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Abstract

In this work, we develop and analyze a nonautonomous mathematical model for the
spread of the new corona-virus disease (COVID-19) in Saudi Arabia. The model
includes eight time-dependent compartments: the dynamics of low-risk S, and
high-risk Sy susceptible individuals; the compartment of exposed individuals E; the
compartment of infected individuals (divided into two compartments, namely those
of infected undiagnosed individuals /; and the one consisting of infected diagnosed
individuals Ip); the compartment of recovered undiagnosed individuals Ry, that of
recovered diagnosed Rp individuals, and the compartment of extinct Ex individuals.
We investigate the persistence and the local stability including the reproduction
number of the model, taking into account the control measures imposed by the
authorities. We perform a parameter estimation over a short period of the total
duration of the pandemic based on the COVID-19 epidemiological data, including the
number of infected, recovered, and extinct individuals, in different time episodes of
the COVID-19 spread.

Keywords: Contact tracing; Testing; Quarantine; COVID-19 EIISSRREx-model;
Stability; Parameter estimations

1 Introduction

In the last century several compartmental models in epidemiology are derivatives of the
type Susceptible, Infected, and Recovered individuals (SIR), see for example [1, 2] for fur-
ther details and recent modeling contributions with more references therein [3—7]. The
most widely used models, and among the simplest ones, proved to be those proposed by
Kermack and McKendrick [8—10]. One of the shortcomings of this work is the oversimpli-
fication of two different effects: (i) susceptible; and (ii) infectious, which are both lumped
into a single effect. This kind of simplification does not take into account an individual’s
degree of exposure to the infection. Hospital staff members or individuals with weakened
immune systems or with chronic diseases, for example, should be placed in a category
different from that of the individuals who, due to their occupation, age, or physical condi-
tion are less susceptible to contracting the infection. In particular, we quantitatively and
qualitatively distinguish these two groups by considering the category of susceptible in-
© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’'s Creative Commons licence and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13662-021-03410-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03410-z&domain=pdf
http://orcid.org/0000-0002-0646-9067
mailto:mbachar@ksu.edu.sa

Bachar et al. Advances in Difference Equations (2021) 2021:253 Page 2 of 18

dividuals as the union of two different compartments: that of higher-risk individuals and
the compartment of lesser-risk individuals.

Extensions of SIR-type models have been proposed by several authors, see for example
[11-14] with more reference therein, trying to capture the changes in the dynamics of the
model interaction, particularly with respect to the reproductive number %y. An overview
of some of the mathematical models in epidemiology which appeared in the literature is
given in [15], enhanced with a recent publication on COVID-19 modeling a series of the
parameter values (rates) given in [3, 16—18]. Such parameters will provide good guidelines
for our parameter estimation procedure.

Given the complexity of the biological systems and the interactions between given sub-
systems, where we have data limitations, mathematical modeling and analysis are needed
to quantify such iterations and understand the behavior of such subsystems. The theoret-
ical result such as the existence of positive solutions and their boundedness are important
by nature, such as the number of individuals or the biomass dependent on the given model,
where they should be positive and bounded. In addition to studying the stability of such a
system of equations, the models must be as simple as possible and complex enough as nec-
essary to reflect the reality, see for example [3, 19]. Consequently, real life data collection
is very important for the parameter estimations in order to understand the interaction be-
tween the given subsystems. A broad overview of model validation is presented in [19-21],
where more details about parameter estimations are given.

Recently, Lin et al. in [22] proposed a compartmental model with time-dependent trans-
mission rate, which incorporates the impact of governmental action that could be modeled
by step functions. On the other hand, Lin’s model should be in correspondence with the
understanding of the quantity and quality of the available data. In addition to dividing the
susceptible individual into higher- and lesser-risk compartments, we suggest splitting the
compartment of infected individuals into the subcompartments consisting of diagnosed-
and undiagnosed-infected individuals. This method will be helpful in controlling the out-
break of COVID-19 (see the model proposed by Chowell et al. [23], which concerns the
SARS outbreak in Ontario, Hon Kong, and Singapore, where they show that diagnosing
and isolation help control the spread of the virus). Due to the large scale of the model, we
conduct a careful sensitivity analysis to determine which model parameters have a strong
influence on the dynamics of the system and therefore can be determined accurately in
the parameter estimations, as was demonstrated in [19, 20].

