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Abstract
This paper is devoted to the establishment of two-dimensional sampling theorems
for discrete transforms, whose kernels arise from second order partial difference
equations. We define a discrete type partial difference operator and investigate its
spectral properties. Green’s function is constructed and kernels that generate
orthonormal basis of eigenvectors are defined. A discrete Kramer-type lemma is
introduced and two sampling theorems of Lagrange interpolation type are proved.
Several illustrative examples are depicted. The theory is extendible to higher order
settings.
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1 Introduction
The derivation of multidimensional versions of the classical sampling theorem, see [23],
has attracted many authors; see e.g. [6, 12–14, 21]. This is an essential implication of apply-
ing the multivariate sampling theorem to multidimensional signals like images for exam-
ple. With this respect, two-dimensional (2-D) sampling theorems are of great interest; see
also [15, 18]. In the mentioned researches, authors established multidimensional integral
transform, most of which arise from self-adjoint differential operators, cf. [6].

In [4] the author derived a discrete counterpart of the classical sampling theorem of
Whittaker [23]. He also gave a sampling theorem for discrete transforms associated with
second order self-adjoint difference operators. The results of [4] extend many sampling
theorems for discrete signals derived in [2]; see also [19].

The basic idea of [4] is based to apply a discrete version of Kramer’s sampling theo-
rem derived in [3, 7, 11]. This theorem can be stated as follows. Let l2(J) denote the
space of all sequences α := (αn)n∈J, where J is a countable index set, with the norm
‖α‖2 :=

∑
n∈J |αn|2 < ∞, then we have the following.

Theorem 1.1 Let (tk)k∈J, be a sequence of real numbers and Kn(t) : C −→ C, n ∈ J, be a
function such that, for any t ∈ C, Kn(t) ∈ l2(J), and the sequence {Kn(tk)}k∈J is a complete
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orthogonal set of l2(J). Then the discrete transform

F(t) =
∑

n∈J
gnKn(t), g ∈ l2(J), (1.1)

has the sampling expansion

F(t) =
∑

k∈J
F(tk)

∑
n∈J Kn(t)Kn(tk)

∑
n∈I |Kn(tk)|2 . (1.2)

When J is infinite, series (1.2) converges absolutely for t ∈C and uniformly locally on C.

The kernel Kn(t) may arise from difference operators as in [4, 7, 9, 10]. This can be illus-
trated as follows. Consider the eigenvalue problem

r–1(n)
{∇[

p(n)�y(n)
]

+ q(n)y(n)
}

= ty(n), n ∈ J = {1, . . . , N}, t ∈C, (1.3)

M1(y) := y(0) + hy(1) = 0, M2(y) := y(N + 1) + ly(N) = 0, (1.4)

where �y(n) := y(n + 1) – y(n), ∇y(n) := y(n) – y(n – 1), � and ∇ are the forward and
the backward difference operators and h, l are real numbers. For definiteness and self-
adjointness the functions p(n), r(n) are assumed to be strictly positive.

Let φ(n, t) be the solution of Eq. (1.3) such that M1(φ(n, t)) = 0. The eigenvalues of the
problem are the zeros of M2(φ) and they are simple, where M2(φ) is polynomial of de-
gree N . The eigenvalues of the problem are N distinct real numbers which will be denoted
by {tk}N

k=1. The corresponding sequence of eigenfunctions is {φ(n, tk)}N
k=1. The sequence

{φ(n, tk)}N
k=1, is a set of real-valued functions and it forms an orthogonal basis of l2(J); cf.

e.g. [16]. Let

�(t) =

⎧
⎨

⎩

∏N
k=1(1 – t

tk
), if zero is not an eigenvalue,

t
∏N

k=2(1 – t
tk

), t1 = 0, is an eigenvalue.
(1.5)

One of the sampling results of [4] can be stated as the following Lagrange interpolation
theorem.

Theorem 1.2 If f (n) ∈ l2(J) and

F(t) =
N∑

n=1

f (n)φ(n, t), t ∈C, (1.6)

then

F(t) =
N∑

k=1

F(tk)
�(t)

(t – tk)�′(tk)
. (1.7)
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In [1] sampling results were obtained for Eq. (1.3) with the general boundary condi-
tions

α11y(0) + α12y(1) + β11y(N) + β12y(N + 1) = 0,

α21y(0) + α22y(1) + β21y(N) + β22y(N + 1) = 0,
(1.8)

where α11β22 – β12α21 �= 0.
In this paper we establish two-dimensional sampling theorems associated with a

discrete-type Dirichlet problem. For this task we define a second order partial difference
operator in the next section. We also impose conditions on the potential which make the
problem breakable into two different ordinary Sturm–Liouville discrete systems. This is
done in the next section. Section 3 is devoted to the construction of the Green’s function
of the system and derive its eigenfunctions expansion. Section 4 contains the sampling
results of this paper and the last section depicted some worked examples. The theory
for 2-D setting can be similarly extended to higher order situation, representing discrete
counterpart of the results of both [5, 24].

