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Abstract
In this paper, we offer a new quantum integral identity, the result is then used to
obtain some new estimates of Hermite–Hadamard inequalities for quantum integrals.
The results presented in this paper are generalizations of the comparable results in
the literature on Hermite–Hadamard inequalities. Several inequalities, such as the
midpoint-like integral inequality, the Simpson-like integral inequality, the averaged
midpoint–trapezoid-like integral inequality, and the trapezoid-like integral inequality,
are obtained as special cases of our main results.
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1 Introduction
The study of q-calculus was initiated in the early 20th century after the work of Jackson
(1910) who defined an integral later known as the q-Jackson integral (see [16, 22, 23, 27,
28]). In q-calculus, the classical derivative is replaced by the q-difference operator to deal
with nondifferentiable functions. For more discussion on this subject, we refer to [8, 21].
Applications of q-calculus can be found in various disciplines of mathematics and physics
(see [13, 26, 36, 45]).

Many well-known integral inequalities, such as Hölder inequality, Hermite–Hadamard
inequalities and Ostrowski inequality, Cauchy–Bunyakovsky–Schwarz inequality, Grüss
inequality, Grüss–Chebysev inequality, and other integral inequalities, have been studied
in the setup of q-calculus using the concept of classical convexity. For more results in this
direction, we refer to [1–7, 10, 11, 14, 18–20, 24, 29–32, 34, 35, 37, 39–43, 46, 47].

The purpose of this paper is to prove several new quantum integral inequalities by apply-
ing the newly defined concept of a qb-integral. We also discuss the relation of our results
with comparable results existing in the literature.

The organization of this paper is as follows: In Sect. 2, a brief description of the concepts
of q-calculus and some related works in this direction are given. In Sect. 3, the bounds of
Hermite–Hadamard-type inequalities for the qb-integrals are presented. In Sect. 4, several
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special cases of our main results are discussed. The relationship between the results pre-
sented herein and comparable results in the literature is also studied. Section 5 contains
some conclusions and further directions for future research. We believe that the study
initiated in this paper may inspire new research in this area.

2 Preliminaries of q-calculus and some inequalities
In this section, we first present some known definitions and related inequalities in the
q-calculus. Set the following notation (see [28]):

[n]q =
1 – qn

1 – q
= 1 + q + q2 + · · · + qn–1, q ∈ (0, 1).

Jackson [27] defined the q-Jackson integral of a given function f from 0 to b as follows:

∫ b

0
f (x) dqx = (1 – q)b

∞∑
n=0

qnf
(
bqn), where 0 < q < 1, (2.1)

provided that the sum converges absolutely.
Jackson [27] defined the q-Jackson integral of a given function over the interval [a, b] as

follows:

∫ b

a
f (x) dqx =

∫ b

0
f (x) dqx –

∫ a

0
f (x) dqx.

Definition 1 ([38]) Let f : [a, b] → R be a function. The qa-derivative of f at x ∈ [a, b] is
identified by the the following expression:

aDqf (x) =
f (x) – f (qx + (1 – q)a)

(1 – q)(x – a)
, x �= a. (2.2)

If x = a, we define aDqf (a) = limx→a aDqf (x) if it exists and is finite.

Definition 2 ([15]) Let f : [a, b] → R be a function. The qb-derivative of f at x ∈ [a, b] is
given by

bDqf (x) =
f (qx + (1 – q)b) – f (x)

(1 – q)(b – x)
, x �= b.

If x = b, we define bDqf (b) = limx→b
bDqf (x) if it exists and is finite.

Definition 3 ([38]) Let f : [a, b] → R be a function. Then, the qa-definite integral on [a, b]
is defined by

∫ b

a
f (x)a dqx = (1 – q)(b – a)

∞∑
n=0

qnf
(
qnb +

(
1 – qn)a

)

= (b – a)
∫ 1

0
f
(
(1 – t)a + tb

)
dqt.

Alp et al. [11] proved the following qa-Hermite–Hadamard inequalities for convex func-
tions in the setting of quantum calculus:
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Theorem 1 If f : [a, b] →R is a convex differentiable function on [a, b] and 0 < q < 1. Then
we have

f
(

qa + b
[2]q

)
≤ 1

b – a

∫ b

a
f (x)a dqx ≤ qf (a) + f (b)

[2]q
. (2.3)

In [11] and [33], the authors established some bounds for the left- and right-hand sides
of the inequality (2.3).

