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Abstract
In this article, we debate the existence of solutions for a nonlinear Hilfer fractional
differential inclusion with nonlocal Erdélyi–Kober fractional integral boundary
conditions (FIBC). Both cases of convex- and nonconvex-valued right-hand side are
considered. Our obtained results are new in the framework of Hilfer fractional
derivative and Erdélyi–Kober fractional integral with FIBC via the fixed point theorems
(FPTs) for a set-valued analysis. Some pertinent examples demonstrating the
effectiveness of the theoretical results are presented.
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1 Introduction
In recent years, fractional differential equation (FDE) theory has received very broad at-
tention in the fields of both pure and applied mathematics, see [27, 35, 39, 45]. FDEs
and fractional differential inclusions (FDIs) emerge naturally in diverse areas of science
with many applications, see, e.g., [19, 23, 25, 26, 28, 31, 41, 47, 50]. In the literature,
there are many definitions of fractional derivatives (FDs) and fractional integrals (FIs),
e.g., Riemann–Liouville [35], Caputo [21], Hadamard [30], Hilfer [31], Katugampola [34],
Caputo–Hadamard [32], Caputo–Katugampola [15], Caputo–Fabrizio [22], Atangana–
Baleanu–Caputo [18]. In addition, several new operators have emerged to combine a wide
category of FDs, such as ψ-Caputo [14] and ψ-Hilfer [46].

In the last few years, many researchers have started to discuss the qualitative prop-
erties of solutions of fractional FDEs and FDIs, such as existence, uniqueness, stability,
controllability, and optimization, etc., see [1–3, 7–10, 20, 43, 44, 49]. Some other re-
searchers have devoted their works to discussing further analytical properties of solu-
tions of such equations and inclusions, while others already have oriented their investi-
gations towards numerical applications and solutions. For further specialized articles on
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the existence, uniqueness, and stability of FDEs involving various types of FDs, we refer
to [4, 6, 11, 16, 33, 37, 38, 46].

Recently, Asawasamrit et al. [17] have initiated the study of Hilfer FDEs with nonlocal
IBCs of the type

⎧
⎨

⎩

HDr1,r2
a+ υ(t) = q(t,υ(t)), t ∈ [a, b],

υ(a) = 0, υ(b) =
∑m

i=1 θiI
ηi
a+υ(δi), δi ∈ [a, b],

(1.1)

where 1 < r1 < 2, 0 ≤ r2 ≤ 1, ηi > 0, θi ∈ R, HDr1,r2
a+ is the Hilfer FD of order r1 and type r2,

Iηi
a+ is the Riemann–Liouville FI of order ηi. Later, the authors of [42] have investigated the

existence and stability results of an implicit problem for FDE (1.1) involving ψ-Hilfer FD.
On the other hand, Abbas [5] investigated the existence and Ulam–Hyers stability results

for the FDE of type (1.1) with the consideration of Erdélyi–Kober FI instead of Riemann–
Liouville FI. The set-valued case of problem (1.1) has been studied by Wongcharoen et al.
[48].

In order to enhance the work and fill the gap on BVPs of fractional order involving more
IBCs, we consider a nonlinear Hilfer-type FDI with Erdélyi–Kober fractional IBC, that is,

⎧
⎨

⎩

HDr1,r2υ(t) ∈ Q(t,υ(t)), t ∈ (0,T ),T > 0,

υ(0) = 0, υ(T ) =
∑m

i=1 θiI
ηi ;ξi
γi υ(δi),

(1.2)

where HDr1,r2 is the Hilfer FD of order r1 ∈ (1, 2) and type r2 ∈ [0, 1], Iηi ;ξi is the Erdélyi–
Kober FI of order ξi > 0 with γi > 0 and ηi ∈ R, Q : [0,T ] ×R →O(R) is a set-valued map
(svm) from [0,T ]×R to the family ofO(R) ⊂R, θi ∈R, δi ∈ (0, T), i = 1, 2, . . . , m. Our main
concern in this manuscript is to obtain the existence results for the Hilfer inclusion prob-
lem (1.2) involving convex, nonconvex set-valued maps via some FPTs of Leray–Schauder
type, as well as those of Covitz and Nadler, where some pertinent examples are built for
the demonstration of our findings.

