – u) 0 ≤ u ≤ ρ ≤ 1.

Consider the mappings f , g : T → T by

fh(u) =
∫ 1

0
G(u,ρ)M1

(
ρ, h(ρ)

)
dρ for u ∈ [0, 1],
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gh(u) =
∫ 1

0
G(u,ρ)M2

(
ρ, h(ρ)

)
dρ for u ∈ [0, 1],

and let ζ : R×R →R be a given function.

Theorem 3.1 Consider the system of integral Eqs. (32) and suppose that the following as-
sertions hold:

(i) There exists h0 ∈ T such that ζ (h0(u), fh0(u)) ≥ 0 for all u ∈ [0, 1];
(ii) For all u ∈ [0, 1] and h, k ∈ T ,

ζ
(
h(u), k(u)

) ≥ 0 implies that ζ
(
fh(u), gk(u)

) ≥ 0;

(iii) Properties Hsp and Usp are satisfied;
(iv) There exist n > 1, p > 1, λ ∈ (0, 1) and a continuous function θ : R+ →R

+ such that

(∣∣M1
(
ρ, h(ρ)

)∣∣ +
∣∣M2

(
ρ, h(ρ)

)∣∣) ≤ n
√

L2pθ
[(∣∣h(ρ)

∣∣ +
∣∣k(ρ)

∣∣)n]

for all ρ ∈ [0, 1], h, k ∈ T ;
(v) For all ρ ∈ [0, 1], supu∈[0,1]

∫ 1
0 G(u,ρ) dρ ≤ 1

2 .
Then the system of integral Eqs. (32) (or equivalently, (31)) has a unique solution in T .

Proof We define a function α : T × T → [0,∞) by

α(h, k) =

⎧
⎨

⎩
sp if ζ (h(u), k(u)) ≥ 0, for all u ∈ [0, 1],

0 otherwise.

It is clear that (f , g) is an αsp -admissible pair.
Let h, k ∈ T = �([0, 1],R) be such that α(h(u), k(u)) ≥ sp, i.e., ζ (fh(u), gk(u)) ≥ 0, then

from the assertions above, for all u ∈ [0, 1], we might observe that

σb
(
fh(u), gk(u)

)
= max

u∈[0,1]

(∣∣fh(u)
∣
∣ +

∣
∣gk(u)

∣
∣)n

=
(∣∣

∣∣

∫ 1

0
G(u,ρ)M1

(
ρ, h(ρ)

)
dρ

∣∣
∣∣ +

∣∣
∣∣

∫ 1

0
G(u,ρ)M2

(
ρ, h(ρ)

)
dρ

∣∣
∣∣

)n

≤
(∫ 1

0
G(u,ρ)

∣∣M1
(
ρ, h(ρ)

)∣∣dρ +
∫ 1

0
G(u,ρ)

∣∣M2
(
ρ, h(ρ)

)∣∣dρ

)n

=
(∫ 1

0
G(u,ρ)

(∣∣M1
(
ρ, h(ρ)

)∣∣ +
∣
∣M2

(
ρ, h(ρ)

)∣∣)dρ

)n

≤
(∫ 1

0
G(u,ρ) n

√
λ2pθ

[(∣∣h(ρ)
∣∣ +

∣∣k(ρ)
∣∣)n]dρ

)n

=
(∫ 1

0
G(u,ρ) n

√
λ2pθ

[
σb

(
h(ρ), k(ρ)

)]
dρ

)n

=
(∫ 1

0
G(u,ρ) dρ

)n

λ2pθ
[
σb

(
h(ρ), k(ρ)

)]

≤
(

sup
u∈[0,1]

∫ 1

0
G(u,ρ) dρ

)n

λ2pθ
[
σb(h, k)

]
. (33)
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Since G(u,ρ) = u
2 – u2

2 and supu∈[0,1]
∫ 1

0 G(u,ρ) dρ ≤ 1
8 (in that case, the coefficient p = 3 >

1), then inequality (33) can be written

σb
(
fh(u), gk(u)

) ≤ 1
2np · λ

2–p θ
[
σb(h, k)

] ≤ λ

2(n–1)p θ
[
σb(h, k)

]
=

λ

sp θ
[
σb(h, k)

]
.

Hence,

max
u∈[0,1]

(∣∣fh(u)
∣∣ +

∣∣gk(u)
∣∣)n ≤ λ

sp θ
[
σb(h, k)

]
,

and we convert the result to

α(h, k)σb
(
fh(u), gk(u)

) ≤ λθ
[
σb(h, k)

]
. (34)

Thus, taking ψ(x) = x, and β ,γ , δ ∈ � as β(x) = λ, γ (x) = 0, δ(x) = 0, where λ ∈ (0, 1), from
inequality (34) we deduce

ψ
(
α(h, k)σb(fh, gk)

) ≤ β
[
σb(h, k)

]
θ
[
σb(h, k)

]

+ γ
[
σb(h, k)

]
θ
[
σb(h, fh)

]

+ δ
[
σb(h, k)

]
θ
[
σb(k, gk)

]
.

Therefore, Theorem 2.10 can be applied to obtain a solution of the system of boundary
value problems (31). �
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