Phuong et al. Advances in Difference Equations (2021) 2021:209 ® Advances in Difference Eq uations
https://doi.org/10.1186/513662-021-03370-4 a SpringerOpen Journal

RESEARCH Open Access

Check for
updates

On a nonlocal problem for parabolic
equation with time dependent coefficients

Nguyen Duc Phuong', Ho Duy Binh?, Le Dinh Long” and Dang Van Yen*"

"Correspondence:

ydangw@yahoo.com.vn Abstract

3Faculty of Information Technology, ’ . . . . .

Ho Chi Minh City University of This paper is devoted to the study of existence and uniqueness of a mild solution for a
Technology, Ho Chi Minh City, parabolic equation with conformable derivative. The nonlocal problem for parabolic
Vietnam equations appears in many various applications, such as physics, biology. The first part

Full list of author information is

available at the end of the article of this paper is to consider the well-posedness and regularity of the mild solution. The

second one is to investigate the existence by using Banach fixed point theory.
MSC: 35R11;35B65; 26A33

Keywords: Parabolic equation; Existence and regularity; Conformable derivative

1 Introduction
Let T be a positive number and @ ¢ R (d > 1) be a bounded domain with the smooth
boundary 9€2. In this paper, we consider the nonlocal value problem for parabolic equation

as follows:
%u(x, t) = () Au=F(x t,ulxt), xeQ,te(0,T),
u(x, t) =0, x€0Q,te(0,T), (1)
au(x,0) + bu(x, T) = p(x), x €,

Cob(t)
where the symbol —5=

is called the conformable derivative which is defined clearly in
Sect. 2. The function F represents external forces, and the function ¢ is the input datum
which will be defined later. The function 1 is called time dependent coefficient.

There are applications of conformable derivative in various models, for example, the
harmonic oscillator, the damped oscillator, and the forced oscillator (see [1]), electrical
circuits (see [2]), chaotic systems in dynamics (see [3]), quantum mechanics [4]. Based on
important notes in the article [5], we observe and think that studying the ODE problem
with the compliance derivative is very different from studying the PDE problem with a
suitable derivative. The positional results and methods for the ODE and PDEs models are
not the same and completely different. In order for the reader to have more access to this
kind of fractional diffusion equations with conformable derivative, we refer to [2, 6-17].
In addition, we can find the topics of initial and final problems, which are studied by many
authors, in [18-27].
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Our paper is one of the first results on the nonlocal value problem given with parabolic
equations with conformable derivative. In the linear part, we use the techniques of Hilbert
scales space. In the nonlinear part, to establish the existence and uniqueness of the solu-
tion, we must use the Banach fixed mapping theorem combined with some techniques to
evaluate inequality, some Sobolev embedding. One of the most difficult points is finding
the right functional spaces for the solution. Another highlight in the results is to demon-
strate the convergence of the mild solution as the parameter b approaches 0.

2 Preliminaries
Conformable derivative model: Let the function v: [0, 00) — D, where D is a Banach space.
If the limitation

Cabu(t) lim vt + et1P) — v(1)

: inD
oth £—0 &£

for each ¢ > 0 exists, then it is called be the conformable derivative of order 8 € (0,1] of v.
We can refer the reader to [11, 28].

Let A be a linear, self-adjoint, unbounded, and positive definite operator. Assume that
A has the eigenvalues 1, (n € N*):

O<ti <Ay <--- withA, — ooforn— oo

and the corresponding eigenelements e, which form an orthonormal basis. For v > 0, we
introduce fractional powers of A as follows:

D(A") = {g€L2(Q):Z|(g,en)|2Ai“ <oo}. )
n=1

The space D(A") is a Banach space in the following with the corresponding norm:

1

llgllpeary = <Z|(g,en)|2)»ﬁ”) , g€D(A).

n=1

The information for negative fractional power A~ can be defined by [29]. For any m > 0
and a Banach space B, we introduce the following space:

C’”([O,T];B):{veC([O, T);B): M<oo},

0<s<t<T |t_s|m
corresponding to the following norm:

”V(': t) - V(',S)”B

IVllcmo,m1.) =
0<s<t<T |t —s|™

Let 0 < m < 1, and we recall the following space:

(0, T B) = [ve (0, ThLA(@) : sup 7)< oo,

with the norm ||[v|l¢mo,11,8) := SUPges<7 £ V(5 DI 5.
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3 Inhomogeneous problem
In this section, we consider the nonlocal value problem for equation as follows:

€ 98

Wu(x,t)—d/(t)AuzF(x,t), xe€Q,te(0,T),
u(x,t) =0, x€dQ,te(0,7), (3)
au(x,0) + bu(x, T) = p(x), x € Q,

where F is defined later.