2 A two-dimensional discrete operator
In this section we define the two-dimensional discrete eigenvalue problem of this paper.
Let I = ZN ×ZM , where ZN = {1, 2, . . . , N}, ZM = {1, 2, . . . , M}, and N , M are fixed positive
integers. We will write n = (n, m) ∈ I. Let �2(I) denote the space of all complex-valued
functions

α : I −→C
(
n 	→ α(n)

)
,

with the inner product and norm

〈α,β〉 :=
N∑

n=1

M∑

m=1

α(n, m)β(n, m),

‖α‖2 :=
N∑

n=1

M∑

m=1

∣
∣α(n, m)

∣
∣2, α,β ∈ �2(I).

(2.1)

For y ∈ �2(I), let �n and ∇m be the partial forward and backward difference operators
defined, respectively, by

�nY (n, m) := Y (n + 1, m) – Y (n, , m),

∇nY (n, m) := Y (n, m) – Y (n – 1, , m).

Similarly we define �m and ∇m. Let

� = �n∇n + �m∇m.

Consider the second order partial difference equation

�Y (n) + Q(n)Y (n) = tY (n), n ∈ I, (2.2)
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with the separate-type boundary conditions

⎛

⎜
⎜
⎜
⎝

U11(Y )
U12(Y )
U21(Y )
U22(Y )

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

l h1 0 0 0 0 0 0
0 0 l1 1 0 0 0 0
0 0 0 0 1 h2 0 0
0 0 0 0 0 0 l2 1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y (0, m)
Y (1, m)
Y (N , m)

Y (N + 1, m)
Y (n, 0)
Y (n, 1)
Y (n, M)

Y (n, M + 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.3)

Here hi, li are real numbers, i = 1, 2. The function Q(n) is also a real-valued function de-
fined on I, and t ∈ C is the eigenvalue parameter.

Assuming that Q(n) = q(n)+p(m), and letting Y (n) = y(n)z(m), make problem (2.2)–(2.3)
separable that can be split into two self-adjoint Sturm–Liouville problems with separate-
type boundary conditions as follows:

D1y = �n∇ny(n) + q(n)y(n) = λy(n),

U11(y) = y(0) + h1y(1) = 0,

U12(y) = y(N + 1) + l1y(N) = 0,

(2.4)

D2z = �m∇mz(m) + p(m)z(n) = μz(m),

U21(z) = z(0) + h2z(1) = 0,

U22(z) = z(N + 1) + l2z(N) = 0,

(2.5)

where λ + μ = t. Let φ(n,λ) be the solution of D1y = λy uniquely determined by the initial
conditions

φ(0,λ) = –h1, φ(1,λ) = 1, λ ∈C,

and ψ(m,μ) be the solution of D2y = λy uniquely determined by the initial conditions

ψ(0,μ) = –h2, ψ(1,μ) = 1, μ ∈C.

Thus [16], both φ(n,λ) and ψ(m,μ) are, respectively, polynomials in λ and μ of degree
n – 1 and m – 1. Noting that

U11(φ) = 0, U21(ψ) = 0, (2.6)

the eigenvalues of (2.4) and (2.5) are the zeros of the equations

U12(φ) = 0, U22(ψ) = 0, (2.7)

Following the theory developed in [16], the eigenvalues of (2.4) and (2.5) are real distinct
and they form the sets

{λk}N
k=1, {μl}M

l=1 ⊂R, (2.8)
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respectively. Denote the sets of corresponding eigenvectors by

{
φk(n) = φ(n,λk)

}N
k=1,

{
ψl(m) = ψ(m,μl)

}M
l=1. (2.9)

Therefore, a solution of (2.2) is


(n,λ,μ) = 
(n, m,λ,μ) = φ(n,λ)ψ(m,μ), 1 ≤ k ≤ N , 1 ≤ l ≤ M,λ,μ ∈C. (2.10)

We also conclude that problem (2.2)–(2.3) has the set of eigenvalues

tkl = λk + μl, 1 ≤ k ≤ N , 1 ≤ l ≤ M, (2.11)

with the corresponding real-valued eigenvectors


kl(n, m) = 
(n, m,λk ,μl) = φk(n)ψl(m), 1 ≤ k ≤ N , 1 ≤ l ≤ M. (2.12)

