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Abstract
This study is about getting some conditions that guarantee the existence and
uniqueness of the weighted pseudo almost periodic (WPAP) solutions of a
Lasota–Wazewska model with time-varying delays. Some adequate conditions have
been obtained for the existence and uniqueness of the WPAP solutions of the
Lasota–Wazewska model, which we dealt with using some differential inequalities,
the WPAP theory, and the Banach fixed point theorem. Besides, an application is given
to demonstrate the accuracy of the conditions of our main results.
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1 Introduction
In 1976, Wazewska and Lasota [1] presented the delayed logistic differential model

z′(t) = –�(t)z(t) +
p∑

k=1

κk(t)e–ηk (t)z(t–ρk (t)) (1.1)

to define the survival of red cells in an animal [2]. In (1.1) p is a positive integer, z(t) stands
for the number of red blood cells at time t, �(t) stands for the death rate of the red blood
cell, κk(t) and ηk(t) are related to the production of red blood cells per unit time, and
ρk(t) represents the time to produce a red blood cell. For details, see [1, 3], also [4, 5] for
logistic-type models from biological models as (1.1), but involving also diffusion and drift
contributions.

Zhou [6] considered the following model:

z′(t) = –δ(t)z(t) +
m∑

j=1

cj(t)e–ωj(t)
∫ 0

–∞ Cj(s)z(t+s) ds. (1.2)
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The author obtained some conditions on the almost periodic solution of this model
using the fixed point theorem in cones. In [7], the researchers established some qualitative
behaviors of PAP solutions of the following equation with constant delays:

z′(t) = –α(t)z(t) +
m∑

j=1

Aj(t)e–ωj(t)
∫ t

–∞ Cj(t–s)z(s) ds +
n∑

i=1

Bi(t)e–z(t–τi)βi(t), t ∈ R. (1.3)

The study of almost periodic (AP) and pseudo almost periodic (PAP) differential equa-
tions is one of the most interesting issues for the study of almost periodic of many math-
ematicians: indeed, they are of great importance even in probability for investigating
stochastic processes in stability problems tied to oscillatory phenomena [1, 3, 6, 8–24],
and [25]. In [26], Diagana familiarized the concept of (WPAP) functions, which is a nat-
ural generalization of the concept of (PAP) functions. Since then, some interesting and
remarkable results concerning composition theorem, translation invariance, and the er-
godicity of (WPAP) have been obtained [26–29]. It is clear that under some limitations of
weight function, many of the properties of almost periodic (AP) and pseudo almost peri-
odic (PAP) are valid in this type of class. Thanks to the invariant property under transla-
tion, it is quite simple to investigate such solutions in delayed differential equations. For
some works on the pseudo almost periodic solutions, oscillation of solutions, and so fourth
of various differential equations, see [4, 5, 24, 25, 30–34].

Our main purpose is to obtain some sufficient conditions for the existence, uniqueness,
and global exponential stability of (WPAP) solutions of the following Lasota–Wazewska
model with mixed variable delays:

z′(t) = –δ(t)z(t) +
m∑

j=1

Aj(t)e–ωj(t)
∫ t

–∞ Cj(t–s)z(s) ds +
n∑

i=1

Bi(t)e–βi(t)z(t–τi(t)), (1.4)

where t ∈R.
As far as we know, there are no studies related to the (WPAP) solutions of (1.4) with vari-

able delays. Therefore, the results attained here are new and complementary to previous
studies.

Throughout this paper, δ(t) ∈ AP(R,R+), τi(t), pi(t) ∈ PAP(R,R+,υ), τ =
max1≤i≤K {supt∈R τi(t)}, (i = 1, 2, . . . K ) and given F ∈ BC(R,R+), F+ and F– are defined as
F+ = supt∈R F(t) and F– = inft∈R F(t). If z(t) is defined on [–τ + t0,ς ) with t0,ς ∈ R, then
we define zt(φ) ∈ D, where zt(φ) = z(t + φ) for all φ ∈ [–τ , 0] and D = D([–τ , 0],R) is the
continuous function space supremum norm ‖ · ‖. For all j = 1, 2, . . . m, Cj ∈ C(R+,R+) are
integrable,

∫ ∞
0 Cj(x) dx = 1 and

∫ ∞
0 Cj(x)eζx dx < ∞.