On the other hand, Bermudo et al. [15] gave the following definition and obtained the
related Hermite–Hadamard-type inequalities:

Definition 4 ([15]) Let f : [a, b] →R be a function. Then, the qb-definite integral on [a, b]
is given by

∫ b

a
f (x)b dqx = (1 – q)(b – a)

∞∑
n=0

qnf
(
qna +

(
1 – qn)b

)

= (b – a)
∫ 1

0
f
(
ta + (1 – t)b

)
dqt.

Theorem 2 ([15]) If f : [a, b] →R is a convex, differentiable function on [a, b] and 0 < q <
1, then the q-Hermite–Hadamard inequalities are given as follows:

f
(

a + qb
[2]q

)
≤ 1

b – a

∫ b

a
f (x)b dqx ≤ f (a) + qf (b)

[2]q
. (2.4)

From Theorems 1 and 2, one can obtain the following inequalities:

Corollary 1 ([15]) For any convex function f : [a, b] →R and 0 < q < 1, we have

f
(

qa + b
[2]q

)
+ f

(
a + qb

[2]q

)
≤ 1

b – a

{∫ b

a
f (x)a dqx +

∫ b

a
f (x)b dqx

}

≤ f (a) + f (b) (2.5)

and

f
(

a + b
2

)
≤ 1

2(b – a)

{∫ b

a
f (x)a dqx +

∫ b

a
f (x)b dqx

}
≤ f (a) + f (b)

2
. (2.6)

We recall the following well-known inequality:

Theorem 3 (Hölder’s inequality, [12, p. 604]) Let x > 0, 0 < q < 1, p1 > 1 be such that 1
p1

+
1
r1

= 1. Then

∫ x

0

∣∣f (x)g(x)
∣∣dqx ≤

(∫ x

0

∣∣f (x)
∣∣p1 dqx

) 1
p1

(∫ x

0

∣∣g(x)
∣∣r1 dqx

) 1
r1

.
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3 Main results
In this section, we give some new estimates of Hermite–Hadamard-type inequalities for
functions whose first qb-derivatives in absolute value are convex.

Let’s start with the following useful lemma.

Lemma 1 If f : [a, b] ⊂ R → R is a qb-differentiable function on (a, b) such that bDqf is
continuous and integrable on [a, b], then we have

(b – a)
[∫ ν

0
(qt + γ ν – γ )bDqf

(
ta + (1 – t)b

)
dqt (3.1)

+
∫ 1

ν

(qt + γ ν – 1)bDqf
(
ta + (1 – t)b

)
dqt

]

=
1

b – a

∫ b

a
f (x)b dqx – γ

[
νf (a) + (1 – ν)f (b)

]
– (1 – γ )f

(
νa + (1 – ν)b

)
,

where 0 < q < 1.

Proof From Definition 2, it follows that

bDqf
(
ta + (1 – t)b

)
=

f (qta + (1 – qt)b) – f (ta + (1 – t)b)
(1 – q)(b – a)t

.

By applying identical transformation, we obtain

(b – a)
∫ ν

0
(qt + γ ν – γ )bDqf

(
ta + (1 – t)b

)
dqt (3.2)

+ (b – a)
∫ 1

ν

(qt + γ ν – 1)bDqf
(
ta + (1 – t)b

)
dqt

= (b – a)
∫ 1

0
(qt + γ ν – 1)bDqf

(
ta + (1 – t)b

)
dqt

+ (b – a)
∫ ν

0
(1 – γ )bDqf

(
ta + (1 – t)b

)
dqt.

By the equality (2.1), we obtain

∫ ν

0

bDqf
(
ta + (1 – t)b

)
dqt (3.3)

=
∫ ν

0

f (qta + (1 – qt)b) – f (ta + (1 – t)b)
(1 – q)(b – a)t

dqt

=
1

b – a

[ ∞∑
n=0

f
(
qn+1νa +

(
1 – qn+1ν

)
b
)

–
∞∑

n=0

f
(
qnνa +

(
1 – qnν

)
b
)]

=
1

b – a
[
f (b) – f

(
νa + (1 – ν)b

)]
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and

∫ 1

0

bDqf
(
ta + (1 – t)b

)
dqt (3.4)

=
∫ 1

0

f (qta + (1 – qt)b) – f (ta + (1 – t)b)
(1 – q)(b – a)t

dqt

=
1

b – a

[ ∞∑
n=0

f
(
qn+1a +

(
1 – qn+1)b

)
–

∞∑
n=0

f
(
qna +

(
1 – qn)b

)]

=
1

b – a
[
f (b) – f (a)

]
.