Remark 1
i) If Erdélyi–Kober FI Iηi ;ξi is replaced by Riemann–Liouville FI Iηi

a+ in problem (1.2),
then the inclusion problem for it has been studied by Wongcharoen et al. [48].

ii) If r2 = 0 in (1.2), then our problem reduces to Riemann–Liouville inclusion problem
considered by Ahmad and Ntouyas in [12].

iii) If r2 = 1 in (1.2), then our problem also covers other problems, including those of
Caputo type.

This paper is structured as follows. In Sect. 2, we give some fundamental concepts
of fractional calculus, set-valued analysis, and FP techniques. In Sect. 3, we study some
existence results for the Hilfer inclusion problem (1.2) relying on some FPTs of Leray–
Schauder, Covitz, and Nadler. At the end, some examples are given in Sect. 4.

2 Preliminaries
2.1 Fractional Calculus (FC)
In this part, we give some essential ideas of FC and axiom outcomes that are prerequisites
in our analysis.
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Let P = [0,T ], r1 ∈ (1, 2), r2 ∈ [0, 1], where v = r1 + r2(2 – r1) ∈ (1, 2]. By C =C(P,R) we
denote the Banach space of all continuous functions κ : P →R with norm

‖κ‖ = sup
{∣
∣κ(t)

∣
∣ : t ∈P

}
,

and L1(P,R) is the Banach space of Lebesgue integrable functions κ : P →R with norm

‖κ‖L1 =
∫

P

∣
∣κ(t)

∣
∣dt.

Definition 1 ([35]) The Riemann–Liouville FI of a function κ of order r1 is described by

Ir1κ(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1

κ(ς ) dς ,

provided the integral exists.

Definition 2 ([35]) The Riemann–Liouville FD of a function h of order r1 is described by

Dr1κ(t) =
(

d
dt

)n

I(n–r1)
κ(t),

where n = [r1] + 1, n ∈N.

Definition 3 ([46]) The Hilfer FD of a function κ of order r1 and type r2 is described by

HDr1,r2κ(t) = Ir2(n–r1)D[n]I(1–r2)(n–r1)
κ(t),

where D[n] = ( d
dt )n.

Definition 4 ([35]) The Erdélyi–Kober FI of a function κ of order ξ > 0 with γ > 0 and
η ∈R is formulated by

Iη,ξ
γ κ(t) =

γ t–γ (η+ξ )

	(ξ )

∫ t

0

(
t
γ – ςγ

)ξ–1
ςγη+γ –1

κ(ς ) dς , (2.1)

provided the integral exists.

Remark 2 For γ = 1, (2.1) is reduced to the Kober operator

Kη,ξ
κ(t) =

t–(η+ξ )

	(ξ )

∫ t

0
(t – ς )ξ–1ςη

κ(ς ) dς , ξ ,η > 0. (2.2)

For η = 0, (2.2) leads to the Riemann–Liouville FI with a power weight,

K0,ξ
κ(t) =

t–ξ

	(ξ )

∫ t

0
(t – ς )ξ–1

κ(ς ) dς , ξ > 0.
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Lemma 1 ([35]) Let ξ ,η > 0 and γ ,α ∈ R. Then

Iη,ξ
γ t

α =
tα	(η + α

γ
+ 1)

	(η + α
γ

+ ξ + 1)
.

Lemma 2 ([35]) Let γ , ξ ,β > 0. Then

∫ t

0

(
t
γ – ςγ

)ξ–1
ςβ–1 dς =

tγ (ξ–1)+β

γ
B
(

β

γ
, ξ

)

,

where B(·, ·) is the beta function determined by

B(r1, r2) =
∫ 1

0
(1 – ς )r1–1ς r2–1 dς

(�(r1) > 0,�(r2) > 0
)
.

Lemma 3 ([31]) Let r1 ∈ (1, 2]. Then

Ir1 Dr1κ(t) = κ(t) –
(I1–r1κ)(0)

	(r1)
tr1–1 –

(I2–r1κ)(0)
	(r1 – 1)

tr1–2.