Let us consider the following initial condition:

z(s) = ϕ(s), ϕ ∈ BC
(
[–τ , 0],R+)

and ϕ(0) > 0. (1.5)

2 Preliminary results
Definition 2.1 ([8]) A function f ∈ C(R,R) is called almost periodic if for any ε > 0 there
exists a trigonometric polynomial Tε such that

∣∣f (x) – Tε(x)
∣∣ < ε, x ∈ R.
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Definition 2.2 ([27]) A function η ∈ C(R,R) is called (PAP) if it can be written as

η = η1 + η2,

with η1 ∈ AP(R,R) and η2 ∈ PAP0(R,R), where space PAP0 is defined by

PAP0(R) :=
{
η2 ∈ BC(R,R)| lim

r→∞
1

2q

∫ q

–q

∥∥η2(t)
∥∥dt = 0

}
.

Let � be the set of functions (weight) υ : R → (0,∞) which are integrable on (–∞,∞).
If υ ∈ � and Q := [–q, q] for q > 0, we then set

υ(Qq) :=
∫

Qq

υ(x) dx.

The space of weights �∞ is defined by

�∞ :=
{
υ ∈ � : inf

x∈R
υ(x) = υ0 > 0 and lim

r→∞υ(Qr) = ∞
}

and

�+
∞ :=

{
υ ∈ �∞ : lim|x|→∞ sup

υ(αx)
υ(x)

< +∞, lim|x|→∞ sup
υ([–αq,αq])
υ([–q, q])

< +∞
}

.

Fix υ ∈ �+∞, (PAP(R,υ),‖ · ‖∞) is a Banach space.

Definition 2.3 ([27]) Fix υ ∈ �∞. A continuous function is called WPAP if it can be writ-
ten as

η = η1 + η2,

with η1 ∈ AP(R,R) and η2 ∈ PAP0(R,R), where space PAP0 is defined by

PAP0(R,R,υ) =
{
η2 ∈ BC(R,R) : lim

r→∞
1

υ([–q, q])

∫ q

–q

∣∣η2(t)
∣∣υ(t) dt = 0

}
.

Lemma 2.1 ([27]) Fix υ ∈ �+∞. For any s ∈ (–∞,∞), assume that

lim
t→∞ sup

t∈R
υ(t + s)/υ(t) < ∞,

the space PAP(R,R,υ) is translation invariant.

Lemma 2.2 ([28]) Let υ ∈ �+∞. If η(t) ∈ PAP(R, R,υ),� (t) ∈ C1(R, R) and � (t) ≥ 0,
� ′(t) ≤ 1, then f (t – � (t)) ∈ PAP(X,υ).

3 Main results
Lemma 3.1 Suppose that

sup
T>0

{∫ T

–T
e–δ–(T+t)υ(t) dt

}
< ∞. (3.1)
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Define a nonlinear operator G for each z ∈ PAP(R,R,υ)

(Gz)(t) = z1(t) + z2(t)

=
∫ t

–∞
e–

∫ s
u δ(ς ) dς

[ m∑

j=1

Aj(u)e–ωj(u)
∫ u

–∞ Cj(u–s)z(s) ds +
n∑

i=1

Bi(u)e–z(u–τi(u))βi(u)

]
dt,

where

z1(t) =
∫ t

–∞

m∑

j=1

Aj(u)e–ωj(u)
∫ u

–∞ Cj(u–s)z(s) dse–
∫ s

u δ(ς ) dς du,

z2(t) =
∫ t

–∞

[ n∑

i=1

Bi(u)e–z(u–τi(u))βi(u)

]
e–

∫ s
u δ(ς ) dς du.