In Sect. 2, we develop a nonautonomous mathematical model for the spread of the new
coronavirus disease (COVID-19) in Saudi Arabia, taking into account the control mea-
sures imposed by the authorities, which are time dependent. The model includes eight
time-dependent compartments: the dynamics of low-risk S;, and high-risk Sys susceptible
individuals; the compartment of exposed individuals E; the compartment of infected indi-
viduals (divided into two compartments, namely that of infected undiagnosed individuals
I;; and the one consisting of infected diagnosed individuals Ip); the compartment of re-
covered undiagnosed individuals Ry, that of recovered diagnosed R individuals, and the
compartment of extinct Ex individuals. In Sect. 3, we investigate the qualitative aspect of
the model including the model persistence and local stability, and Sect. 4 is devoted to the
quantitative dynamics of the spread and the parameter estimation over a short period of
the total duration of the pandemic based on the COVID-19 data, including the number of
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infected, recovered, and extinct individuals in different episodes of the COVID-19 spread.
Finally, concluding remarks and future directions of our research are offered in Sect. 5.

2 Model development

As mentioned above, the compartment of susceptible individuals is divided into two fur-
ther subcompartments: that consisting of the most susceptible individuals, denoted by
Sa, with higher risk of contracting the COVID-19 disease and the group of individuals
with lower likelihood of getting infected. The latter will be called the compartment of
less susceptible individuals and will be denoted by S;. These groups of individuals will be
considered according to how closely they follow the sanitary recommendations of the au-
thorities in their daily life, namely, whether they often wash their hands, regularly disinfect
their surroundings, and wear face masks. In general, susceptible individual are not infected
by the disease-causing pathogen. These individuals are socially active and within certain
limits follow the sanitary protection measures suggested by the US Center for Disease
Control and Prevention (CDC), such as social distancing of 1.5-2 m, regular hand wash-
ing, and wearing of face masks in their daily activities, in order to limit the airborne trans-
mission of COVID-19, see [24]. Further measures might be needed for reducing airborne
transmission of COVID-19, such as room ventilation and regular disinfection, which lead
to effectively limiting the concentration of SARS-CoV-2 in aerosols, see [25]. In practice,
however, most of the time social distancing is not respected. Yet, the sanitary protection
provided by the universal wearing of masks represents a promising practice for reduc-
ing the transmission of the COVID-19 infection, as was demonstrated in [26]. The epi-
demiological data provided at the beginning of the pandemic by a number countries, such
as Taiwan, Japan, Hong Kong, Singapore, and South Korea, show the efficacy of univer-
sal masking as a control measure, even in the absence of a severe lockdown during the
pandemic. In [26] the necessity of masking and testing in the fight against asymptomatic
spread in aerosols and droplets is shown, and evidence is provided of the fact that no mask-
ing maximizes exposure, whereas the least level of exposure is achieved through universal
masking. The universal use of face masks, it is shown in the work in point, helps reduce the
size of the spread particles from 100 um to 1-0.1 pm, especially in asymptomatic people
and those with mild symptoms, see [27] and Fig. 1. Prather et al. [26] demonstrate that
the aerosol filtering efficiency of different materials, thickness, and layers used in properly
fitted homemade masks was similar to that of medical masks, see [28]. Tellier et al. [29]
show that in still air, a 100 um droplet will drop to the ground from 2.4384 m in 4.6 s,
whereas a 1 um aerosol particle will take 12.4 hours. The (CDC) recommends 1.8288 m
for social distancing, but this recommendation might not be sufficient for indoor con-
ditions, where aerosols can remain airborne and accumulate for hours, see [30, 31]. The
authors in [31] show that breezes and winds often transport infected droplets and aerosols
long distances. Further experimental research is needed in order to more precisely char-
acterize the transport and to achieve a better understanding of the relevance of airborne
transmission of the COVID-19 infection [26]. For the simulation of COVID-19, the epi-
demiological EIISSRREx-model, for all ¢ > ¢y, would be formulated from Fig. 2 as follows:

dE@)  Sm(8) + pr(6)S.(¢)
dat N

+ Cu(Dap Ip(t)) - Be(E®), 1

(Cm(OaeE(t) + Cart)orr, Ly (2)
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Masks reduce airborne transmission
Infectious aerosol particles can be released during breathing and
speaking by asymptomatic infected individuals. No masking maximizes
exposure, whereas universal masking results in the least exposure.
Particle size (jum) —,—7—7—,—
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Figure 1 Graphic of V. Altounian [26], showing that masks reduce airborne transmission
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Figure 2 Diagram of the schematic representation of the flow of individuals among different stages of the
infection. The mathematical model is called EIISSRREX-model and considers two distinct susceptible
compartments: Sy the most susceptible individuals and S; the less susceptible individuals. Also, there are
uninfected /, infected individuals, asymptomatic, and symptomatic individuals. /; stands for the infected
individuals and there are asymptomatic/undiagnosed (undetected) and those who will recover Ry; Rp
represents those diagnosed, hospitalized individuals that will recover; £ represents the group of those
diagnosed hospitalized individuals who die