It follows from (2.1) and Definition 4 that

∫ 1

0
tbDqf

(
ta + (1 – t)b

)
dqt (3.5)

=
∫ 1

0

f (qta + (1 – qt)b) – f (ta + (1 – t)b)
(1 – q)(b – a)

dqt

=
1

b – a

[ ∞∑
n=0

qnf
(
qn+1a +

(
1 – qn+1)b

)
–

∞∑
n=0

qnf
(
qna +

(
1 – qn)b

)]

=
1

b – a

[
1
q

∞∑
n=0

qn+1f
(
qn+1a +

(
1 – qn+1)b

)
–

∞∑
n=0

qnf
(
qna +

(
1 – qn)b

)]

=
1

b – a

[
1
q

∞∑
n=0

qnf
(
qna +

(
1 – qn)b

)
–

1
q

f (a) –
∞∑

n=0

qnf
(
qna +

(
1 – qn)b

)]

=
1

b – a

[(
1
q

– 1
) ∞∑

n=0

qnf
(
qna +

(
1 – qn)b

)
–

1
q

f (a)

]

=
1

b – a

(
1 – q

q

) ∞∑
n=0

qnf
(
qna +

(
1 – qn)b

)
–

1
q(b – a)

f (a)

=
1

q(b – a)2

∫ b

a
f (x)b dqx –

1
q(b – a)

f (a).

Using (3.3), (3.4), and (3.5) in (3.2), we obtain the required identity. �

Remark 1 If we take q → 1– in the Lemma 1, then we have [25, Lemma 2.1].

Before we present our main inequalities, we first give some calculated quantum inte-
grals:

A1q(γ ,ν) =
∫ ν

0
t|qt + γ ν – γ |dqt =

⎧⎨
⎩

ν3q
[3]q

– ν2γ (1–ν)
[2]q

+ 2γ 3(1–ν)3

([2]q)([3]q) , (γ + q)ν > γ ,
ν2γ (1–ν)

[2]q
– ν3q

[3]q
, (γ + q)ν ≤ γ ,

B1q(γ ,ν) =
∫ ν

0
(1 – t)|qt + γ ν – γ |dqt

=
∫ ν

0
|qt + γ ν – γ |dqt –

∫ ν

0
t|qt + γ ν – γ |dqt
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=

⎧⎨
⎩

ν2q+2γ 2(1–ν)2+ν2γ (1–ν)
[2]q

– νγ (1 – ν) – ν3q
[3]q

– 2γ 3(1–ν)3

([2]q)([3]q) , (γ + q)ν > γ ,

νγ (1 – ν) – ν2q+ν2γ (1–ν)
[2]q

+ ν3q
[3]q

, (γ + q)ν ≤ γ ,

A2q(γ ,ν) =
∫ 1

0
t|qt + γ ν – 1|dqt =

⎧⎨
⎩

q
[3]q

– 1–γ ν

[2]q
+ 2(1–γ ν)3

([2]q)([3]q) , γ ν + q > 1,
1–γ ν

[2]q
– q

[3]q
, γ ν + q ≤ 1,

B2q(γ ,ν) =
∫ 1

0
(1 – t)|qt + γ ν – 1|dqt

=
∫ 1

0
|qt + γ ν – 1|dqt –

∫ 1

0
t|qt + γ ν – 1|dqt

=

⎧⎨
⎩

q+2(1–γ ν)2+1–γ ν

[2]q
– (1 – γ ν) – q

[3]q
– 2(1–γ ν)3

([2]q)([3]q) , γ ν + q > 1,

1 – γ ν – q+1–γ ν

[2]q
+ q

[3]q
, γ ν + q ≤ 1,

A3q(γ ,ν) =
∫ ν

0
t|qt + γ ν – 1|dqt =

⎧⎨
⎩

qν3

[3]q
– ν2(1–γ ν)

[2]q
+ 2(1–γ ν)3

([2]q)([3]q) , γ ν + q > 1,
ν2(1–γ ν)