Then Gz ∈ PAP(R,R,υ).

Proof Because of M[a] > 0 in [8] and Lemma 3.1 in [7], we have that

z2(t) ∈ PAP(R,R,υ). (3.2)

Now we show that z1(t) ∈ PAP(R,R,υ).
According to Lemma 2.1, Lemma 2.2, we obtain that there are z11(t) ∈ AP(R,R) and

z12(t) ∈ PAP0(R,R,υ) such that

z11(t) + z12(t) =
m∑

j=1

Aj(u)e–ωj(u)
∫ u

–∞ Cj(u–s)z(s) ds ∈ PAP(R, R,υ).

Also noting that M[a] > 0, we have that

∫ t

–∞
e–

∫ s
t δ(ς ) dς z11(t) dt ∈ AP(R,R) (3.3)

is a solution of the following almost periodic differential equation:

w(t) = –δ(t)w(t) + z11(t).

Now, let us show that
∫ t

–∞ e–
∫ s

t δ(ς ) dς z12(t) dt belongs to PAP(R,R,υ). By using a similar
manner in the proof of Theorem 3.5 in [7], it can be displayed that z12(t) ∈ BC(R,R). Also,

0 ≤ lim
r→∞

1
2r

∫ r

–r

(∣∣∣∣
∫ t

–∞
e–

∫ t
s δ(u) duz12(s) ds

∣∣∣∣

)
υ(t) dt

≤ lim
r→∞

1
2r

∫ r

–r

(∫ t

–∞
e–

∫ t
s δ(u) du∣∣z12(s)

∣∣ds
)

υ(t) dt

≤ lim
r→∞

1
2r

∫ r

–r

(∫ t

–∞
e–δ(t–s)∣∣z12(s)

∣∣ds
)

υ(t) dt

≤ L1 + L2,
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where

L1 = lim
r→∞

1
2r

∫ r

–r

(∫ t

–r
e–δ–(t–s)∣∣z12(s)

∣∣ds
)

υ(t) dt,

L2 = lim
r→∞

1
2r

∫ r

–r

(∫ –r

–∞
e–δ–(t–s)∣∣z12(s)

∣∣ds
)

υ(t) dt.

Now, we shall prove that L1 = L2 = 0,

L1 = lim
r→∞

1
2r

∫ r

–r

(∫ t

–r
e–δ–(t–s)∣∣z12(s)

∣∣ds
)

υ(t) dt

≤ lim
r→∞

1
2r

∫ r

–r

(∫ ∞

0
e–δ–ξ

∣∣z12(t – ξ )
∣∣dξ

)
υ(t) dt

= lim
r→∞

∫ +∞

0
e–δ–ξ

(
1
2r

∫ r

–r

∣∣z12(t – ξ )
∣∣υ(t) dt

)
dξ

=
∫ +∞

0
e–δ–ξ

(
lim

r→∞
1
2r

∫ r

–r

∣∣z12(t – ξ )
∣∣υ(t) dt

)
dξ .

From Lemma 2.1 the function z12(t – ξ ) ∈ PAP0(R,R,υ), we obtain that

lim
r→∞

1
2r

∫ r

–r

∣∣z12(t – ξ )
∣∣υ(t) dt.