Unlike the case of the one-dimensional problems, the eigenvalues are not necessarily
simple. In fact, for all λk , μl eigenvalues of the problem (2.4) and (2.5), respectively, λk +
μl = t; is fixed, then t is an eigenvalue of (2.2)–(2.3) corresponding to all eigenfunctions of
the form 
kl(n, m). Hence, the set of eigenvalues of (2.2)–(2.3) can be listed as {tK }N×M

K=1 ,
where an eigenvalues is repeated according to its (geometric) multiplicity. Note that the
eigenvalues (2.11) are real and the eigenvectors (2.12) are real-valued functions.

Lemma 2.1 The eigenvectors (2.12) form an orthogonal basis of �2(I).

Proof Since all eigenvalues of each of the problems (2.4) and (2.5) are simple, then [16]
their eigenvectors {φk(n)}N

k=1, {ψl(m)}M
l=1, construct orthogonal bases in �2(ZN ), �2(ZM),

respectively. Hence, the eigenvectors of (2.2)–(2.3); {
kl(n, m)}N ,M
k=1,l=1, are also orthogonal

in �2(I). We have

〈
kl,
k′l′ 〉 =
N∑

n=1

M∑

m=1


kl(n, m)
k′l′ (n, m)

=
N∑

n=1

φk(n)φk′ (n)
M∑

m=1

ψl(m)ψl′ (m)

= ‖φk‖2‖ψl‖2δkk′δll′ .

Since �2(I) has dimension NM, the set {
kl}N ,M
k=1,l=1 is an orthogonal basis of �2(I). �

In the following lemma, we prove that (2.11) and (2.12) are the only eigenvalues and
eigenvectors of problem (2.2)–(2.3), which is a discrete counterpart of the classical result
of [22, p. 114].

Lemma 2.2 The function (2.10) generates all eigenvectors of the problem (2.2)–(2.3).



Hassan Advances in Difference Equations        (2021) 2021:206 Page 6 of 14

Proof Assume that θ (n,λ) and χ (m,μ) are normalized functions corresponding to φ(n,λ)
and ψ(m,μ), respectively. Thus, {θk(n) = θ (n,λk)}N

k=1 is an orthonormal basis in �2(ZN ),
and {χl(m) = χ (m,μl)}M

l=1 is an orthonormal basis in �2(ZM). Therefore,

�kl(n) = �kl(n, m) = θk(n)χl(m), 1 ≤ k ≤ N , 1 ≤ l ≤ M,

is an orthonormal basis in �2(I). Let f (n, m) ∈ �2(I). Hence, for each m ∈ ZM , we define

ζk(m) =
N∑

n=1

f (n, m)θk(n).

Thus, {ζk(n)}N
k=1 are merely the Fourier coefficients of the functions f (n, m) ∈ �2(ZN ) for

each fixed m ∈ ZM . Parseval’s relation, cf. [17, p. 170], related to the problem (2.4), yields

N∑

n=1

∣
∣f (n, m)

∣
∣2 =

N∑

k=1

∣
∣ζk(m)

∣
∣2. (2.13)

On the other hand, and in similar manner, if

ck,l =
M∑

m=1

ζk(m)χl(m) =
M∑

m=1

N∑

n=1

f (n, m)�kl(n, m), (2.14)

then Parseval’s relation leads us to

M∑

m=1

∣
∣ζk(m)

∣
∣2 =

M∑

l=1

|ck,l|2. (2.15)

From (2.13) and (2.15), we get

M∑

m=1

N∑

n=1

∣
∣f (n, m)

∣
∣2 =

M∑

m=1

N∑

k=1

∣
∣ζk(m)

∣
∣2 =

M∑

l=1

N∑

k=1

|ck,l|2. (2.16)

If f (n, m) is a different eigenvector of (2.2)–(2.3), then, by orthogonality of eigenvectors and
Eq. (2.14), this implies that ck,l = 0, 1 ≤ k ≤ N , 1 ≤ l ≤ M. Thus, f (n, m) ≡ 0, (n, m) ∈ �2(I),
which contradicts the assumption that f (n, m) is an eigenvector. �

It is worthwhile to mention that the theory outlined above is a discrete counterpart of
Dirichlet boundary-value problem with additive potential; see [5, 24] for the treatment of
the associated sampling theorems.

3 Construction of Green’s function
In this section we construct Green’s function associated with the eigenvalue problem
(2.2)–(2.3).