Lemma 4 ([5]) Let

 = T v–1 –
m∑

i=1

θiδ
v–1
i 	(ηi + v–1

γi
+ 1)

	(ηi + v–1
γi

+ ξi + 1)
�= 0, (2.3)

and consider any h ∈ C . Then the solution of the nonlocal BVP

⎧
⎨

⎩

HDr1,r2υ(t) = h(t), t ∈ (0,T ),T > 0,

υ(0) = 0, υ(T ) =
∑m

i=1 θiI
ηi ;ξi
γi υ(δi),

(2.4)

is obtained as

υ(t) = Ir1h(t) +
tv–1



( m∑

i=1

θiIηi ;ξi
γi

Ir1h(δi) – Ir1h(T )

)

. (2.5)

2.2 Set-valued analysis
We recall some concepts concerning the theory of set-valued maps. For this, let (υ,‖ · ‖)
be a Banach space and N : υ →O(υ) be a set-valued map, which

(a) is convex-(closed-)valued if N(υ) is convex (closed) for any υ ∈O,
(b) is bounded if N(B) =

⋃
υ∈BN(υ) is bounded in υ for all bounded sets B of υ , i.e.,

sup
υ∈B

{{
sup |ρ| : ρ ∈ N(υ)

}}
< ∞,

(c) is measurable if ∀ ρ ∈R, the function

υ → d
(
ρ,N(υ)

)
= inf

{|ρ – η| : η ∈N(υ)
}

,

is measurable.
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For the definitions of completely continuous and u.s.c., we refer to [13].
Moreover, a collection of selections of Q at a point ρ ∈ C is defined by

RQ,ρ =
{

ṽ ∈ L1(P,R) : ṽ(t) ∈ Q(t,ρ) for a.e. t ∈P
}

.

Next, we denote

Ok(υ) =
{
N ∈O(υ) : N is nonempty and has property k

}

where Ocp, Ob, Ocl, Oc denote the categories of all compact, bounded, closed, and con-
vex subsets of υ , respectively. Also, Ocp,c denotes the category of all convex and compact
subsets of υ .

Definition 5 ([26]) A set-valued map Q : P×R →O(R) is called Carathéodory whenever
the map t → Q(t,υ) is measurable for any υ ∈R, and the map υ → Q(t,υ) is u.s.c. for (a.e.)
all t ∈P.

Moreover, a set-valued map Q is called L1-Carathéodory if ∀ w > 0, there exists ϕ ∈
L1(P,R+) such that

∥
∥Q(t,υ)

∥
∥ = sup

{|ṽ| : ṽ ∈ Q(ṽ,υ)
} ≤ ϕ(t),

for all ‖υ‖ ≤ w and for a.e. t ∈P.
We will use the following lemmas that will play an important role in the achievement of

the desired results in this research.

Lemma 5 ([26, Proposition 1.2]) Let Gr(N) = {(υ,ρ) ∈ υ × Z,ρ ∈ N(υ)} be the graph of
N. If N : υ → Ocl(υ) is u.s.c., then Gr(N) is a closed subset of υ × Z. If N is completely
continuous and has a closed graph, then it is u.s.c.

Lemma 6 ([40]) Let υ be a separable Banach space, Q : P × υ → Ocp,c(υ) be an L1-
Carathéodory set-valued map, and Z : L1(P,υ) → C(P,υ) be a linear continuous map-
ping. Then the operator

Z ◦RQ : C(P,υ) →Ocp,c
(
C(P,υ)

)
, υ → (Z ◦RQ)(υ) = Z(RQ,υ ),

has a closed graph in C(P,υ) × C(P,υ).

3 Existence results for (1.2)
Definition 6 A function υ ∈ C is considered a solution of (1.2), if there is an integrable
function ṽ ∈ L1(P,R) with ṽ(t) ∈ Q(t,υ) for all t ∈ P satisfying the nonlocal fractional IBC

υ(0) = 0, υ(T ) =
m∑

i=1

θiIηi ;ξi
γi

υ(δi)
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and

υ(t) = Ir1 ṽ(t) +
tv–1



( m∑

i=1

θiIηi ;ξi
γi

Ir1 ṽ(δi) – Ir1 ṽ(T )

)

=
1

	(r1)

∫ t

0
(t – ς )r1–1ṽ(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽ(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ(ς ) dς

)

.