Therefore,

L1 = lim
r→∞

1
2r

∫ r

–r

(∫ t

–r
e–δ–(t–s)∣∣z12(s)

∣∣ds
)

υ(t) dt = 0. (3.4)

Notice that |z12|∞ = supt∈R |z12(t)| = M and by (3.1), then

L2 = lim
r→∞

1
2r

∫ r

–r

(∫ –r

–∞
e–δ–(t–s)∣∣z12(s)

∣∣ds
)

υ(t) dt

≤ lim
r→∞

1
2r

∫ –r

–∞
esδ– ∣∣z12(s)

∣∣ds
∫ r

–r
e–tδ–

υ(t) dt

=
M
δ– lim

r→∞
1
2r

[
esδ–]–r

–∞

∫ r

–r
e–tδ–

υ(t) dt

=
M
δ– lim

r→∞
1
2r

[
e–rδ–

– e–∞δ–] ∫ r

–r
e–tδ–

υ(t) dt

=
M
δ– lim

r→∞
1
2r

∫ r

–r
e–δ–(t+r)υ(t) dt = 0,

(3.5)

combining with (3.2), (3.3), (3.4), and (3.5), leads to Gz ∈ PAP(R,R,υ). �

Theorem 3.1 Let max1≤i≤K {inft∈R 1 – τ ′
i (t)} > 0,

(
δ–)–1

( m∑

j=1

(Ajωj)+ +
n∑

i=1

(βiBi)+

)
< 1, (3.6)
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and by Lemma 2.2, then (1.4) has a unique WPAP solution in the region

C∗ =
{
ϕ|ϕ ∈ PAP

(
R,R+,υ

)
, K1 ≤ ∣∣ϕ(t)

∣∣ ≤ K2
}

,

where K2 = (δ–)–1(
∑m

i=1 A+
i +

∑n
i=1 B+

i ) and K1 = (δ–)–1(
∑m

j=1 A–
j e–ω+

j K2 +
∑n

i=1 B–
i e–β+

j K2 ).

Proof First, let us prove that G ∈ PAP(R,R+,υ) into itself. It is clear that

∣∣(Gz)(t)
∣∣ =

∣∣∣∣∣

∫ t

–∞
e–

∫ s
t δ(ς ) dς

[ m∑

j=1

Aj(s)e–ωj(s)
∫ s

–∞ Cj(s–u)z(u) du +
n∑

i=1

Bi(s)e–βi(s)z(s–τi(s))

]
ds

∣∣∣∣∣

≤
∫ t

–∞
e–

∫ s
t δ(ς ) dς

( m∑

j=1

Aj(s) +
n∑

i=1

Bi

)
ds ≤ (

δ–)–1
( m∑

i=1

A+
i +

n∑

i=1

B+
i

)
= K2

and

∣∣(Gz)(t)
∣∣ =

∫ t

–∞
e–

∫ s
t δ(ς ) dς

[ m∑

j=1

Aj(t)e–ωj(t)
∫ s

–∞ Cj(s–u)z(u) du +
n∑

i=1

Bi(t)e–βi(t)z(t–τi(t))

]
dt

≥
∫ t

–∞
e–

∫ s
t δ(ς ) dς

( m∑

j=1

A–
j e–ω+

j K2 +
n∑

i=1

B–
i e–β+

j K2

)
ds

≥ (
δ–)–1

( m∑

j=1

A–
j e–ω+

j K2 +
n∑

i=1

B–
i e–β+

j K2

)
= K1,

which implies that G ∈ C∗.
Let f1, f2 ∈ C∗. Then

∣∣(Gf1)(t) – (Gf2)(t)
∣∣

=

∣∣∣∣∣

∫ t

–∞
e–

∫ s
t δ(ς ) dς

{ m∑

j=1

Aj(s)
[
e–ωj(s)

∫ s
–∞ Cj(t–s)f1(s) ds – e–ωj(s)

∫ 0
–∞ Cj(t–s)f2(s) ds]

+
n∑

i=1

Bi(s)
[
e–βi(s)f1(s–τi(s)) – e–βi(s)f2(s–τi(s))]

}
ds

∣∣∣∣∣

≤ sup
t∈R

∫ t

–∞
e–

∫ s
t δ(ς ) dς

{ m∑

j=1

∣∣Aj(s)
∣∣∣∣e–ωj(s)

∫ s
–∞ Cj(s–u)f1(u) ds – e–ωj(t)

∫ s
–∞ Cj(s–u)f2(s) ds∣∣|

+
n∑

i=1

∣∣Bi(s)
∣∣∣∣e–βi(s)f1(s–τi(s)) – e–βi(s)f2(s–τi(s))∣∣

}
ds.