3.1 Existence and uniqueness of the mild solution

In this subsection, we state the existence and uniqueness of the mild solution.

Theorem 3.1 Let ay < y(t) < by, where ay, by are constants, ¢ € D(A"*%) and F e
L°°(0, T; D(A"*?)), where v > 0, 0 < 6 < 1. Then we have the following regularity:

o )| sy S €77 (I@lppassoy + IE N 2r0 7paveey)

+ ||F||L°°(O,T;D(A”*9))’ t>0. (4-)
Proof By a simple calculation, we get the following equality:
un(t) = (M(: t)) en)
b
B
= exp<_)"1’l / W(S) dS) <u(! O): en)
0
t :
+ / sPLexp (—An _//3 ¥(r) dr)Fn(u)(s) ds, (5)
0 fla
B
where F, = (F,e,). Replacing t with T in the above expression, we get

un(T) = (u() 1), en>
T8
=exp <—An / ! Y(s) ds><M(~, 0), ey,)
0
+ / #Lexp <_M / , V) dr) F,(1)(s) ds. (6)
0 z
The condition au(x, 0) + bu(x, T') = ¢(x) gives the following result:

b
(a+bexp(—k,,/ ’ 1//(s)ds>>un(0)
0

T juil
p-1 _ ? _
+b/0 s exp( A ﬁ% w(r)dr>F,,(u)(s) ds = @,. (7)
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By switching sides and combining them, we obtain the formula for u,(0) as follows:

T8
—bfo sPLexp(-i, fﬂ r)dr)F,,(u)(s) ds

u,(0) = " . (8)
a+ bexp(-i, fOT Y (s)ds)

Inserting (8) into the above formula (5) and after the reduced transformation, we arrive at

[ﬁ
B
Mn(t) = eXp(_)‘n fO 71{;(5) dS) @n

a+bexp(-i, [," ¥(s)ds)

b exp(—knfoﬂ 1/f(s)ds) fT exp( //3 v(r dV) u)(s) ds
a+bexp(-A, fo Y (s) ds)

+/tsﬁ_1 exp(—ky, f 1/f(r)dr>F,,(u)(s)ds. 9)
0 7

By the properties of Fourier series, we get that

u(x, t)
%
00 _)‘-n d
_ Z exp( fo ;ﬁﬂ(s) S) nen(x)
L a+ bexp(—A, fo (s)ds)
J1(x,)
2. exp(—A f% ¥ (s)ds) g 7
s njo > ([ sh1 exp(—)»n , v dr)F,,(s) ds)en(x)
"=l g 1+ bexp(-A, foT Y (s) ds) ’ i
Ja(x,8)
+ ;(/0 st exp( / ¥ (r) dr) dS>en(x) (10)
Using the inequality

B
7 aot” W66 ,—p6
exp| —Ax Y(s)ds | <exp —AHT < CoayB7A T,
0

we get

B

ikiv exp(—hy, foF gTDﬁ(s) ds) )zﬁﬂﬁ

a+bexp(-i, fOT Y (s)ds)

St ZAW = @Il guy- (11)

|0 ”i)(A") =
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Hence, we find that

GO pary S P N@lpavso- (12)
(AY)

We continue to estimate J, as follows:

#

) bzikiv exp(=An fo ;ﬂﬂ(ﬂ ds) \’
n=1 a+bexp(—i, fo" W(s)ds)

T i 2
x ( /0 Sﬁ_lexp(—kn /s/;ﬁ w(r)dr)a,(s)ds)

00 T T
< 20 Z)L}Z,IIHZG (/ Sﬂ—1|p,,(s)|2 ds) = 268 (/ A1 HF(.,s)||f)(AM)ds). (13)
n=1 0 0

The Holder inequality implies that

T
_/0 sﬂ_IHF('»S)”Z(AM)dSS(/0 (b=r ds) </ ”F( S)||DA"+9 > ’ (14)

where % + ri* =1. Let us choose r > %, we find that

T
1 2
/0 SHEC8) | pavss) B S UEN G20 1paveoy 1

Inserting the latter estimate into (13), we arrive at
112G 0) | pavy S P2 IF N 2ro 1iparoy- (16)

The quantity /3 is bounded by

75605

- , s )
:;xiv ( /0 §1 exp(—)uy, /S; w(r)dr>F,,(s)ds) . (17)

It follows from the inequality

P
s B _ B

exp<—2)»,, /;ﬂﬂ 1/f(r)dr) < exp(—)»n%> < Cgagﬁ_ekfl(tﬂ —sﬂ)_e
B

for any 0 <s < ¢, that

o t
sy < 20200 (/ S =) B dS)
n=1 0
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t
5[ S =) | ECos) ||123<Av+9)d5
0
t
Iy [ 5716 =) . as)