3.1 The U.S.C. case
The first result deals with a convex-valued Q relying on Leray–Schauder principle for set-
valued maps [29].

Theorem 1 Let

� =
1

	(r1 + 1)

(

T r1 +
T v+r1–1

|| +
T v–1

||

( m∑

i=1

|θi|
δ

r1
i 	(ηi + r1

γi
+ 1)

	(ηi + r1
γi

+ ξi + 1)

))

(3.1)

and assume that:
(As1) Q : P×R →Ocp,c(R) is an L1-Carathéodory set-valued map,
(As2) There is a nondecreasing function ϑ ∈ C(R+,R+) and a continuous function

P : P →R
+ such that

∥
∥Q(t,υ)

∥
∥
O = sup

{|ρ| : ρ ∈ Q(t,υ)
} ≤ P(t)ϑ

(‖υ‖), ∀(t,υ) ∈P×R.

(As3) There is a constant L > 0 such that

L
�‖P‖ϑ(L)

> 1. (3.2)

Then problem (1.2) has at least one solution on P.

Proof Initially, to write problem (1.2) as an FP problem, we consider the operator S̃ : C →
O(C) defined by

S̃(υ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ ∈ C : φ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
	(r1)

∫ t

0 (t – ς )r1–1ṽ(ς ) dς

+ tv–1


(
∑m

i=1 θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

× ∫ δi
0

ςγi+ηi+γi–1

(δγi
i –ςγi )

(
∫ ς

0 (ς – σ )r1–1ṽ(σ ) dσ ) dς

– 1
	(r1)

∫ T
0 (T – ς )r1–1ṽ(ς ) dς ),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.3)

for ṽ ∈ RQ,υ . Obviously, the solution of (1.2) is an FP of the operator S̃ . The proof steps
will be presented as follows:

Step 1. The set-valued map S̃(υ) is convex for any υ ∈ C .
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Let φ1, φ2 ∈ S̃(υ). Then, there exist ṽ1, ṽ2 ∈RQ,υ such that

φj(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽ(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽj(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽj(ς ) dς

)

, j = 1, 2,∀t ∈P.

Let λ ∈ [0, 1]. Then for any t ∈P,

[
λφ1 + (1 – λ)φ2

]
(t)

=
1

	(r1)

∫ t

0
(t – ς )r1–1[λṽ1(ς ) + (1 – λ)ṽ2(ς )

]
dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

×
∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1[λṽ1(σ ) + (1 – λ)ṽ2(σ )

]
dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1[λṽ1(ς ) + (1 – λ)ṽ2(ς )

]
dς

)

.

Since Q has convex values, RQ,υ is convex and [λṽ1(t) + (1 – λ)ṽ2(t)] ∈ RQ,υ . Thus, λφ1 +
(1 – λ)φ2 ∈ S̃(υ).

Step 2. S̃ is bounded on bounded sets of C .
For a constant r > 0, let Br = {υ ∈ C : ‖υ‖ ≤ r} be a bounded set in C . Then for each

φ ∈ S̃(υ) and υ ∈ Br , there exists ṽ ∈RQ,υ such that

φ(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽ(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽ(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ(ς ) dς

)

.

Under the hypothesis (As2) and for any t ∈P, we obtain

∣
∣φ(t)

∣
∣ ≤ 1

	(r1)

∫ t

0
(t – ς )r1–1∣∣ṽ(ς )

∣
∣dς

+
tv–1

||

( m∑

i=1

|θi|γiδ
–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1∣∣ṽ(σ )

∣
∣dσ

)

dς
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+
1

	(r1)

∫ T

0
(T – ς )r1–1∣∣ṽ(ς )

∣
∣dς

)

≤ ‖P‖ϑ(r)
	(r1 + 1)

(

T r1 +
T v+r1–1

|| +
T v–1

||

( m∑

i=1

|θi|
δ

r1
i 	(ηi + r1

γi
+ 1)

	(ηi + r1
γi

+ ξi + 1)

))

.

Thus

‖φ‖ ≤ �‖P‖ϑ(r).