Obviously, for x1, x1 ∈ [0, +∞],

∣∣e–x1 – e–x2
∣∣ < |x1 – x2|.

Therefore,

∣∣(Gf1)(t) – (Gf2)(t)
∣∣
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≤ sup
t∈R

∫ t

–∞
e–δ–(t–s){

m∑

j=1

∣∣Aj(t)
∣∣∣∣f1(s) – f2(s)

∣∣∣∣ωi(t)
∣∣
∫ t

–∞
Cj(t – s) ds

= sup
t∈R

∫ t

–∞
e–δ–(t–s)

{ m∑

j=1

∣∣Aj(t)
∣∣∣∣f1(s) – f2(s)

∣∣∣∣ωi(t)
∣∣ +

n∑

i=1

∣∣Bi(t)
∣∣|f1 – f2|∞

∣∣βi(t)
∣∣
}

dt

≤ (
δ–)–1

( m∑

j=1

(Ajωj)+ +
n∑

i=1

(βiBi)+

)
|f1 – f2|∞.

By AA we can see that (1 – (δ–)–1(
∑m

j=1(Ajωj)+ +
∑n

i=1(βiBi)+)) ∈ (0, 1), and hence G is
a contraction mapping of C∗. Subsequently, G has a unique fixed point z∗ ∈ C∗ that is
G(z∗) = z∗. Thus, z∗ is the unique WPAP solution of (1.4) in C∗. �

Theorem 3.2 Let Theorem 3.1 hold, the WPAP solution of nonlinear (1.4) is globally ex-
ponentially stable.

Proof Let

�(� ) = sup
t∈R

{
–
[
δ(t) – �

]
+ e�τ

( m∑

j=1

(Ajωj)+ +
n∑

i=1

(βiBi)+

)}
, θ ∈ [0, 1].

Then

�(0) = sup
t∈R

{
–δ(t) +

( m∑

j=1

(Ajωj)+ + eλτ

n∑

i=1

(βiBi)+

)}
< 0. (3.7)

Since �(θ ) is continuous, a constant λ ∈ (0, δ–] can be picked out as

�(λ) = sup
t∈R

{
–
[
δ(t) – λ

]
+

( m∑

j=1

(Ajωj)+ + eλτ

n∑

i=1

(βiBi)+

)}
< 0. (3.8)

Assume z(t) as an arbitrary solution of (1.4) with (1.5) and z∗(t) as a WPAP solution of
Theorem 3.1. Let us accept ρ(t) = z(t) – z∗(t), so we obtain

ρ ′(t) = –δ(t)ρ(t) +
m∑

j=1

Aj(t)
[
e–ωj(t)

∫ t
–∞ Cj(t–s)z(s) ds – e–ωj(t)

∫ t
–∞ Cj(t–s)z∗(s) ds]

+
n∑

i=1

Bi(t)
[
e–βi(t)z(t–τi(t)) – e–βi(t)z∗(t–τi(t))].

(3.9)

Let

∥∥ρ(t)
∥∥ = sup

t∈R

∣∣ϕ(t) – z∗(t)
∣∣.

