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Abstract
In this paper, we consider the superlinear Schrödinger equation with bounded
potential well. The potential here is allowed to be sign-changing. Without assuming
the Ambrosetti–Rabinowitz-type condition, we prove the existence of a nontrivial
solution and multiplicity results.
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1 Introduction and main results
This paper is concerned with the existence and multiplicity of nontrivial solutions for the
superlinear Schrödinger equation of the form

�
�

�
–�u + V (x)u = f (x, u),

u ∈ H1(RN ), N ≥ 3.
(1.1)

With the aid of variational methods, problems of the form (1.1) have been extensively
studied in the past decades. There are many works adopting various assumptions on V

and f ; see, for example, [1–13] and references therein.
Motivated by the above works, in this paper, we consider equation (1.1) with a sign-

changing potential well. For the potential V , we assume:
(V) V ∈ C(RN ), V (x) < V∞ := lim|x|→∞ V (x) < ∞, 0 /∈ σ (–� + V ), the spectrum of

–� + V.

Remark1.1 Define the nondecreasing sequence of minimax values by

λn = lim
S∈Sn

sup
u∈S\{0}

�
RN (|∇u|2 + V (x)u2) dx

�
RN u2 dx

, n ∈ N,

where Sn is a family of n-dimensional subspaces of C∞
0 (RN ). We can see that σess(–� +

V ) ∈ (V∞,∞) by (V), λ∞ := limk→∞ λn = inf σess(–� + V ) < ∞, and λn ∈ σpp(–� + V )
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whenever λn < λ∞, where σess(–� + V ) denotes the essential spectrum of –� + V , and
σpp(–� + V ) denotes the pure point spectrum of –� + V (see [14, 15] for details).

Besides (V), in [11, 12], it is also assumed that inf V > 0, so that λ1 > 0. Then the energy
functional with respect to problem (1.1) has mountain pass geometry. In this work, we
are interested in the case where the Schrödinger operator –� + V possesses a nontrivial
negative space, which leads to more difficulty in verifying the compactness conditions. To
the best of our knowledge, there are not many results in this case.

In this paper, we do not assume any compactness conditions on the potential function V .
It is well known that the main difficulty in studying (1.1) in RN is the lack of compactness.
This difficulty can be avoided for (1.1) in bounded domains or if the potential function
V possesses some compactness conditions. For example, if lim|x|→∞ V (x) = ∞ or u is ra-
dially symmetric, we can get some compactness embedding, and then the Palias–Smale
condition can be proved. We refer to [16] in this direction.

Denote F(x, t) :=
� t

0 f (x, s) ds, 2∗ := 2N
N–2 , and p′ := p

p–1 , the conjugate exponent of p. We
make the following assumptions on the nonlinearity f .

(f1) f ∈ C1(RN × R), and there exist constantsp ∈ (2, 2∗) andc> 0 such that

�
�f (x, t)

�
� ≤ c

�
1 + |t|p–1�

for x ∈ RN andt ∈ R.
(f2) f (x, t) = o(t) ast → 0 uniformly in x ∈ RN .
(f3) F(x, t)/t2 → ∞ as|t| → ∞ uniformly in x ∈ RN .
(f4) lim|x|→∞ sup|t|≤l

|f (x,t)|
|t| = 0 for everyl > 0.

(f5) There exista, b > 0 andα ∈ (0,α∗) such that

0 <
	

2 +
1

a|t|α + b



F(x, t) ≤ tf (x, t)

for x ∈ RN andt 
= 0, whereα∗ = min{p′, (2∗ – 1)p′ – 2∗}.
Then we have the following two results.

Theorem 1.2 Under assumptions(V) and (f1)…(f5), problem (1.1) possesses at least one
nontrivial solution.

Theorem 1.3 Under assumptions of Theorem1.2, if f (x, t) is odd in t, then problem(1.1)
possesses in“nitely many solutions.