Step 3. S̃ sends bounded sets of C into equicontinuous sets.
Let υ ∈ Br and φ ∈ S̃(υ). Then there is a function ṽ ∈RQ,υ such that

φ(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽ(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽ(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ(ς ) dς

)

.

Let t1, t2 ∈P, t1 < t2. Then

∣
∣φ(t2) – φ(t1)

∣
∣

≤ 1
	(r1)

∫ t1

0

[
(t2 – ς )r1–1 – (t1 – ς )r1–1]∣∣ṽ(ς )

∣
∣dς

+
1

	(r1)

∫ t2

t1

(t2 – ς )r1–1∣∣ṽ(ς )
∣
∣dς

× (tv–1
2 – tv–1

1 )
||

( m∑

i=1

|θi|γiδ
–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1∣∣ṽ(σ )

∣
∣dσ

)

dς

+
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ(ς ) dς

)

≤ ‖P‖ϑ(r)
	(r1 + 1)

(
(
t

r1
2 – t

r1
1

)
+

(tv–1
2 – tv–1

1 )
||

( m∑

i=1

|θi|
δ

r1
i 	(ηi + r1

γi
+ 1)

	(ηi + r1
γi

+ ξi + 1)
+ T r1

))

.

As t1 → t2, we obtain

∣
∣φ(t2) – φ(t1)

∣
∣ → 0.

Hence S̃(Br) is equicontinuous. From the above-mentioned steps 2–3, along with Arzela–
Ascoli theorem, we infer that S̃ is completely continuous.

Step 4. We prove that the graph of S̃ is closed.
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Let υn → υ∗, φn ∈ S̃(υn) and φn tends to φ∗. We show that φ∗ ∈ S̃(υ∗). Since φn ∈ S̃(υn),
there exists ṽn ∈RQ,υn such that

φn(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽn(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽn(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽn(ς ) dς

)

, t ∈P.

Therefore, we have to prove that there exists ṽ∗ ∈RQ,υ∗ such that, for each t ∈P,

φ∗(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽ∗(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽ∗(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ∗(ς ) dς

)

.

Define the continuous linear operator Z : L1(P,υ) → C(P,υ) as follows:

ṽ →Z(ṽ)(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽ(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽ(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ(ς ) dς

)

, t ∈P.

Notice that

‖φn – φ∗‖

=

∥
∥
∥
∥
∥

1
	(r1)

∫ t

0
(t – ς )r1–1(ṽn(ς ) – ṽ∗(ς )

)
dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1(ṽn(σ ) – ṽ∗(σ )

)
dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1(ṽn(ς ) – ṽ∗(ς )

)
dς dς

)∥
∥
∥
∥
∥

→ 0,

when n → ∞. So in view of Lemma 6, the operator Z ◦RQ,υ has a closed graph. Moreover,
we have

φn ∈Z(RQ,υn ).



Lachouri et al. Advances in Difference Equations        (2021) 2021:244 Page 10 of 17

Since υn → υ∗, Lemma 6 gives

φ∗(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽ∗(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽ∗(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ∗(ς ) dς

)

,

for some ṽ∗ ∈RQ,υ∗ .
Step 5. We show there exists an open set D ⊆ C with υ /∈ μS̃(υ) for each 0 < μ < 1 and

∀ υ ∈ ∂D.
Let μ ∈ (0, 1) and υ ∈ μS̃(υ). Then there exists ṽ ∈RQ,υ such that

∣
∣υ(t)

∣
∣ =

∣
∣
∣
∣
∣

μ

	(r1)

∫ t

0
(t – ς )r1–1ṽ(ς ) dς

+
μtv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽ(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ(ς ) dς

)∣
∣
∣
∣
∣

≤ �‖P‖ϑ(‖υ‖).

Thus, we have

∣
∣υ(t)

∣
∣ ≤ �‖P‖ϑ(‖υ‖), ∀t ∈P.

Consequently, we obtain

‖υ‖
�‖P‖ϑ(‖υ‖)

≤ 1.

Under the hypothesis (As3), there is an L > 0 such that ‖υ‖ �= L. We build the set D as
follows:

D =
{
υ ∈ C : ‖υ‖ < L

}
.