Next, we continue to compute the integral term. Set the variable ¥ = s®. Then we get
dv = BsP~1 ds. Then it follows from 0 < 6 < 1 that

t # -0) B(1-0)
poi(p_ py0 g 1 gt o ! T
fos (£ =) ds_ﬂfo (tF-») dﬁ_ﬂ(l_g)gﬁ(l_e). (19)

This together with (18) yields that

158 ey S IE w0, z:ma050 20)

Combining (12), (16), and (20), we deduce that
9
3
<1l
j=1

S t7ﬁ9(||§0||D(Av+(~)) + ||F”L2'(O,T;D(A"+9))) + ||F||L°°(0,T;D(,A"+0))' (21)

4 The mild solution for nonlinear problem
By the previous section, we define the following definition of a mild solution of the problem
as follows.

Definition 4.1 The function u is called a mild solution of the problem if # belongs to the
space L>(0, T; L*(2)) and it also satisfies equality (1).

We recall that the formula of the solution u is performed as the following form:

B
> 3 [F
ux,t)= exp(=2u fo ;{;(S)ds)

¢nen(x)
"=1 g + bexp(—A, fOT Y (s) ds)
I
b v expl=tq fo” Yi(s)ds)
_ -

=L g+ bexp(=A, [o” ¥ (s)ds)

. ﬂ
« ( /0 §-1 exp(—kn fsgﬂ w(r)dr>Fn(u)(s)ds)en(x)

00 ‘ &
+ sPLexp (—Ay, ! ¥(r) dr) F,(u)(s) ds> e,(x). (22)
(] /.

Theorem 4.1 Let ¢ € L*(R), and there exists a constant Ky > 0 such that

[F0)C0) = F0) 60 20 < K |11 ) =128 20 (23)
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B
If the condition 1 > (% + 1)% is true, then problem (22) has a mild solution u which
belongs to the space L*(0, T; L*(2)).

Proof Set the following:

H(Ww)(t) = 7 + 1 (u)(t) + H5(u)(t), (24)
where
. 4
o=y SR VOD)
=L g+ bexp(=h, [o" ¥ (s)ds)
and
. ;
S = by " V)
"=l gt bexp(=h, o7 ¥(s)ds)
r b
p-1 _ 4
X (/0 s exp( An /% lp(r)dr>Fn(u)(s)ds>e,,(x) (25)
and
0o &
A u)(0) = Z( [ exp(—xn [, v dr)Fn(uxs) ds) e (x). (26)
n=1 0 SF

We have to show that the equation J#u = u has a unique solution. Applying the Holder
inequality, we find that

|75 ) () = 76, 50)() 1216,

, £
[ / P exp (_xn f v dr> ()6 — E0)(6)) ds}
0 T

B
' B-1 ' B-1 _ I _ 2
|:/0 s dsi| I:/(; s exp( 2A, /Sg w(r)dr) (Fn(u)(s) Fn(v)(s)) dsi|

[/0 " F@)(,5) = FW)(-,5) “iZ(Q) ds:|

00 2

IA

IA
1R =3 iMe I

K2T%

t
= 13 1(}“” — VHE,OO(O,T;LZ(Q)) |:/ Sﬂ71 dS:| = fﬁz ||M — V”ioo(O,T;LZ(Q))’ (27)
0

and using the inequality

#
exp(=hy fo ¥ (s)ds)
B
a+ bexp(-i, foT v (s)ds)

-b

b
S_r
a
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we get that
| 74,50 ~ 4,5 0)()] 12,

00 T8
b2 T 51 ( B ) )
l A W (r)dr ) (E,(u)(s) - E, d
< (‘/0 s°Texp ﬁg (r)dr ( ()(s) (v)(S)) S

2

612 n=1
B2 T e

< ) 2 [./o sP1 ds:| (/0 s exp(—ZAn /% ¥(r) dr) (F,,(u)(s) —F,,(v)(s))zds)
v1fsrt 2 K278

a5 ( fo 7 (Ea(a)(s) —Fn(v)(s))zds) e LTS )

Combining (27) and (28) leads to

| #w)@) - A0 2
= | 00 — H 5O | ey + |50~ H 5000 oy

p
KT

b
1+ — ||Ll - V”LOO(O T;L2(Q))* (29)
g\ "a 4

Since the left-hand side of the above observation is independent of £, we deduce that

K; TP b
”%(u) - %(V) ”LOO(O,T;LZ(Q)) = fﬂ (1 + ;) ”u - V||L°°(O,T;L2(Q))‘ (30)