Remark1.4 To produce critical points of the variational functional of (1.1), we will even-
tually encounter the compactness problem. For this issue, we introduced assumption (f4).
It is easy to see that if a : RN → R is continuous, lim|x|→∞ a(x) = 0, and p ∈ (2, 2∗), then

f (x, t) = a(x)|t|p–2t

satisfies (f1)–(f5).

Remark1.5 Most papers concerned with the superlinear Schrödinger equations involve
the following classical condition of Ambrosetti and Rabinowitz:
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(AR) There existsμ > 2 such that0 < μF(x, t) ≤ tf (x, t) for all x ∈ RN andt 
= 0.
Condition (AR) plays a crucial role in proving the boundedness of Palias–Smale or Ce-
rami sequences. Instead, we introduce a new condition (f5), and we will illustrate a general
technique to establish the boundedness of Cerami sequences. It is well known that many
superlinear nonlinearities such as

f (x, t) = t ln
�
1 + |t|�

do not satisfy condition (AR). Note that 1
a|t|α+b → 0 as |t| → ∞, which indicates that (f5)

is somewhat weaker than (AR). Note also that (2∗ – 1)p′ – 2∗ > 0 whenever p < 2∗. So the
parameter α ∈ (0,α∗) is available. It is also worth pointing out that (f5) is not a superlinear
condition. Indeed, there are asymptotically linear functions satisfying (f5).

2 Preliminaries
We denote by E := H1(RN ) the usual Sobolev space. Define the functional � : E→ R by

�(u) =
1
2

�

RN

� |∇u|2 + V (x)u2�
dx –

�

RN
F(x, u) dx.

Our assumptions on V and f stated above imply that the Schrödnger operator –� + V
is selfadjoint and semibounded in L2(RN ) and � ∈ C1(E, R). A direct computation gives
that, for all u, v ∈ E,

�
�′(u), v



=

�

RN

�∇u∇v + V (x)uv
�

dx –
�

RN
f (x, u)vdx.

It is well known that the critical points of � are solutions of problem (1.1).
By (V) 0 is not an eigenvalue of –� + V . If λ1 > 0,we easily see that � has the mountain

pass geometry. This case is simple, and we omit it here. In view of Remark 1.1, we arrange
the eigenvalues (counted with multiplicity) of –� + V as

–∞ < λ1 ≤ λ2 ≤ · · · ≤ λ� < 0 < λ�+1 ≤ · · · < λ∞ (2.1)

and denote by ej the corresponding eigenfunction of λj . Let E– = span{e1, . . . , e�} and E+ =
(E–)⊥. From (V) we deduce that E = E– ⊕E+, where E– and E+ are the negative and positive
eigenspaces of the operator –� + V , and that dimE– < ∞. For u, v ∈ E, define

(u, v) =
�

RN

�∇u+∇v+ + V (x)u+v+�
dx –

�

RN

� ∇u–∇v– + V (x)u–v–�
dx, (2.2)

where u = u– + u+ with u– ∈ E– and u+ ∈ E+. Then (·, ·) is an inner product on E. Therefore
E is a Hilbert space with the norm ‖ · ‖ :=

√
(·, ·). We easily see that

�(u) =
1
2

�
� u+�

� 2 –
1
2

�
� u–�

� 2 –
�

RN
F(x, u) dx (2.3)

and

�
�′(u), v



=

�
u+, v+�

–
�
u–, v–�

–
�

RN
f (x, u)vdx.
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For any s∈ [2, 2∗], the imbedding E ↪→ Ls(RN ) is continuous. Consequently, there exists
a constant τs > 0 such that

|u|s ≤ τs‖u‖, ∀u ∈ E, (2.4)

where | · |s denotes the Ls norm.
We next recall some abstract critical point theorems, which will be used in the proofs

of our main results.

De“nition 2.1 Let E be a Banach space, and let � ∈ C1(E, R). Given c ∈ R, a sequence
{un} ⊂ E is called a Cerami sequenceof � at level c (shortly, a (C)c sequence) if

�(un) → c,
�
1 + ‖un‖

� �� �′(un)
�
� → 0. (2.5)

We say that � satisfies the Cerami condition at level c(shortly, condition (C)c) if every (C)c

sequence of � contains a convergent subsequence. If � satisfies condition (C)c for every
c∈ R, then we say that � satisfies the Cerami condition(shortly, condition (C)).