For any ε > 0, it is trivial to show that

∥∥ρ(t)
∥∥ < M

(∥∥ϕ – z∗∥∥ + ε
)
e–λt for all t ∈ (–∞, 0],
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where M > 1 is a constant number. We show that

∥∥ρ(t)
∥∥ < M

(∥∥ϕ – z∗∥∥ + ε
)
e–λt for all t > 0. (3.10)

Contrarily, there must exist θ > 0

⎧
⎨

⎩
‖ρ(θ )‖ = M(‖ϕ – z∗‖ + ε)e–λθ ,

‖ρ(t)‖ < M(‖ϕ – z∗‖ + ε)e–λt ∀t ∈ (–∞, θ ).
(3.11)

Given (3.9) and integrating it on [0, θ ], we have

ρ(θ ) = ρ(0)e–
∫ t

0 δ(ς ) dς

+
∫ t

0
e–

∫ t
s δ(ς ) dς

{ m∑

j=1

Aj(s)
[
e–ωj(t)

∫ s
–∞ Cj(s–u)z(u) du – e–ωj(t)

∫ s
–∞ Cj(s–u)z∗(u) du]

+
n∑

i=1

Bi(t)
[
e–βi(s)z(s–τi(s)) – e–βi(s)z∗(s–τi(s))]

}
ds.

Hence

∣∣ρ(θ )
∣∣

=

∣∣∣∣∣ρ(0)e–
∫ θ

0 δ(ς ) dς

+
∫ θ

0
e–

∫ θ
s δ(ς ) dς

{ m∑

j=1

Aj(s)
[
e–ωj(s)

∫ s
–∞ Cj(s–u)z(u) du – e–ωj(s)

∫ s
–∞ Cj(s–u)z∗(u) du]

+
n∑

i=1

Bi(s)
[
e–βi(s)z(s–τi(s)) – e–βi(s)z∗(s–τi(s))]

}
ds

∣∣∣∣∣

≤ M
(∥∥ϕ – z∗∥∥ + ε

)
e–

∫ θ
0 δ(ς ) dς

+
∫ θ

0
e–

∫ θ
s δ(ς ) dς

{ m∑

j=1

∣∣Aj(s)
∣∣∣∣ωj(t)

∣∣
∫ s

–∞
Cj(s – u)

∣∣z(u) – z∗(u)
∣∣du

+
n∑

i=1

∣∣Bi(s)
∣∣∣∣βi(s)

∣∣∣∣z
(
s – τi(s)

)
– z∗(s – τi(s)

)∣∣
}

ds

≤ M
(∥∥ϕ – z∗∥∥ + ε

)
e–

∫ θ
0 δ(ς ) dς

+
∫ θ

0
e–

∫ θ
s δ(ς ) dς

m∑

j=1

(Ajωj)+
∣∣∣∣
∫ s

–∞
Cj(s – u)e–λu du

∣∣∣∣M
(∥∥ϕ – z∗∥∥ + ε

)

+
n∑

i=1

(βiBi)+M
(∥∥ϕ – z∗∥∥ + ε

)
e–λ(s–τi(s))}ds

= M
(∥∥ϕ – z∗∥∥ + ε

)
e–

∫ θ
0 δ(ς ) dς
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+
∫ θ

0
e–

∫ θ
s δ(ς ) dς

m∑

j=1

(Ajωj)+
∣∣∣∣
∫ ∞

0
Cj(v)eλv dv

∣∣∣∣e
–λsM

(∥∥ϕ – z∗∥∥ + ε
)