[2]q
– qν3

[3]q
, γ ν + q ≤ 1,

B3q(γ ,ν) =
∫ ν

0
(1 – t)|qt + γ ν – 1|dqt

=
∫ ν

0
|qt + γ ν – 1|dqt –

∫ ν

0
t|qt + γ ν – 1|dqt

=

⎧⎨
⎩

ν2+2(1–γ ν)2+ν2(1–γ ν)
[2]q

– ν(1 – γ ν) – qν3

[3]q
– 2(1–γ ν)3

([2]q)([3]q) , γ ν + q > 1,

ν(1 – γ ν) – qν2+ν2(1–γ ν)
[2]q

+ qν3

[3]q
, γ ν + q ≤ 1,

C1q(γ ,ν) =
∫ 1

0
|qt + γ ν – 1|dqt =

⎧⎨
⎩

q+2(1–γ ν)2

[2]q
– (1 – γ ν), γ ν + q > 1,

(1 – γ ν) – q
[2]q

, γ ν + q ≤ 1.

Theorem 4 If f : [a, b] ⊂ R → R is a qb-differentiable function on (a, b) such that bDqf
is continuous and integrable on [a, b], then we have the following inequality provided that
|bDqf | is convex on [a, b]:

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx – γ

[
νf (a) + (1 – ν)f (b)

]
– (1 – γ )f

(
νa + (1 – ν)b

)∣∣∣∣
≤ (b – a)

[(
A1q(γ ,ν) + A2q(γ ,ν) – A3q(γ ,ν)

)∣∣bDqf (a)
∣∣

+
(
B1q(γ ,ν) + B2q(γ ,ν) – B3q(γ ,ν)

)∣∣bDqf (b)
∣∣],

where 0 < q < 1.

Proof On taking the modulus in Lemma 1 and applying the convexity of |bDqf |, we obtain

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx – γ

[
νf (a) + (1 – ν)f (b)

]
– (1 – γ )f

(
νa + (1 – ν)b

)∣∣∣∣
≤ (b – a)

[∫ ν

0
|qt + γ ν – γ |∣∣bDqf

(
ta + (1 – t)b

)∣∣dqt

+
∫ 1

ν

|qt + γ ν – 1|∣∣bDqf
(
ta + (1 – t)b

)∣∣dqt
]
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= (b – a)
[∫ ν

0
|qt + γ ν – γ |∣∣bDqf

(
ta + (1 – t)b

)∣∣dqt

+
∫ 1

0
|qt + γ ν – 1|∣∣bDqf

(
ta + (1 – t)b

)∣∣dqt

–
∫ ν

0
|qt + γ ν – 1|∣∣bDqf

(
ta + (1 – t)b

)∣∣dqt
]

≤ (b – a)
[∣∣bDqf (a)

∣∣
∫ ν

0
t|qt + γ ν – γ |dqt +

∣∣bDqf (b)
∣∣
∫ ν

0
(1 – t)|qt + γ ν – γ |dqt

+
∣∣bDqf (a)

∣∣ ∫ 1

0
t|qt + γ ν – 1|dqt +

∣∣bDqf (b)
∣∣ ∫ 1

0
(1 – t)|qt + γ ν – 1|dqt

–
∣∣bDqf (a)

∣∣ ∫ ν

0
t|qt + γ ν – 1|dqt –

∣∣bDqf (b)
∣∣ ∫ ν

0
(1 – t)|qt + γ ν – 1|dqt

]

= (b – a)
[(

A1q(γ ,ν) + A2q(γ ,ν) – A3q(γ ,ν)
)|bDqf (a)

∣∣
+

(
B1q(γ ,ν) + B2q(γ ,ν) – B3q(γ ,ν)

)∣∣bDqf (b)|],

which completes the proof. �

Remark 2 Under the assumptions of Theorem 4 with q → 1–, we have [25, Corollary 2.3].

Theorem 5 Suppose that f : [a, b] ⊂ R → R is a qb-differentiable function on (a, b) and
bDqf is continuous and integrable on [a, b]. If |bDqf |p1 , p1 > 1, is convex on [a, b], then we
have following inequality:

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx – γ

[
νf (a) + (1 – ν)f (b)

]
– (1 – γ )f

(
νa + (1 – ν)b

)∣∣∣∣
≤ (b – a)

(
C1q(γ ,ν)

)1– 1
p1

(
A2q(γ ,ν)

∣∣bDqf (a)
∣∣p1 + B2q(γ ,ν)

∣∣bDqf (b)
∣∣p1) 1

p1

+ (b – a)ν1– 1
p1

(
ν2

[2]q

∣∣bDqf (a)
∣∣p1 +

ν([2]q – ν)
[2]q

∣∣bDqf (b)
∣∣p1

) 1
p1

,

where 0 < q < 1.