Obviously, condition (C) is weaker than the Palais–Smale condition. However, as was
shown in [17], the deformation theorem is still valid under the Cerami condition. Thus we
have the following theorems.

Theorem 2.2 (Linking theorem [18]) Let E= E– ⊕E+ be a Banach space withdimE– < ∞.
Let R> r > 0, and let φ ∈ E+\{0}. De“ne

M :=
�
u = u– + λφ| u– ∈ E–,‖u‖ ≤ R,λ ≥ 0

�
, N :=

�
u ∈ E+|‖u‖ = r

�
.

If � ∈ C1(E, R) satis“es condition(C) and

inf
N

� > max
∂M

�,

then� has a nontrivial critical point.

For the proofs of Theorems 1.2–1.3, we will use the following fountain theorem, which is
a generalization of the classical fountain theorem of Bartsch [19] (see also [10]). For k ∈ N,
let

Yk = span{e1, . . . ek}, Zk = Y⊥
k . (2.6)

Theorem 2.3 (Fountain theorem [20]) Suppose that the functional� ∈ C1(E, R) is even

and satis“es condition(C). Suppose that for every k≥ k0 for some constant k0 > 0, there

existρk > rk > 0 such that

(A1) bk = infu∈Zk ,‖u‖=rk �(u) → ∞ as k → ∞, and
(A2) ak = maxu∈Yk ,‖u‖=ρk �(u) ≤ 0.

Then� has a sequence of critical points{uk} such that�(uk) → ∞.
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3 Proof of main results
Lemma 3.1 Suppose that(V), (f1), and (f2) are satis“ed. Then there exists r> 0 such that

inf �(∂Br (0) ∩ E+) > 0.

Proof It follows from (f1) and (f2) that, for given ε > 0, there is a constant Cε > 0 such that

�
�F(x, t)

�
� ≤ ε|t|2 + Cε|t|p (3.1)

and

�
�f (x, t)

�
� ≤ ε|t| + Cε|t|p–1. (3.2)

For u ∈ E+, we have

�(u) =
1
2
‖u‖2 –

�

RN
F(x, u) dx

≥ 1
2
‖u‖2 – ε|u|22 – Cε|u|pp

≥
	

1
2

– ετ2



‖u‖2 – τpCε‖u‖p,

where τ2 and τp are constants in (2.4). Let ε = 1
4τ2

. Since p > 2, we can fix some r small
enough such that

inf
u∈E+,‖u‖=r

�(u) > 0.

The proof is completed. �

Lemma 3.2 Suppose that(V) and (f1)…(f3) are satis“ed. Then, for any nontrivial “nite-

dimensional subspace W of E+, there exists R> r such that� ≤ 0 in (E– ⊕W )\BR(0), where

r > 0 is the constant given by Lemma3.1.

Proof This lemma is a corollary of [13, Lemma 2.5]. We omit the proof. �

Lemma 3.3 Suppose that(V), (f1)…(f3), and (f5) are satis“ed and c∈ R. Then any(C)c

sequence of� is bounded.

Proof It follows from (f5) that, for all t 
= 0 and x ∈ RN ,

tf (x, t) – 2F(x, t) ≥ 1
2a|t|α + 2b + 1

tf (x, t) > 0.

Let {un} be a (C)c sequence of �, that is, a sequence satisfying (2.5). Set �n := {x ∈
RN ||un(x)| < 1} and �c

n := RN\�n. Then there are constants c1, c2 > 0 such that

2a|un|α + 2b + 1 ≤ 1/c1, ∀x ∈ �n,
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and

2a|un|α + 2b + 1 ≤ |un|α/c2, ∀x ∈ �c
n.