+
n∑

i=1

(βiBi)+M
(∥∥ϕ – z∗∥∥ + ε

)
e–λ(s–τi(s))}ds

= M
(∥∥ϕ – z∗∥∥ + ε

)
e–λθ e–

∫ θ
0 (δ(ς )–λ) dς +

∫ θ

0
e–

∫ θ
s (δ(ς )–λ) dς (

m∑

j=1

(Ajωj)+

+
n∑

i=1

(βiBi)+eτλM
(∥∥ϕ – z∗∥∥ + ε

)
e–λθ }ds

= (1 +
∫ θ

0
e–

∫ θ
s (δ(ς )–λ) dς

( m∑

j=1

(Ajωj)+ +
n∑

i=1

(βiBi)+eτλ

)
dsM

(∥∥ϕ – z∗∥∥ + ε
)
e–λθ

≤
(

1 +
∫ θ

0
e–

∫ θ
s (δ(ς )–λ) dς

(
δ(s) – λ

)
ds

)
M

(∥∥ϕ – z∗∥∥ + ε
)
e–λθ

≤ M
(∥∥ϕ – z∗∥∥ + ε

)
e–λθ ,

which contradicts (3.11). Hence, (3.10) holds. Letting ε → 0, we have that

∥∥ρ(t)
∥∥ < M

∥∥ϕ – z∗∥∥e–λt ∀t > 0,

which proves Theorem 3.1. �

Remark 3.1 Lately, Rihami [4] got some conditions for the PAP solutions of (1.3) with
constant delays. WPAP functions are a generalization of the concept of PAP functions;
therefore, it is noticeable that results in [4] are special cases of our results.

Example 3.1 Consider the system

z′(t) = –
(
8 + sin2 √

2t + sin2 t
)
z(t) +

(
1 + 0.25 sin2 √

2t + 0.25 sin2 π t + e–t)

× e–(0.25 cos2 √
2t+0.25 cos2 π t+e–t )

∫ t
–∞ es–tz(s) ds

+
(
1 + 0.25 sin2 √

2t + 0.25 sin2 π t + 0.5e–5t)

× e–(0.25 cos2 √
2t+0.25 cos2 π t+e–t )z(t–sin2 t),

(3.12)

where

δ(t) = 8 + sin2 √
2t + sin2 t, A1(t) = 1 + 0.25 cos2 √

2t + 0.25 cos2 π t + e–t ,

ω1(t) = 0.25 cos2 √
2t + 0.25 cos2 π t + e–t ,

B1(t) = 1 + 0.25 cos2 √
2t + 0.25 cos2 π t + 0.5e–5t ,

β1(t) = 0.25 cos2 √
2t + 0.25 cos2 π t + e–t , Cj(t) = e–t , τ1(t) = sin2 t.

Figure 1 shows weighted pseudo almost periodic solutions of eq. (3.12).
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Figure 1 The trajectory z(t) of (3.12) for ϕ(s) = 0.33, s ∈ [–1, 0]

And for υ(t) = et and δ– = 8, δ+ = 10, A+
1 = 2.5, A–

1 = 1, B+
1 = 2.5, B–

1 = 1,ω+
1 = 1.5,β+

1 = 1.25,
τ = 1, we have

(
δ–)–1((A1ω1)+ + (β1B1)+)

=
6.875

8
= 0.859375 < 1.

K2 =
2.5 + 2.5

9
=

5
9

≈ 05555, K1 =
e–1.5×0.859375

10
= 0.027553,

sup
T>0

{∫ T

–T
e–δ–(T+t)υ(t) dt

}
= sup

T>0

{∫ T

–T
e–8(T+t)et dt

}
= sup

T>0

{∫ T

–T
e–8T–7t dt

}

= –
1
7

sup
T>0

{[
e–15T – e–T]}

< ∞.

All conditions of Theorems 3.1 and 3.2 are satisfied, then (3.12) has a unique WPAP
solution. Therefore, this solution is globally exponentially stable with a convergence rate
λ = 0.02 in the region

C∗ =
{
ϕ|ϕBC(R,R), 0.027553 ≤ ∣∣ϕ(t)

∣∣ ≤ 0.5, for all t ∈ R
}

.

Remark 3.2 According to the results of [4], the globally exponentially stable positive
WPAP solution of (3.12) is invalid because

A1(t) = 1 + 0.25 sin2 √
2t + 0.25 sin2 π t + e–t ,

B1(t) = 1 + 0.25 sin2 √
2t + 0.25 sin2 π t + 0.5e–5t

are WPAP functions, not almost, and pseudo almost periodic. Consequently, this article
is more comprehensive compared to previous studies.
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