Theorem 3.1 The Green’s function of the problem (2.2)–(2.3) is

G(n, j, t) =
N∑

k=1

M∑

l=1

�kl(n)�kl(j)
λk + μl – t

, j = (j, i). (3.1)
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Proof To get Green’s function of the problem, we seek a solution of the equation

�y(n) +
(
q(n) – t

)
y(n) = f (n), n ∈ I, f ∈ �2(I), (3.2)

with the boundary conditions (2.3). Since f is an �2(I) function, it has the Fourier expansion

f (n, m) =
N∑

k=1

M∑

l=1

bkl�kl(n),

where

bkl =
N∑

j=1

M∑

i=1

f (j, i)�kl(j).

Let y(n) = y(n, t) be a solution of (3.2) with (2.3). Then it has the expansion

y(n, t) =
N∑

k=1

M∑

l=1

Bkl�kl(n).

Then (3.2) is satisfied if

Bkl =
bkl

λk + μl – t
.

Therefore,

y(n, t) =
N∑

k=1

M∑

l=1

bkl

λk + μl – t
�kl(n)

=
N∑

k=1

M∑

l=1

N∑

j=1

M∑

i=1

�kl(n)�kl(j)
λk + μl – t

f (j, i)

=
N∑

j=1

M∑

i=1

G(n, j, t)f (j).

Then (3.1) is approved. �

The classical multidimensional Green’s functions may be encountered in [22].

4 Sampling theorems
This section involves the sampling theorems of this paper. We start with introducing a
2-D Kramer-type sampling theorem. Assume that

K : I×C
2 −→ C

(
(n,λ,μ) 	→ K(n,λ,μ)

)
,

for any (λ,μ), K(n,λ,μ) ∈ �2(I), and that there exists a set of points

{
(λk ,μl), 1 ≤ k ≤ N , 1 ≤ l ≤ M

} ⊂C,
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such that {K(n,λk ,μl)} is a complete orthogonal set in �2(I). The following theorem gives
a two-dimensional discrete version of Kramer’s sampling theorem.

Theorem 4.1 The discrete transform

F(λ,μ) =
N∑

n=1

M∑

m=1

f (n)K(n,λ,μ), f ∈ �2(I), (4.1)

has the sampling expansion

F(λ,μ) =
N∑

k=1

M∑

l=1

F(λk ,μl)
∑N

n=1
∑M

m=1 K(n,λ,μ)K(n,λk ,μl)
‖K(·,λk ,μl)‖2 . (4.2)

The proof is by applying Parseval’s relation to (4.1); cf. [17, p. 175]. In the following we
will show that the kernel K(n,λ,μ) can arise from solutions of partial difference equations.

We give two sampling theorems associated with the problem (2.2)–(2.3). In the first
theorem we take the kernel K(n,λ,μ) of the discrete transform (4.1) as the solution (2.10);

(n,λ,μ), of the problem (2.2)–(2.3), while Green’s function is involved in the kernel of
the second one. Then the sampling expansions (4.2) will be two-dimensional and one-
dimensional Lagrange-type interpolations, respectively, as we will see.

Theorem 4.2 The discrete transform

F(λ,μ) =
N∑

n1

M∑

m=1

f (n)
(n,λ,μ), f ∈ �2(I), (4.3)

has the sampling expansion

F(λ,μ) =
N∑

k=1

M∑

l=1

F(λk ,μl)
G(λ)H(μ)

(λ – λk)(μ – μl)G′(λk)H ′(μl)

=
N∑

k=1

M∑

l=1

F(λk ,μl)
K(λ)L(μ)

(λ – λk)(μ – μl)K ′(λk)L′(μl)
,

(4.4)

where G(λ) = U12(φ), H(μ) = U22(ψ), and K(λ) =
∏N

k=1(λ – λk), L(μ) =
∏M

l=1(μ – μl).

Proof Using Theorem 4.1, we obtain

F(λ,μ) =
N∑

k=1

M∑

l=1

F(λk ,μl)
∑N

n=1
∑M

m=1 
(n,λ,μ)
(n,λk ,μl)
‖
kl(·)‖2 . (4.5)

Since φ(n,λ) satisfies the first relation of (2.6), it satisfies Green’s formula [16, p. 13];

φ(N + 1, s)φ(N , u) – φ(N , s)φ(N + 1, u) = (s – u)
N∑

n=1

φ(n, s)φ(n, u), s, u ∈C. (4.6)
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Moreover, since φk(n) is an eigenfunction of (2.4), it satisfies the boundary conditions.
Then φk(N + 1) = –l1φk(N). Thus, for s = λ, u = λk , (4.6) leads to

N∑

n=1

φ(n,λ)φk(n) =
φk(N)
λ – λk

[
φ(N + 1,λ) + l1φ(N ,λ)

]

=
φk(N)
λ – λk

G(λ).