Proof Taking the modulus in Lemma 1 and applying the well-known power-mean inequal-
ity for quantum integrals, we have

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx – γ

[
νf (a) + (1 – ν)f (b)

]
– (1 – γ )f

(
νa + (1 – ν)b

)∣∣∣∣
= (b – a)

∣∣∣∣
∫ ν

0
(qt + γ ν – γ )bDqf

(
ta + (1 – t)b

)
dqt

+
∫ 1

ν

(qt + γ ν – 1)bDqf
(
ta + (1 – t)b

)
dqt

∣∣∣∣

= (b – a)
∣∣∣∣
∫ 1

0
(qt – γ ν – 1)bDqf

(
ta + (1 – t)b

)
dqt

+
∫ ν

0
(1 – γ )bDqf

(
ta + (1 – t)b

)
dqt

∣∣∣∣
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≤ (b – a)
∫ 1

0
|qt – γ ν – 1|∣∣bDqf

(
ta + (1 – t)b

)∣∣dqt

+ (b – a)(1 – γ )
∫ ν

0

∣∣bDqf
(
ta + (1 – t)b

)∣∣dqt

≤ (b – a)
(∫ 1

0
|qt + γ ν – 1|dqt

)1– 1
p1

×
(∫ 1

0

∣∣qt + γ ν – 1
∣∣∣∣bDqf

(
ta + (1 – t)b

)∣∣p1 dqt
) 1

p1

+ (b – a)(1 – γ )
(∫ ν

0
1 dqt

)1– 1
p1

(∫ ν

0

∣∣bDqf
(
ta + (1 – t)b

)∣∣p1 dqt
) 1

p1
.

By the convexity of |bDqf |p1 , we have

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx – γ

[
νf (a) + (1 – ν)f (b)

]
– (1 – γ )f

(
νa + (1 – ν)b

)∣∣∣∣

≤ (b – a)
(∫ 1

0
|qt + γ ν – 1|dqt

)1– 1
p1

×
(∣∣bDqf (a)

∣∣p1
∫ 1

0
t|qt + γ ν – 1|dqt

+
∣∣bDqf (b)

∣∣p1
∫ 1

0
(1 – t)|qt + γ ν – 1|dqt

) 1
p1

+ (b – a)(1 – γ )
(∫ ν

0
1 dqt

)1– 1
p1

×
(∫ ν

0

∣∣bDqf (a)
∣∣p1

∫ ν

0
t dqt +

∣∣bDqf (b)
∣∣p1

∫ ν

0
(1 – t) dqt

) 1
p1

= (b – a)
(
C1q(γ ,ν)

)1– 1
p1

(
A2q(γ ,ν)

∣∣bDqf (a)
∣∣p1 + B2q(γ ,ν)

∣∣bDqf (b)
∣∣p1) 1

p1

+ (b – a)ν1– 1
p1

(
ν2

[2]q

∣∣bDqf (a)
∣∣p1 +

ν([2]q – ν)
[2]q

∣∣bDqf (b)
∣∣p1

) 1
p1

,

which completes the proof. �

Remark 3 If we take q → 1– in Theorem 5, then we have [25, Theorem 2.2].

Theorem 6 Let f : [a, b] ⊂ R → R be a qb-differentiable function on (a, b) and bDqf a
continuous and integrable function on [a, b]. If |bDqf |p1 is convex on [a, b] for some p1 > 1
and 1

r1
+ 1

p1
= 1, then we have

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx – γ

[
νf (a) + (1 – ν)f (b)

]
– (1 – γ )f

(
νa + (1 – ν)b

)∣∣∣∣ (3.6)

≤ (b – a)
(
u1q(γ ,ν)

) 1
r1

( |bDqf (a)|p1 + q|bDqf (b)|p1

[2]q

) 1
p1

+ (b – a)ν
1
r1

(
ν2

[2]q

∣∣bDqf (a)
∣∣p1 +

ν([2]q – ν)
[2]q

∣∣bDqf (b)
∣∣p1

) 1
p1

,
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where 0 < q < 1 and

u1q(γ ,ν) =
∫ 1

0
|qt + γ ν – 1|r1 dqt.