Let us choose T such that

Ba 1/B
T'= ((a + b)Kf> ’

we know that ¢ is a contraction mapping. Next, we continue to show that if v €
L>(0, T; L*(R2)), then #3(v) € L*(0, T; L*(2)). We only check that if v = 0, then

B

o0 7
A= 3 SRl VOD) G1)

"1 g+ bexp(=A, [o” ¥ (s)ds)

which allows us to obtain that

tﬂ

. _)\n g d 2
II%(Vx-,t)n;(mzz( X f” V(949 )wﬁ

=L a  bexp(—h, fo" W(s)ds)

1 o0
2
D
n=1

1

= E”‘pHEZ(Q) (32)
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The latter estimate leads to 73 : L>(0, T; L*(R2)) — L*(0, T; L*(2)). By applying the Ba-
nach fixed point theory, we can deduce that our problem (1) has a unique solution u« €
L>°(0, T; L*(R)). O

Theorem 4.2 Let w, be the solution of the initial value problem

fﬁsﬂ u(x,t) -y (t)Au=F(x,t), x€Q,te(0,T),
u(x,t) =0, x€dQ,te(0,T), (33)
au(x, 0) = ¢(x), xeQ.

Then we have
lim [|we,p = a1 0,20 = 0 (34)

and

bl g

.
a1 - (L4 1)

~5)

1Wa,p — thap,pll Loo0,Tr2(0)) < (35)

Proof It is easy to see that the mild solution of problem (33) is given by

Wa (%, £)
o expicha
ST YO
n=1

i
\ exp(—ha fo” W(s)ds)
_b Z (;

B
r o F
x (fo P lexp(—k,, f% ¥ (r) dr)Fn(wa,,g)(s) ds)e,,(x)

00 ¢ i
+ sPLexp (—An ! w(r) dr) F,(wap)(s) ds) e,(x). (36)

This together with (22) yields

Uab,p (x,2) - Wa,8 (%, 1)
B B

i(eXp Ay fo Y(s)ds)  exp(=hy Jo" v v (s)ds) )(p,,e,,(x)

n=1 a+bexp(=i, fo7 V(s)ds)

i
\ exp(—hn fo” W(s)ds)
_b Z (;

x [ / e exp(—xn 7 dr) (Fuwap)® - Faltta ) ds}en(x)
0 / ] ”
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00 ¢ i
+ Z[ [ s exp(—xn [, o dr) (Fuwap)® = Fu(as)(5)) ds} (%)
n=1 0 XF

=A1 +A2 +A3. (37)

The term A; is bounded by

& il
B2 O~ exp(=hu fo” W (s)ds)exp(=n fo" ¥(s)ds))?
||A1||iz(g>=;Z( Jo o Jo )soﬁ

n=1 a+bexp(=i, [o" ¥(s)ds)

¥ b?

== = l9lhq (38)

n=1

B

tP
Using exp(-22,, foﬁ ¥ (s)ds) <1, the term A, is bounded by

2T (T Z >
== |:/ Pl exp(—)»,, /ﬁ ¥(r) dr) (Fy,(wa,,g)(s) —F,,(ua,;,,,g))(s) ds]
n=1 0 S?
2 o T
< b—2 (/ sP1 ds)
a n=1 0
T il
p-1 i 2
x [ s tew (—un [ v dr) (Ewap)6) = Eulitas)) ds
0 Fush
P
PrTAT [t 2
< [ 09~ Ftan ) o)y 5
§2 K2T%
< ; 7 ”wa,ﬁ — Ug,b,B ”%W(O,T;LZ(Q))' (39)
The term Az can be estimated as follows:
0o ‘ % 2
1430172y = Z[ /0 sﬁ'leXP(—kn / , w(r)dr) (Fu(Wa,p)(s) = Fu(ttap,p(s)) dS]
n=1 B
00 T t )
< Z[/ P dS} [/ P Fwap)(8) = Flttanp) )| 20 dS]
‘3 LJo 0
K2T%
=< T ”Wa,ﬁ —Ugb,p ”io"(O,T;LZ(Q))' (40)

Therefore, we find that

Ky
lA3ll 20y < T 1Wa,p — tabpll 100, T;02(2))- (41)
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Some above observations lead to

1Wa,p = Yap,pll Lo T2 (02)

A

< A1ll2) + A2l 2@ + 143112

b b K, TP
2 ||§0||L2(sz) + p +1 T”Wa,ﬁ - ua,b,/5||L°°((],T;L2(Q))‘ (42)

Hence, we find that

bllel2g
Wa, — thap,ll Loo0, T;02(0)) < b TN (43)
ﬂ2(1 — (; + 1)T
It is easy to see that
;i_rf(l) 1Wa,p — thap,p | Loo0,T02(2)) = O- (44)
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