Here, E represents the number of individuals in the incubation period, that is, the number
of persons exposed to the virus with no visible symptoms. I;; represents the number of
infected, undiagnosed individuals, asymptomatic, and symptomatic individuals with mild
symptoms that have not been identified by the authorities. Ip represents the number of
infected, diagnosed individuals, that is, the number of persons that have been officially
identified as infected and are either hospitalized or in quarantine at home. Those individ-
uals are registered in an official applications provided by the local Saudi Authority, called
“Tawakkalna (L= 93)" see “https://ta.sdaia.gov.sa/en/index”. Such application will help
with contact tracing. Therefore as we increase the number of testing, we will be able to
localize clustering of infected individuals which will help to reduce their numbers. Sy
represents the number of most susceptible individuals, with higher risk of contracting the
COVID-19 infection. S; represents the number of individuals that are less susceptible to
the COVID-19 infection. R;; represents the number of recovered, undiagnosed individu-
als, who are not being officially identified as such. Rp represents the number of infected,
recovered individuals officially identified as such and finally Ex represents the number of
individuals who are deceased from COVID-19 (called extinct individuals). The parameter
1r represents the reduction risk factor of the COVID-19 infection for the less susceptible
individuals S;. Cy(£) represents the efficiency of the control measures imposed by the au-
thorities, such as the lockdowns. This quantity can be modeled as a step function in the
following fashion:

CM(t) = Z X[tl',t”l](t)lci’ (9)
i=0

where

1, ift;<t<ty1,i=0,...,n,
Xitotin) () = .
0, otherwise.
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Table 1 Parameters used in model (1-8)

Parameters ~ Meaning Values Ref.

or Contact disease rate of a person in compartment £ at time t Estimated day™' Table 2
o, Contact disease rate of a person in compartment /iy at time t Estimated day ™' Table 2
o Contact disease rate of a person in compartment /pjqg at time t Estimated day™' Table 2
Be Transition rate of a person in compartment £ at time t Estimated day™' Table 2
B, Transition rate of a person in compartment /y at time ¢ Estimated day ™ Table 2
Bry Rate at which an undiagnosed infected person recovers at time t Estimated day™' Table 2
ﬂgD Rate at which a diagnosed infected person recovers at time t Estimated day™' Table 2
Bex Rate at which a diagnosed infected person dies at time t Estimated day ™ Table 2
m Reduction risk factor of infection in compartment S; at time ¢ — Table 2
14 Proportion of the population size N that is initially at higher risk of 04 [23]

contracting the infection
N Total size of the population 30- 100 —

The time episode of the lockdown imposed by the authorities is denoted by an increas-
ing positive sequence (£;)o<i<u+1, and the authorities-controlled parameters are given by
«; € (0,1), i = 0,...,n. The positive initial conditions are given by Sy(t) = S, = pN and
Si(t) = Sg = (1 - p)N, where £, > 0 represents any initial time and p is the proportion of
the population size N that is initially at higher risk of contracting the infection, see [23].
The disease constant rates o, oy, oy, 0, € (day™!) of individuals in the corresponding
compartment are supposed to be constant, without taking into account the control mea-
sures. Without loosing any generality, we can suppose that all parameters are piecewise
constants, as in (9), which means

e(t) = Z X[tl*,t”l](t)ei’
i=0

where

0(2) = (e (t), auy (), iy (8), B(2), Bryy (0), Bry (£), Bro (8), Bex(D))

represents the time-dependent model parameters, and

9[ = (aEi) Ay ®p ﬁEi» IBIL”» ﬂRup ﬂRDi’ ,BExi): i=0,...,n,

are the model parameters constant over each time episode of the lockdown at the interval
[t t41], 0 < i < n. Table 1 displays a detailed description of the parameters (including their
units).