Proof Taking the modulus in the Lemma 1 and applying well-known Hölder’s inequality
for quantum integrals, we obtain

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx – γ

[
νf (a) + (1 – ν)f (b)

]
– (1 – γ )f

(
νa + (1 – ν)b

)∣∣∣∣
= (b – a)

∣∣∣∣
∫ ν

0
(qt + γ ν – γ )bDqf

(
ta + (1 – t)b

)
dqt

+
∫ 1

ν

(qt + γ ν – 1)bDqf
(
ta + (1 – t)b

)
dqt

∣∣∣∣
= (b – a)

∣∣∣∣
∫ 1

0
(qt – γ ν – 1)bDqf

(
ta + (1 – t)b

)
dqt

+
∫ ν

0
(1 – γ )bDqf

(
ta + (1 – t)b

)
dqt

∣∣∣∣
≤ (b – a)

∫ 1

0
|qt – γ ν – 1|∣∣bDqf

(
ta + (1 – t)b

)∣∣dqt

+ (b – a)(1 – γ )
∫ ν

0

∣∣bDqf
(
ta + (1 – t)b

)∣∣dqt

≤ (b – a)
(∫ 1

0
|qt + γ ν – 1|r1 dqt

) 1
r1

(∫ 1

0

∣∣bDqf
(
ta + (1 – t)b

)∣∣p1 dqt
) 1

p1

+ (b – a)(1 – γ )
(∫ ν

0
1r1 dqt

) 1
r1

(∫ ν

0

∣∣bDqf
(
ta + (1 – t)b

)∣∣p1 dqt
) 1

p1
.

Using the fact that |bDqf |p1 is convex, we have
∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx – γ

[
νf (a) + (1 – ν)f (b)

]
– (1 – γ )f

(
νa + (1 – ν)b

)∣∣∣∣

≤ (b – a)
(∫ 1

0
|qt + γ ν – 1|r1 dqt

) 1
r1

×
(∣∣bDqf (a)

∣∣p1
∫ 1

0
t dqt +

∣∣bDqf (b)
∣∣p1

∫ 1

0
(1 – t) dqt

) 1
p1

+ (b – a)(1 – γ )
(∫ ν

0
1r1 dqt

) 1
r1

×
(∣∣bDqf (a)

∣∣p1
∫ ν

0
t dqt +

∣∣bDqf (b)
∣∣p1

∫ ν

0
(1 – t) dqt

) 1
p1

= (b – a)
(
u1q(γ ,ν)

) 1
r1

( |bDqf (a)|p1 + q|bDqf (b)|p1

[2]q

) 1
p1

+ (b – a)ν
1
r1

(
ν2

[2]q

∣∣bDqf (a)
∣∣p1 +

ν([2]q – ν)
[2]q

∣∣bDqf (b)
∣∣p1

) 1
p1

,

which completes the proof. �
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Remark 4 On taking limit as q → 1– in Theorem 6, we have [25, Theorem 2.8].

4 Special cases
In this section, we discus special cases of our main results and the relationship between
the results presented herein and comparable results in the literature.

Remark 5 From Lemma 1, we have following observations:
(i) If we take ν = 0, then we obtain following new identity:

(b – a)
∫ 1

0
(qt – 1)bDqf

(
ta + (1 – t)b

)
dqt

=
1

b – a

∫ b

a
f (x)b dqx – f (b). (4.1)

(ii) By setting ν = 1 in Lemma 1, we obtain following new identity:

(b – a)
∫ 1

0
qtbDqf

(
ta + (1 – t)b

)
dqt

=
1

b – a

∫ b

a
f (x)b dqx – f (a). (4.2)

(iii) Set ν = 1
[2]q

to obtain the following new identity:

(b – a)
[∫ 1

[2]q

0

(
qt –

γ q
[2]q

)b

Dqf
(
ta + (1 – t)b

)
dqt (4.3)

+
∫ 1

1
[2]q

(
qt +

γ

[2]q
– 1

)b

Dqf
(
ta + (1 – t)b

)
dqt

]

=
1

b – a

∫ b

a
f (x)b dqx – γ

f (a) + qf (b)
[2]q

– (1 – γ )f
(

a + qb
[2]q

)
.