From steps 1–4, the operator S̃ : D → O(C) is u.s.c. and completely continuous. From
the choice of D, there is no υ ∈ ∂D such that υ ∈ μS̃(υ) for some μ ∈ (0, 1). So, by Leray–
Schauder theorem for set-valued maps, we infer that problem (1.2) has at least one solution
υ ∈D. �

3.2 The Lipschitz case
For further existence investigation of problem (1.2) in this subsection, we deal with an-
other existence criterion under new hypotheses. In what follows, we will demonstrate that
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our desired existence of solutions in the case of nonconvex-valued right-hand side follows
by Covitz and Nadler theorem [24].

Let (υ, d) be a metric space induced from the normed space (υ,‖ · ‖). Consider Hd :
O(υ) ×O(υ) →R

+ ∪ {∞} defined by

Hd(Ã, B̃) = max
{

sup
ã∈Ã

d(ã, B̃), sup
b̃∈B̃

d(Ã, b̃)
}

,

where d(Ã, b̃) = infã∈Ã d(ã, b̃) and d(ã, B̃) = infb̃∈B̃ d(ã, b̃). Then (Ob,cl(υ),Hd) is a metric
space (see [36]).

Definition 7 A set-valued operator S̃ : υ →Ocl(υ) is said to be κ-Lipschitz if and only if
there exists κ > 0 such that

Hd
(
S̃(υ), S̃(ρ)

) ≤ κd(υ,ρ) for any υ,ρ ∈ υ.

In particular, if κ < 1, the set valued operator S̃ is a contraction.

Theorem 2 Suppose the following hypotheses are valid:
(As4) Q : P×R →Ocp(R) is such that Q(·,υ) : P →Ocp(R) is measurable for any

υ ∈ R,
(As5) Hd(Q(t,υ), Q(t,υ)) ≤ � (t)|υ – υ| for (a.e.) all t ∈P and υ,υ ∈R with

� ∈ C(P,R+) and d(0, Q(t, 0)) ≤ � (t) for (a.e.) all t ∈ P.
Then, (1.2) has at least one solution on P if

�‖�‖ < 1,

where � is defined in (3.1).

Proof By using the hypothesis (As4) and Theorem III.6 in [23], Q has a measurable se-
lection ṽ : P→R, ṽ ∈ L1(P,R), and so Q is integrably bounded. Thus, RQ,υ �= ∅. Now,
we show that S̃ : C → O(C) defined in (3.3) satisfies the hypotheses of FPT of Nadler and
Covitz. To prove that S̃(υ) is closed for any υ ∈ C , let {un}∞n=0 ∈ S̃(υ) be such that un → u

(n → ∞) in C . Then u ∈ C and there is ṽn ∈RQ,υn such that

un(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽn(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽn(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽn(ς ) dς

)

, ∀t ∈P.
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As Q has compact values, so there exists a subsequence ṽn converging to ṽ in L1(P,R).
Thus ṽ ∈RQ,υ , and we get

un(t) → u(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽ(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽ(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ(ς ) dς

)

, ∀t ∈P.

Hence u ∈ S̃(υ).
Next, we prove that there is a ϑ ∈ (0, 1) (ϑ = �‖�‖) such that

Hd
(
S̃(υ), S̃(υ)

) ≤ ϑ‖υ – υ‖ for each υ,υ ∈ C(P,R).

Let υ , υ ∈ C(P,R) and φ1 ∈ S̃(υ). Then there exists ṽ1(t) ∈ Q(t,υ(t)) such that

φ1(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽ1(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽ1(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ1(ς ) dς

)

.

By (As5), we have

Hd
(
Q(t,υ), Q(t,υ)

) ≤ � (t)
∣
∣υ(t) – υ(t)

∣
∣.

So, there exists w̃(t) ∈ Q(t,υ) such that

∣
∣ṽ1(t) – w̃

∣
∣ ≤ � (t)

∣
∣υ(t) – υ(t)

∣
∣, t ∈P.

We construct a set-valued map E : P →O(R) as follows:

E(t) =
{

w̃ ∈ R :
∣
∣ṽ1(t) – w̃

∣
∣ ≤ � (t)

∣
∣υ(t) – υ(t)

∣
∣
}

.