The positive initial conditions E(ty) = E°, Ip(ty) = Ig, and Ij;(t) = I?, are given in [0, 00).
The transition rate S¢ from the exposed compartment E to the infected compartment [ is
supposed to be constant at the beginning of the pandemic according to [32].

3 Model analysis

The model provides a description of the mass transfer property between the compart-
ments. It follows that each solution of the equations involved in it (1)—(8) should be pos-
itive, bounded, and persistent. The sum of the states (total population) is constant and
equalto N, i.e.,

E(t) + Iy (2) + Ip(t) + Spr(t) + Sp(£) + Ry (¢) + Rp(£) + Ex(¢) = N.
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In the sequel, we set C(R*,R®) to denote the space of all continuous functions from R*
into R8. It is a well-established mathematical fact [33] that the autonomous system of
differential equations (4)—(8), which depends on the initial conditions E(ty) = E, I;;(to) =
0, Ip(to) = 0, Si(to) = SY, SL(to) = Y, Ru(to) = 0, Rp(to) = 0, Ex(to) = 0, is uniquely solvable.

Theorem 3.1 There exists a unique solution to the system of equations (1)—(8) in
C(R*,R8). Furthermore, the solution is positive and bounded from above.

Proof The right-hand side of each of equations (1)—(8) is continuously differentiable al-
most everywhere in C(R*, R®). We refer the reader to [33] for the mathematical result that
guarantees that under such circumstances the system of equations (1)—(8) with the given
initial conditions is uniquely solvable for all £ > 0.

Denote the solution of (4) by Sa(¢). If for any

7o = inf{£ > 0, where Sp(¢) <0} held that Sy(to) =0,

then we would have % o <O From equation (4), we get
dSp(t)
0
g dt |70
Sm (o)
==X (Cum(to)aeE(to) + Car(t)ets, Iu(To) + - - - + Cpr () (7o)
= O,

which is a contradiction. Therefore, Sy(¢) > 0 for all £ > t,. In a similar way, we can prove
that Sy (¢) is positive for all £ > 0.
Denote the solution of equation (1) by E(¢). Assuming the existence of 7; such that

T = inf{t >0, where E(¢) < 0},

such that E(t1) = 0, we would have %In < 0. From equation (1), we have

G(t) = Cy()agE(t) + Cpr(t)ery, Iy (£) + Car () In(2),

and it follows that

dE(t)  Sm(t1) + pr(t1)Se(m1)

prai ~ G(n). (10)

Using equations (2) and (3), we obtain

a4 (fu@®)) _ (B (7)) + Bry (7)) 0 Iy (11)
dt \Ip(t) i B, (1) —(Brp (1) + Bex(11)) ) \Up(71) '

Then we have

Iu(t)\ _ Iu(to)
<1D(T1)) = 2l <ID(tO)> '
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where

oo By 9)+Bry () ds o )

Q(t ,t = T
( 1 0) ( A(Tl: tO) e ftol (Brp (5)+PEx(5)) ds

and

T1 o -
Ay, t) = / Bryy(0)e o P Pry (D s g [ (B 4B s
to

Then, for any positive initial condition, I;;(7;) and Ip(z;) are positive. Again, equation (10)
yields

dE S S
0> dit)m _ M(Tl)ﬂx(n) L(Tl)g(rl) >0,

This is a contradiction and thus it must hold that E(¢) > 0 for all £ > £,.

It can be shown analogously that I;;(¢), Ip(£), Ry (t), Rp(t), and Ex(t) are positive for all
t > 0, hence the positiveness of the solution of system (1)—(8).

Next, we show the boundedness of Sy;(¢), Si(¢), E(¢), I1;(t), Ip(t), Ry(t), Rp(t), and Ex(t)
for all £ > 0. We tackle first the function Sy(¢). Equation (4) yields, for ¢ > £,

¢ G g
Su) = e o N S0 <50 (11)
and from equation (5)
t o 96
Sp(t) = e ot N B0 < g0 (12)

Thus, Sy;(¢) and S, (¢) are bounded from above.
Now, we show that any given solution of (1)—(8) is bounded. It is clear from the model
equations (4)—(8) that we have

E(t) + Iu(t) + ID(t) + Ru(t) + RD(t) + EX(t) <N,

and by using the positivity of each state equation, we can conclude that, for all £ > 0, all
solutions are bounded from above. O

Throughout this paper, we use the following notations for the lim sup and the liminf of
output of the model in each compartment:

X = limsup X(¢), X= litmian(t).

t—00

Theorem 3.2 Model (1)—(8) is persistent. This is to say that the components of each solu-
tion are eventually uniformly bounded from above and away from zero.