Remark 6 In the following, we give the different variants of Lemma 1.
(i) If we set γ = 0, in Lemma 1, we have following new identity:

(b – a)
[∫ ν

0
qtbDqf

(
ta + (1 – t)b

)
dqt +

∫ 1

ν

(qt – 1)bDqf
(
ta + (1 – t)b

)
dqt

]
(4.4)

=
1

b – a

∫ b

a
f (x)b dqx – f

(
νa + (1 – ν)b

)
.

Specifically, for ν = 1
[2]q

, we have following midpoint-like identity given in [17, Lemma 2]:

(b – a)
[∫ 1

[2]q

0
qtbDqf

(
ta + (1 – t)b

)
dqt +

∫ 1

1
[2]q

(qt – 1)bDqf
(
ta + (1 – t)b

)
dqt

]

=
1

b – a

∫ b

a
f (x)b dqx – f

(
a + qb

[2]q

)
.
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(ii) Taking γ = 1
3 in Lemma 1, we have following new identity:

(b – a)
[∫ ν

0

(
qt +

1
3
ν –

1
3

)b

Dqf
(
ta + (1 – t)b

)
dqt (4.5)

+
∫ 1

ν

(
qt +

1
3
ν – 1

)b

Dqf
(
ta + (1 – t)b

)
dqt

]

=
1

b – a

∫ b

a
f (x)b dqx –

1
3
[
νf (a) + (1 – ν)f (b) + 2f

(
νa + (1 – ν)b

)]
.

Specifically, for ν = 1
[2]q

, we have Simpson-like integral identity given as follows:

(b – a)
[∫ 1

[2]q

0

(
qt –

q
3([2]q)

)b

Dqf
(
ta + (1 – t)b

)
dqt (4.6)

+
∫ 1

1
[2]q

(
qt +

1
3([2]q)

– 1
)b

Dqf
(
ta + (1 – t)b

)
dqt

]

=
1

b – a

∫ b

a
f (x)b dqx –

1
3

[
f (a) + qf (b)

[2]q
+ 2f

(
a + qb

[2]q

)]
.

(iii) If we set γ = 1
2 in Lemma 1, then we have following new identity:

(b – a)
[∫ ν

0

(
qt +

1
2
ν –

1
2

)b

Dqf
(
ta + (1 – t)b

)
dqt (4.7)

+
∫ 1

ν

(
qt +

1
2
ν – 1

)b

Dqf
(
ta + (1 – t)b

)
dqt

]

=
1

b – a

∫ b

a
f (x)b dqx –

1
2
[
νf (a) + (1 – ν)f (b) + f

(
νa + (1 – ν)b

)]
.

Specifically, for ν = 1
[2]q

, we get following averaged midpoint–trapezoid-type integral
identity:

(b – a)
[∫ 1

[2]q

0

(
qt –

q
2([2]q)

)b

Dqf
(
ta + (1 – t)b

)
dqt (4.8)

+
∫ 1

1
[2]q

(
qt +

1
2([2]q)

– 1
)b

Dqf
(
ta + (1 – t)b

)
dqt

]

=
1

b – a

∫ b

a
f (x)b dqx –

1
2

[
f (a) + qf (b)

[2]q
+ f

(
a + qb

[2]q

)]
.

(iv) By setting γ = 1 in Lemma 1,we have following new identity

(b – a)
[∫ ν

0
(qt + ν – 1)bDqf

(
ta + (1 – t)b

)
dqt (4.9)

+
∫ 1

ν

(qt + ν – 1)bDqf
(
ta + (1 – t)b

)
dqt

]

=
1

b – a

∫ b

a
f (x)b dqx –

[
νf (a) + (1 – ν)f (b)

]
.
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Specifically, for ν = 1
[2]q

, we have following trapezoid-like integral identity given in [17,
Lemma 1]:

(b – a)
[∫ 1

[2]q

0

(
qt +

1
[2]q

– 1
)b

Dqf
(
ta + (1 – t)b

)
dqt

+
∫ 1

1
[2]q

(
qt +

1
[2]q

– 1
)b

Dqf
(
ta + (1 – t)b

)
dqt

]

=
1

b – a

∫ b

a
f (x)b dqx –

f (a) + qf (b)
[2]q

.