For n sufficient large, it follows that

D ≥ 2�(un) –
�
�′(un), un




=
�

RN

�
unf (x, un) – 2F(x, un)

�
dx

≥
�

RN

unf (x, un)
2a|un|α + 2b + 1

dx

≥ c1

�

�n

unf (x, un) dx + c2

�

�c
n

|un|–αunf (x, un) dx (3.3)

for some constant D > 0.
Note that α < (2∗ – 1)p′ – 2∗ by (f5). We have

1
p′ <

2∗

2∗ – 1
1
p′ <

2∗

2∗ + α
and

2
2 + α

<
2∗

2∗ + α
.

Then we can choose a constant r ∈ (0, 1) such that

max
�

2∗

2∗ – 1
1
p′ ,

2
2 + α

�
< r <

2∗

2∗ + α
. (3.4)

Let s:= r/(1 – r) > 0. Then 1
r + 1

–s = 1. By (3.3) and the inverse Hölder inequality we have

D ≥ c1

�

�n

unf (x, un) dx + c2

	 �

�c
n

�
unf (x, un)

� r dx

 1/r 	 �

�c
n

|un|αsdx

 1/(–s)

≥ c1

�

�n

unf (x, un) dx + c2
(
�
�c

n
(unf (x, un))r dx)1/r

|un|ααs
. (3.5)

By (f1) and (f2) we have

�
�f (x, u)

�
�p′r ≤ �

c3|u|(p–1)(p′–1)��f (x, u)
�
�� r = c4

�
uf (x, u)

� r , ∀|u| ≥ 1,
�
�f (x, u)

�
�2 ≤ c5|u|��f (x, u)

�
� = c5uf (x, u), ∀|u| < 1.

Therefore by (3.5) we have

	 �

�c
n

�
�f (x, un)

�
�p′r dx


 1/p′r
≤ c6|un|α/p′

αs , (3.6)

	 �

�n

�
�f (x, un)

�
�2 dx


 1/2

≤ c7. (3.7)

In view of (3.4), we easily check that p′r > 1 and (p′r)′,αs ∈ [2, 2∗], where (p′r)′ :=
p′r/(p′r – 1). Consequently, it follows from (3.6) and (3.7), Hölder’s inequality, and
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Sobolev’s inequality that, for n large enough and some constants c8, c9 > 0,

�
� u+

n

�
� 2 =

�
�′(un), u+

n



+

�

RN
f (x, un)u+

n dx

≤ �
� u+

n

�
� +

	 �

�n

�
�f (x, un)

�
�2 dx


 1/2�
�u+

n

�
�
2 +

	 �

�c
n

�
�f (x, un)

�
�p′r dx


 1/p′r �
�u+

n

�
�
(p′r)′

≤ �
� u+

n

�
� + c7

�
�u+

n

�
�
2 + c6|un|α/p′

αs

�
�u+

n

�
�
(p′r)′ ≤ c8

�
� u+

n

�
� + c9

�
� u+

n

�
� ‖un‖α/p′

.

Therefore we obtain

�
� u+

n

�
� ≤ c8 + c9‖un‖α/p′

and, similarly,

�
� u–

n

�
� ≤ c8 + c9‖un‖α/p′

.

Note that α < p′. Then we easily verify that ‖un‖2 = ‖u–
n‖2 + ‖u+

n‖2 is bounded. �

Lemma 3.4 Suppose that(V) and (f1)…(f4) are satis“ed. Then any bounded(C)c sequence

of � contains a convergent subsequence.

Proof Suppose {un} is a bounded (C)c sequence of �. Then, passing to a subsequence,
we may assume that un ⇀ u in E. Since dimE– < ∞, we have u+

n ⇀ u+ in E+, u–
n → u– in

E–, and u+
n → u+ in Ls

loc(RN ), s∈ [2, 2∗). To establish the strong convergence, it suffices to
prove that

�
� u+

n

�
� → �

� u+�
� . (3.8)

Since

�
�′(un), u+

n – u+

=

�
u+

n , u+
n – u+�

–
�

RN
f (x, un)

�
u+

n – u+�
dx → 0,

we have

0 ≤ limsup
n→∞

� �� u+
n

�
� 2 –

�
� u+�

� 2�

= limsup
n→∞

�
u+

n , u+
n – u+�

= limsup
n→∞

�

RN
f (x, un)