Proof Since S3, and S? are a finite, using the positivity and boundedness of the operator
Cum(t)apE(t) + Cay(t)ar, 11 (t) + Cpr(t)ar, Ip() in integrals (11) and (12), we conclude that

0<S_M<$<oo and O<&<§<oo.
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Again, since E, Ij;, and I are positive and bounded, and from equations (2)—(3) and (6)—

(8), we have
¢ t
1) = / o 1y @by (@) do g p (o e
to

t
Ip(t) = / e S Brp @ BN do g 1) i

to

Rult) - / Broy () 1u(s) ds,

to

Rold) - / B (5)1p(s) ds,

Ex(t) - f Ben(s)In(s) ds.

Then
0<1_U<E<oo, 0<I£<E<oo,
0<R_U<E<oo, O<R_D<E<oo, and O<@<E_x<oo.

Now, we will show that E = liminf;_, ., E(t) > 0. Suppose that E < E. Then, by using the
fluctuation lemma, see for example Hirsch [34], there exists a sequence {£}72; such that,
forallk>1,

dE(t)

— =0, lim E(t;) = E.
dt 1tk k— 00 (k) -

It is clear from the model equation (1) that we have

0 Su(ti) + prSe(t)
- N
+ Cr(tr)oup Ip(t)) — Be(ti)Et),

(Cult)aeE(tr) + Carti)etry Lu(te)

> ms,, + my,; mg;

> N (mcyaeE(t) + mcyou,my,

+ My o M) — Be(t)E (),

where mg = minse(sy,00) E(E) > 0, E := Cp, Si, Sz us Ip, iz, and Be = maXye(s,00) BE(L).
Therefore, as k — 00, we obtain

0> ms,, +m,, ms,
- N

+ mCMOlIDmlD) - El_i

(I’}’ICMQEE + mMcy, Ay, m]u)

If we have E = 0, then we get a contradiction as we have

WISM + WIMLWISL
0> —————=(mc,, oy, my,; + mcy,Q,my,) > 0.

- N
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If we have lim;_, o, E = 0, the model equation (1) implies that % >y >0as t— 00, and
we have lim,_, », E = 0o, which will be a contradiction. Finally, if we suppose E = E, then
lim;_, » E exists and E is eventually uniformly bounded from above and away from zero,

which is the desired conclusion. O

It is clear that the last three equations (6)—(8) can be solved explicitly and that the solu-
tions will depend on the infected compartments (6)—(7). We denote the susceptible com-
partment by xs = (Sar,Sz)T and the infected compartment by x; = (£, I;,Ip)T. Then the
model equations (1)—(5), can be written as a feedback control structure

DO\ oxale) + bule), (13)
dt
B - D00 (14)
t
x(t) = CA](,(” (e, i (8, (15)
() = (Sur(®) + 1L (OSL(0)xs(0), (16)

and the remaining recovered and extinct compartments (8)—(6) can be denoted as Xgg, =
(Ry, Rp, Ex)T, which depend on the infected compartment x; as follows:

P 1) - B0 0,
where
-Be(t) 0 0 1
Alt)=| Be(®) =By (2) + Bry (1) 0 , b=|o0]|,
0 B, (t) —(Brp (£) + Bex(2)) 0

B(f)=1]0 0 Bi,(t) |, and D(t)= (0 (L‘))'
0 0 B -

To find the basic reproduction number %, the average number of individuals that one
single infected individual is capable of infecting during each time episode of the lockdown
in the interval (¢, ¢;,1], 0 < i < n, should be kept in mind. In other words, we are going to
protect uninfected individuals as we have no control measure. In this case, the number
of uninfected individuals will depend on the size of the population and not on the time
period of the spread. Therefore, to study the stability, and for the sake of simplicity, we
will suppose that all parameters are constant. The possible equilibrium of the system of
equations (1)—(8) is given by

E:O, Iu:O, ID:O; EMEO’ ELEO,
Ry>0,  Rpigg>0, Ex>0
with

§M+§L +Eu+ﬁD+Fx=N.
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Therefore only most susceptible, low susceptible, received, and deceased individuals are
present, which means that the epidemic is over. It is clear that the rate of appearance .# =
(:Z1)1<i<s of new infections in each compartment i and the rate of transfer ¥+ = (¥/)1<i<s