Corollary 2 Under the assumptions of Theorem 4 with ν = 1
[2]q

, we have following new
inequality:

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx – γ

[
f (a) + qf (b)

[2]q

]
– (1 – γ )f

(
a + qb

[2]q

)∣∣∣∣ (4.10)

≤ (b – a)
[(

A1q

(
γ ,

1
[2]q

)
+ A2q

(
γ ,

1
[2]q

)
– A3q

(
γ ,

1
[2]q

))
|bDqf (a)

∣∣∣∣

+
(

B1q

(
γ ,

1
[2]q

)
+ B2q

(
γ ,

1
[2]q

)
– B3q

(
γ ,

1
[2]q

))∣∣∣∣bDqf (b)|
]

.

Remark 7 We now deduce some more inequalities from Corollary 2.
(i) By putting γ = 0 in Corollary 2, we obtain following midpoint-type inequality [17,

Theorem 5]:

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx – f

(
a + qb

[2]q

)∣∣∣∣

≤ (b – a)
[
|bDqf (a)| 3q

([2]q)3([3]q)
+ |bDqf (b)|–q + 2q2 + q3

([2]q)3([3]q)

]
.

(ii) If we take γ = 1
3 in Corollary 2, then we get following Simpson’s-type inequality:

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx –

1
3

[
f (a) + qf (b)

[2]q
+ 2f

(
a + qb

[2]q

)]∣∣∣∣ (4.11)

≤ (b – a)
[(

A1q

(
1
3

,
1

[2]q

)
+ A2q

(
1
3

,
1

[2]q

)
– A3q

(
1
3

,
1

[2]q

))
|bDqf (a)

∣∣∣∣

+
(

B1q

(
1
3

,
1

[2]q

)
+ B2q

(
1
3

,
1

[2]q

)
– B3q

(
1
3

,
1

[2]q

))∣∣∣∣bDqf (b)|
]

.

Specifically for q → 1–, we have following inequality given by Alomori et al. [9,
Corollary 1]:

∣∣∣∣ 1
b – a

∫ b

a
f (x) dx –

1
3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]∣∣∣∣ ≤ 5(b – a)
72

[∣∣f ′(b)
∣∣ +

∣∣f ′(a)
∣∣].
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(iii) Take γ = 1
2 in Corollary 2 to obtain the following averaged midpoint–trapezoid-

type inequality:

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx –

1
2

[
f (a) + qf (b)

[2]q
+ f

(
a + qb

[2]q

)]∣∣∣∣ (4.12)

≤ (b – a)
[(

A1q

(
1
2

,
1

[2]q

)
+ A2q

(
1
2

,
1

[2]q

)
– A3q

(
1
2

,
1

[2]q

))∣∣bDqf (a)
∣∣

+
(

B1q

(
1
2

,
1

[2]q

)
+ B2q

(
1
2

,
1

[2]q

)
– B3q

(
1
2

,
1

[2]q

))∣∣bDqf (b)
∣∣
]

.

Specifically, for q → 1–, we obtain the following inequality in [44, Corollary 3.4]:

∣∣∣∣ 1
b – a

∫ b

a
f (x) dx –

1
2

[
f (a) + f (b)

2
+ f

(
a + b

2

)]∣∣∣∣
≤ b – a

16
[∣∣f ′(b)

∣∣ +
∣∣f ′(a)

∣∣].

(iv) If we take γ = 1 in Corollary 2, then we obtain following trapezoid-type integral
inequality:

∣∣∣∣ 1
b – a

∫ b

a
f (x)b dqx –

f (a) + qf (b)
[2]q

∣∣∣∣

≤ (b – a)
[∣∣bDqf (a)

∣∣q2(1 + 4q + q2)
([2]q)4([3]q)

+
∣∣bDqf (b)

∣∣q2(1 + 3q2 + 2q3)
([2]q)4([3]q)

]
,

which is given by Budak in [17, Theorem 3].

Remark 8 Under the assumptions of Theorems 5 and 6 with ν = 1
[2]q

, we may choose γ =
0, γ = 1

3 , γ = 1
2 , and γ = 1, to obtain the midpoint-like integral inequality, the Simpson-

like integral inequality, the averaged midpoint–trapezoid-like integral inequality and the
trapezoid-like integral inequality, respectively.

5 Conclusions
In this paper, some new bounds of Hermite–Hadamard inequalities for convex functions
by applying the notions of the newly defined qb-integral and qb-derivative are obtained.
It is shown that the results proved herein are generalizations of the existing comparable
results in the literature, like the results proved in [9, 17, 25, 44]. It is an interesting and new
problem that the upcoming researchers can offer similar inequalities for different kinds of
convexity in their future work.
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