We see that ṽ1 and σ = � |υ – υ| are measurable, therefore we can conclude that the set-
valued map E(t) ∩ Q(t,υ) is measurable. Now, we choose the function ṽ2(t) ∈ Q(t,υ) such
that

∣
∣ṽ1(t) – ṽ2(t)

∣
∣ ≤ � (t)

∣
∣υ(t) – υ(t)

∣
∣, ∀t ∈P.
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We define

φ2(t) =
1

	(r1)

∫ t

0
(t – ς )r1–1ṽ2(ς ) dς

+
tv–1



( m∑

i=1

θi
γiδ

–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

(∫ ς

0
(ς – σ )r1–1ṽ2(σ ) dσ

)

dς

–
1

	(r1)

∫ T

0
(T – ς )r1–1ṽ2(ς ) dς

)

, ∀t ∈P.

As a result, we obtain

∣
∣φ(t) – φ2(t)

∣
∣

≤ 1
	(r1)

∫ t

0
(t – ς )r1–1∣∣ṽ1(ς ) – ṽ2(ς )

∣
∣dς

+
T v–1

||

( m∑

i=1

|θi|γiδ
–γi(ξi+ηi)
i

	(ξi)	(r1)

∫ δi

0

ςγi+ηi+γi–1

(δγi
i – ςγi )

×
(∫ ς

0
(ς – σ )r1–1∣∣ṽ1(σ ) – ṽ2(σ )

∣
∣dσ

)

dς

+
1

	(r1)

∫ T

0
(T – ς )r1–1∣∣ṽ1(ς ) – ṽ2(ς )

∣
∣dς

)

≤ ‖�‖‖υ – υ‖
	(r1 + 1)

(

T r1 +
T v+r1–1

|| +
T v–1

||

( m∑

i=1

|θi|
δ

r1
i 	(ηi + r1

γi
+ 1)

	(ηi + r1
γi

+ ξi + 1)

))

.

Therefore

‖φ1 – φ2‖ ≤ �‖�‖‖υ – υ‖.

Similarly, interchanging the roles of υ and υ , we get

Hd
(
S̃(υ), S̃(υ)

) ≤ �‖�‖‖υ – υ‖.

Since S̃ is a contraction, in the light of Covitz and Nadler theorem, we infer that S̃ has an
FP υ which is a solution of (1.2). �

4 Examples
Let us first consider the following FDI:

⎧
⎨

⎩

HDr1,r2υ(t) ∈ Q(t,υ), t ∈ (0,T ), T > 0,

υ(0) = 0, υ(T ) =
∑m

i=1 θiI
ηi ;ξi
γi υ(δi).

(4.1)

The next examples are special cases of the FDI given by (4.1).
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Example 1 Consider the FDI given by (4.1) with r1 = 5
4 , r2 = 0, T = 1, θ1 = 1

4 , θ2 = 1
6 , η1 = 1

2 ,
η2 = 5

2 , ξ1 = 1
2 , ξ2 = 3

2 , γ1 = 1
6 , γ2 = 1

8 , δ1 = 1
4 , and δ2 = 1

2 Then, problem (4.1) reduces to

⎧
⎨

⎩

HD 5
4 ,0υ(t) ∈ Q(t,υ), t ∈ (0, 1),

υ(0) = 0, υ(1) = 1
4 I

1
2 ; 1

2
1
6

υ( 1
4 ) + 1

6 I
5
2 ; 3

2
1
8

υ( 1
2 ),

(4.2)

which is an FDI involving Riemann–Liouville FD. In this case v = 5
4 . Let Q : [0, 1] × R →

O(R) be a mapping such that

υ → Q(t,υ) =
[

1
6(t2 + 4 exp(t3))

υ2

(υ2 + 1)
,

1
2
√
t + 9

|υ|
|υ| + 1

]

. (4.3)

With reference to the above, we find  � 0.88343 �= 0. Obviously, Q satisfies hypothesis
(As1) and

∥
∥Q(t,υ)

∥
∥
O = sup

{|ρ| : ρ ∈ Q(t,υ)
} ≤ 1

2
√
t + 9

= P(t)ϑ
(‖υ‖),

where ‖P‖ = 1
6 and ϑ(‖υ‖) = 1. Thus, assumption (As2) is fulfilled, and by (As3), we get

L > 0.31633.
Therefore, all the hypotheses of Theorem 1 are valid. Hence problem (4.2) with F given

by (4.3) has at least one solution on [0, 1].