(resp. 7" = (¥;")1<i<s of individuals into (resp. out of ) in each compartment i of the model

equations can be written as follows:

S, S
9(x):< Mt ULOL

T
N (aeE + o Iy + 0 Ip), 01><7) ,

’V+(x) = (0! ,BEEr /BIUIU) 0,0, ﬂRUIUI ﬂRDIU! ,BExID)T,

and
_ St
V™ (x) = | BeE, (Br, + Bry > (Brp + Bex)Ip, ﬁ(aEE + oy, dy
Sy T
+ay,Ip), MLﬁ(OlEE + oy, Iy + o Ip), 0143 |

where x = (E,Ii;, Ip, Sam, Si, Ru, Rp, Ex)T. The model equations given in (1)—(8) can be

rewritten as the following system of equations:

dx

=70 -7,

where 7 =¥~ — #*. To discuss the local asymptotic stability of the endemic steady state
X* =(0,0,0,Su,S,Ru, Rp, Ex)T, we linearize around the equilibrium X*. Using the no-
tation for the corresponding linearized model around X = (E, 1!, I, S", St , R, ;, RL, Ex')T
we have then

dX
—; () = TX(),

where
O[E EM‘;([LLEL _ ﬂE a]u gM‘;(;LgL aID §M+I<;L§L 01 <5
BE —(Br, + Bry) 0 0145
0 B, —(Brp + BEx)  O1x5
J = _aEEWM —Ory EWM —orp EWM 01x5
—,U«LO‘EEWM —apy, EWM —ap, EWM 01x5
0 Bry 0 0145
0 0 Brp 015
0 0 BEx 015

To understand the qualitative behavior of the model equations (1)—(8), we observe that
the infected compartments E, Ij;, Ip in the equilibrium are zero and that the remaining
compartments Sy, Sz, Ry, Rp, Ex are at the given equilibrium Su» Si, Ry, Rp, Ex.

Now, if we set .Z (X) = 0 for allX = (E, Iz, Ip, Sar, S1) T = (:; ), where X includes the infected

subjects with susceptible individuals for the infection, it is clear that the new Jacobian
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matrix 7 has three negative eigenvalues given by — ¢, —(B1,, + Br;;)> —(Brp, + BEx) and that
the characteristic polynomial can be written as

A(§) = det(E1 - ),

= £+ @& + i€ + ag,
where

ax = Be + Bry + Bry + Bry + Bexs
a1 = (Brp + Bex)(BE + By + Bry) + BBy + Bry)s
ao = Be(Bry, + Bry)(Brp + BEx)-

In the proof of the local asymptotic stability, we borrow the powerful tools from the theory
of M-matrices [35—39]. For the reader’s convenience, we state the characterization of M-
matrices with regard to the spectral radius (SR) and to the spectral abscissa (SA).

Recall that given a matrix A, its spectral radius, denoted by p(A), is given by

p(A) = max{|A| : det(A] — A)}. (17)

(SR)[38, 39]; If A € R™" can be written in the form A = sI — B, where s >0 and B =
(bij)1<ij<n is nonnegative (B > 0, if b; > 0, 1 < i, j < n) and s > p(B), then
A is called an M-matrix.

(SA)[38, 39]; A matrix A is said to be an M-matrix if A € R"*" has the Z"*" pattern, that
is, if A belongs to the class

Zmn = {A = (ﬂ,j) € R ta = O,Z#]},
and if each eigenvalue 1;(A) of A satisfies
R(r(A) >0, i=1,..,n

Clearly, an M-matrix A is nonsingular if and only if the following condition holds: s = p(B)
for some B > 0 in (SR), so that R(A;(A)) > 0 in (SA).

The following lemma will be useful throughout the characterization of the reproduction
number Zy. We refer the reader to [39, p. 159] and [40, p. 127] for further details.

Lemma 3.3 ([39, 40]) Let V be a nonsingular M-matrix such that both ] and JV ! have
the Z"™" sign pattern. Then ] is a nonsingular M-matrix if and only if [V~ is a nonsingular
M-matrix.