�
u+

n – u+�
dx. (3.9)

Next, let ε > 0. For l ≥ 1, from (f1) and Hölder’s inequality it follows that

�

|un|≥l
f (x, un)

�
u+

n – u+�
dx ≤ 2c

�

|un|≥l
|un|p–1�

�u+
n – u+�

� dx

≤ 2clp–2∗
�

|un|≥l
|un|2∗–1�

�u+
n – u+�

� dx

≤ 2clp–2∗ |un|2∗–1
2∗

�
�u+

n – u+�
�
2∗ .
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Since p < 2∗, we may fix l large enough such that

�

|un|≥l
f (x, un)

�
u+

n – u+�
dx ≤ ε

3
(3.10)

for all n. Moreover, by (f4) there exists L > 0 such that

�

|x|≥L
|un|≤l

f (x, un)
�
u+

n – u+�
dx ≤ |un|2

�
�u+

n – u+�
�
2 sup

|t|≤l ,|x|≥L

|f (x, t)|
|t| ≤ ε

3
(3.11)

for all n. Finally, since u+
n → u+ in Ls(BL(0)) for s∈ [2, 2∗), from (3.2) it follows that

�

|x|≤L
|un|≤l

f (x, un)
�
u+

n – u+�
dx ≤

�

|x|≤L
|un|≤l

|un|
�
�u+

n – u+�
� dx + C1

�

|x|≤L
|un|≤l

|un|p–1�
�u+

n – u+�
� dx

≤ |un|2
�
�u+

n – u+�
�
L2(BL(0)) + C1|un|p–1

p

�
�u+

n – u+�
�
Lp(BL(0))

≤ ε

3
(3.12)

for n large enough. Combining (3.10)–(3.12), we conclude that

�

RN
f (x, un)

�
u+

n – u+�
dx ≤ ε

for n large enough. Since ε is arbitrary, this, together with (3.9), implies (3.8). The lemma
is proved. �

Proof of Theorem1.2 For u ∈ E–, since F(x, t) ≥ 0 by (f5), we obtain that

�(u) = –
1
2
‖u‖2 –

�

RN
F(x, u) dx ≤ 0.

This, together with Lemmas 3.1 and 3.2, implies that there exist R> r > 0 such that

inf
N

� > 0 ≥ max
∂M

�.

In view of Lemmas 3.3 and 3.4, � satisfies condition (C). By Theorem 2.2 we have that
� possesses at least one nontrivial critical point, which is the nontrivial solution of prob-
lem (1.1). �

Proof of Theorem1.3 Since f is odd, � is an even functional. By Lemmas 3.3 and 3.4
we know that � satisfies condition (C). To apply Theorem 2.3, it suffices to verify (A1)
and (A2).

Define Yk and Zk as in (2.6). Recall that λ� < 0 < λ�+1. If k > �, then we have Zk ⊂ E+.
Define βk := supu∈Zk‖u‖=1

|u|p. Therefore by (2.4) and (3.1) with ε = 1/4τ 2
2 we have

�(u) ≥ 1
2
‖u‖2 –

1
4τ 2

2
|u|22 – C|u|pp

≥ 1
2
‖u‖2 –

1
4τ 2

2
|u|22 – Cβ

p
k ‖u‖p ≥ 1

4
‖u‖2 – Cβ

p
k ‖u‖p.
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Let rk = (2pCβ
p
k )1/(2–p). Then for u ∈ Zk with ‖u‖ = rk , we have

�(u) ≥ 1
2

	
1
2

–
1
p



�
2pCβ

p
k

� 1/(2–p).

Since βk → 0 as k → ∞ by [10, Lemma 3.8] and p > 2, it follows that

bk = inf
u∈Zk ,‖u‖=rk

�(u) → ∞.

Hence (A1) is satisfied. Finally, by Lemma 3.2 with W =
� k

j=0 Rej we easily see that (A2)
holds. �
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