Example 2 Consider the FDI given by (4.1) with r1 = 3
2 , r2 = 1, T = 1, θ1 = 1

2 , θ2 = 1
4 , η1 = 1

4 ,
η2 = 3

2 , ξ1 = 1
6 , ξ2 = 3

2 , γ1 = 1
2 , γ2 = 1

8 , δ1 = 1
6 , and δ2 = 1

4 . Then, problem (4.1) reduces to

⎧
⎨

⎩

HD 3
2 ,1υ(t) ∈ Q(t,υ), t ∈ (0, 1),

υ(0) = 0, υ(1) = 1
2 I

1
4 ; 1

6
1
2

υ( 1
6 ) + 1

4 I
3
2 ; 3

2
1
8

υ( 1
4 ),

(4.4)

which is an FDI involving Caputo FD. In this case, v = 2. Let Q : [0, 1] × R → O(R) be a
mapping with

υ → Q(t,υ) =
[

exp
(
–υ2) + t + 5,

|υ|
|υ| + 1

+
√
t + 1
2

]

. (4.5)

From the above data, we find that  � 0.92823 �= 0. Obviously Q satisfies hypothesis (As1)
and

∥
∥Q(t,υ)

∥
∥
O = sup

{|ρ| : ρ ∈ Q(t,υ)
} ≤ 7 = P(t)ϑ

(‖υ‖),

where ‖P‖ = 1 and ϑ(‖υ‖) = 7. Thus, assumption (As2) is fulfilled, and by (As3), we get
L > 6.4976.

Therefore, all the hypotheses of Theorem 1 are valid, and consequently there exists at
least one solution of (4.4) on [0, 1] with F given by (4.5).

Example 3 Consider the FDI given by (4.1). Take r1 = 5
4 , r2 = 1

2 , T = 1, θ1 = 1
4 , θ2 = 1

6 ,
η1 = 1

2 , η2 = 5
2 , ξ1 = 1

2 , ξ2 = 3
2 , γ1 = 1

6 , γ2 = 1
8 , δ1 = 1

4 , and δ2 = 1
2 . Then, problem (4.1) reduces
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to

⎧
⎨

⎩

HD 5
4 , 1

2 υ(t) ∈ Q(t,υ), t ∈ (0, 1),

υ(0) = 0, υ(1) = 1
4 I

1
2 ; 1

2
1
6

υ( 1
4 ) + 1

6 I
5
2 ; 3

2
1
8

υ( 1
2 ),

(4.6)

which is an FDI involving Hilfer FD. In this case, we have v = 13
8 . Let Q : [0, 1] ×R →O(R)

be given by

υ → Q(t,υ) =
[

0,
sin(υ)

(exp(t2) + 9)
+

1
15

]

. (4.7)

From the above data, we find that  � 0.88343 �= 0. Clearly, Hd(Q(t,υ), Q(t,υ)) ≤ � (t)|υ –
υ|, where � (t) = 1

exp(t2)+9 and d(0, Q(t, 0)) = 1
15 ≤ � (t) for (a.e.) all t ∈ [0, 1]. Besides, we

obtain ‖�‖ = 1
10 , which implies �‖�‖ ≈ 0.19 < 1. Therefore all the assumptions of Theo-

rem 2 are valid, and hence there exists at least one solution of (4.6) on [0, 1] with Q given
by (4.7).

5 Conclusions
We have studied a class of BVPs for Hilfer FDIs with nonlocal fractional IBC. Indeed, we
acquired the existence of solutions by taking into account the cases when the set-valued
map has convex or nonconvex values. The Leray–Schauder FPT was applied in the case
of a convex set-valued map, whereas the FPT due to Nadler and Covitz concerning set-
valued contractions was used in the case of a nonconvex set-valued map. The acquired
results have been well demonstrated by numerous pertinent examples. We assert that our
obtained findings are novel in the framework of Hilfer FDIs with Erdélyi–Kober fractional
nonlocal IBC and they greatly contribute to the existing literature on this topic.
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