Now, conditions (A1)—(As) in [41] are satisfied for the model equatlons (13)- (16) There-
fore the rate of appearance of new infections in each compartment i, Z = (9 )1<l<5, and
the rate of transfer of individuals into (resp. out of) each compartment i, V= (%*)15,55
(resp. P = ("///;’)15,-55, of the model equations (13)—(16) satisfy

ax S e
5 0=70-7R,



Bachar et al. Advances in Difference Equations (2021) 2021:253

~ Sy +urS
(gz.(x):(MAl[/LLL

T
(aeE + ap iy + oy Ip), 01><4> ,
V() = (0, BeE, B, 1, 0,0)7,

~ S,
V(X)) = (,BEE (Bry + Bry)us (Brp + Bex)Ip, WM(QEE +op, Iy
Sy T
+ay,Ip), MLN(OIEE +oy Iy +oaplp) |

and
TR =7"®-7"R®,
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S, S
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Following the same arguments as those of Lemma 1 in van Driessche and Watmough [41],

we have
)
D7 (x) = ,
0 0
where
oE §M+]<[LL§L ay, §M+]<[LL§L g, EM*]GLLEL
F= 0 0 0 )
0 0 0
and
~ (Vo
DYV (X) = ,
J3 0
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Be 0 0
V=|-Bc B +Bry 0 )
0 _ﬁlu ﬂRD + ﬁEx
and
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It is clear that all diagonal elements of V are positive, whence V is a nonsingular M-matrix,
see [35—-39] and Fisa nonnegative matrix. As in [2, 42], we refer to FV-! as the next
generation matrix of the model equations (13)—(16) and we define the basic reproduction
number %, as follows:

Ro = ;O(f\/}_l),

B <0l£ ag, ai, B, ) Sm + 1St

Be Bt Bry Bt Prg) Byt Be)) N (19)

where p(A) denotes the spectral radius of the matrix A given in (17).

The free infected compartments including Sy, Sy are monotonically decreasing, whereas
the compartments of recovered and defunct individuals R;;, Rp, Ex are monotonically in-
creasing and converge to their asymptotic equilibrium

(§M1 §L7 EU! ED’ E)T

if and only if the compartments of infected individuals (E,I;;, Ip)? converge to the zero
equilibrium, taking into account the time varying of the compartments of susceptible in-
dividuals, and converge to the steady state value. Thus we have the following theorem
about the asymptotic stability of (13)—(16). Now we are ready to state the main theorem
concerning the local asymptotic stability of the endemic equilibrium.

Theorem 3.4 The endemic equilibrium X* = (0,0,0,Sa,S;, Ry, Rp, Ex)T of the model
equations (1)—(8) exists and is locally asymptotically stable during each time episode of
the lockdown interval [t;,t;,1], where (t;)o<i<u+1 iS an increasing positive sequence if and
only if o < 1, where X is the basic reproduction number given in (19). In other words, if

and only if
Sum+ 1St Bex + Brp
N < ﬁE(ﬂ]u + ﬂRu) P(Q,IB) )
where

Pla, B) = ap(BexBry; + BrpPry + By Pex + Bry Bry)

+ ﬂE(afuﬂEx + ,BfualD + a]uﬂRD)~

Proof To study the local asymptotic stability of (1)—(8) around the equilibrium X* in each
time episode of the lockdown interval [¢;, ¢;,1], we will focus first on the Jacobian subsys-
tems matrices F and V including the compartments E, I, Ip, Sy, S; around the equi-
librium (0,0,0, S, 5.)” of the model equations (13)—(14). By using the inverse-positivity
characterization of nonsingular M-matrices given in [39] and taking into account that v,
given in (18), is a nonsingular M-matrix and

og §M+]<ILL§L ay, §M+]<[LL§L a, §M+]<[LL§L
F= 0 0 0

0 0 0
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is nonnegative, it is readily concluded that FV! is nonnegative. Let us consider the fol-

lowing matrix difference:

_]1 = ‘7 - ’F\y
B — ap §M+I<;L§L —ay, §M+]<[LL§L —ay, §M+I<[/-L§L
= -BE B, + Bry 0
0 By Brp + Bex

It is clear that —f; and —/; V! = I — FV"! have the Z sign pattern. Then, by using
Lemma 3.3, we conclude that —/; is a nonsingular M-matrix ifand only if / ~FV-tisanon-
singular M-matrix. The spectral radius (SR) characterization of nonsingular M-matrices
guarantees that / ~FV-lisa nonsingular M-matrix if and only if p(EVY <1. Again, using
(SA) and the basic reproduction number %, given in (19), it follows that R(x;(/1)) < 0 if
and only if Zy = p(FV1) < 1. O

Now, we can define the effective reproduction number %, as the number of cases that
one single infected individual is capable of infecting during different time episodes of the
lockdown interval [¢;, 1], 0 < i < n. In other words, we are going to protect uninfected
individuals taking into account the efficiency of the control measures Cj; imposed by the
authorities proposed in (9). Furthermore,

Re(t) = Cy () %o, (20)
where %, is the basic reproduction number given in (19).

4 Data collection and parameter estimations

Looking at the response to the COVID-19 spread in Saudi Arabia, we are going to present
different stages of the actions taken by the authorities, taking into account the intensity of
the restrictive measures in different time episodes. In the interest of simplicity and consid-
ering various control measures within the country, we will divide our time period in four
different episodes, namely, from day 0 to day 30, from day 30 to day 90, from day 90 to day
120, and from day 120 to day 260. The data were collected from the Saudi Arabian Min-
istry of Health, see “https://covid19.moh.gov.sa/”, and present the number of diagnosed
COVID-19 infections, recovered and extinct individuals every day over a 9-month period.
These data will be used to estimate the parameters over a given period of the duration of
the restriction. It will be assumed that all parameters of our model are given in Table 1. We
conduct a sensitivity analysis to determine which model parameters have a strong influ-
ence on the dynamics of the model equations (1)—(8), see [19, 20] for more details, on the
parameter estimates methodology using differential equations. We are going to estimate
the control parameters and the parameters of recovered and the dead compartments over
different time episodes by using multi-objective optimization. We will perform several fits
for each time episode using the Nelder—Mead search algorithm to find a local minimum.
We set

N
T (x(0)) == > (x(t,0) - )",

J=1
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Table 2 Estimated parameters of model (1)-(8), taking into account different control stage measures

Parameters 0to 30 days 30 to 90 days 90 to 120 days 120 to 260 days.
oF 0.970103 0.745319 25285168 60.624593.

a, 0.244387 0.000002 0.000688 0.000007.

o, 0.014381 0.000061 0.000091 0.000131.

Be 0.1818 0.1818 0.190241 0.076462.

B, 0.003330 0.000645 0.000464 0.000958.

ﬁgu 0.0752 0.0752 0.0352 0.0352.

ﬁRD 0.18554 0.779554 0.726325 1.1825.

Bex 0.010549 0.006583539 0.009839 0.02299.

L 0.05 0.05 0.01 0.00333333.

x10% x10”

2 T T T T
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Figure 3 Model prediction taking into account different stages of the control measures imposed by the
authorities and the corresponding epidemiological data, including the number of individuals diagnosed with
(COVID-19), recovered and dead, collected from the Saudi Arabian Ministry of Health, see
“https://covid19.moh.gov.sa/”

where d; represents the data measurement available at the time #;, N stands for the number
of measurements, and x(¢;, ) represents the (COVID-19) model equations (1)—(8). The
best fit relative estimation of the control parameters a, oy, oy, Br,;» B, and the estimated
parameters Bg,,, Bry, Bex of recovered, and the dead compartments are given in Table 2,
with different time episodes. The model estimations compared to the given data of the
number of diagnosed COVID-19 infections, recovered and extinct individuals every day
over a 9-month period are shown in Fig. 3.

5 Concluding remarks and suggestions

It is necessary to achieve a better understanding of the COVID-19 dynamics, taking into
account different control measures in order to reduce the number of infections and to
decrease the mortality rate. The model proposed in the present manuscript has the ad-
vantage of describing the best way of controlling the pandemic. As was demonstrated in
the parameter estimation, the ability to reduce the parameters «;,, oy, and By, in this
case will result in the detection of the number of infected individuals and in the reduction
of the number of undiagnosed individuals by enhancing the testing. This will facilitate the
control of the virus. Again, considering the effective reproduction number Z,(¢) given in
(20), it is clear that if we reduce the number of the more susceptible individuals and the
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parameter 1, by respecting the social distancing and wearing masks, it will help with the
control of the pandemic.

We aim at improving the model by including the number of individuals in intensive care
and by adding a modification that allows for the effect of a vaccine, as given in [43] for
measles epidemics. Another important effect that should be included will be the incuba-
tion time delays of receiving COVID-19 positive test from the authority.

The study of persistence and stability in conjunction with the reproduction number is of
paramount importance for the parameter estimation. We believe that this model provides
a good basis for the study of more general cases, in which these parameters vary over each
time interval. It will be of interest to develop a parallel algorithm, see [44, 45], in order to
reduce the time needed to find the best fit of the multi-objective cost functional.
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