Similarly,

M∑

m=1

ψ(m,μ)ψl(m) =
ψl(M)
μ – μl

H(μ).

Therefore,

N∑

n=1

M∑

m=1


(n,λ,μ)
(n,λk ,μl) =

( N∑

n=1

φ(n,λ)φk(n)

)( M∑

m=1

ψ(m,μ)ψl(m)

)

= φk(N)ψl(M)
G(λ)H(μ)

(λ – λk)(μ – μl)
.

(4.7)

Letting λ → λk , μ → μl , then (4.7) implies

∥
∥
kl(·)

∥
∥2 = φk(N)ψl(M)G′(λk)H ′(μl). (4.8)

Combining Eqs. (4.5), (4.7) and (4.8), we obtain

F(λ,μ) =
N∑

k=1

M∑

l=1

F(λk ,μl)
G(λ)H(μ)

(λ – λk)(μ – μl)G′(λk)H ′(μl)
. (4.9)

Since G(λ) and H(μ) are polynomials in λ and μ of degrees N and M with different zeros
at {λk}N

k=1 and {μl}M
l=1, respectively,

G(λ) = c1

N∏

k=1

(λ – λk) = c1K(λ), H(μ) = c2

M∏

l=1

(μ – μl) = c2L(μ),

where c1, c2 are nonzero constants. Because of G(λ)/G′
i(λk) = K(λ)/K ′(λk) and H(μ)/

H ′(μl) = L(μ)/L′(μl), then Eq. (4.9) reduces to (4.4). �

Equation (4.4) is a two-dimensional Lagrange interpolation formula, cf. [20, p. 166], [8,
p. 39], where the fundamental polynomials are multiplications of one-dimensional ones.
In the following theorem, where the kernel is the Green’s function, we obtain a one-
dimensional Lagrange interpolation representation and the fundamental polynomial is
determined by a polynomial containing both of the sampled values.
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Assume that the different eigenvalues of the problem (2.2)–(2.3) are {λk +μl}s1,s2
k=1,l=1. Since

the Green’s function (3.1) has simple poles at the eigenvalues, the function

�(n, t) = P(t)G(n, j0, t), P(t) =
s1∏

k=1

s2∏

l=1

(t – λk – μl), (4.10)

is an entire function as a function in t, where j0 ∈ I is fixed.

Theorem 4.3 For the discrete transform

H(t) =
N∑

n=1

M∑

m=1

h(n)�(n, t), h ∈ �2(I), (4.11)

we have the sampling expansion

H(t) =
s1∑

k=1

s2∑

l=1

H(λk + μl)
P(t)

(t – λk – μl)P′(λk + μl)
. (4.12)

Proof If the multiplicity of the eigenvalue λk + μl is νkl , with corresponding normalized
eigenvectors {�i

kl(n)}νkl
i=1, then (3.1) will be rewritten as

G(n, j, t) =
s1∑

k=1

s2∑

l=1

νkl∑

i=1

�i
kl(n)�i

kl(j)
λk + μl – t

. (4.13)

Applying Parseval’s relation to (4.11), cf. [17, p. 175], we have

H(t) =
〈
�(·, t), h(·)〉 =

s1∑

k=1

s2∑

l=1

νkl∑

i=1

〈
�(·, t),�i

kl(·)
〉〈
�i

kl(·), h(·)〉. (4.14)

By the orthogonality property, we get

〈
�(·, t),�i

kl(·)
〉

= P(t)
s1∑

k′=1

s2∑

l′=1

νk′ l′∑

i′=1

�i′
k′l′ (j0)

λk′ + μl′ – t

N∑

n=1

M∑

m=1

�i′
k′l′ (n)�i

kl(n)

= P(t)
�i

kl(j0)
λk + μl – t

.

(4.15)

Also,

H(λk + μl) = lim
t→λk +μl

〈
�(·, t), h(·)〉

= lim
t→λk +μl

(

P(t)
s1∑

k′=1

s2∑

l′=1

νk′ l′∑

i′=1

�i′
k′l′ (j0)

λk′ + μl′ – t
〈
�i′

k′l′ (·), h(·)〉
)

= –P′(λk + μl)
νkl∑

i=1

�i
kl(j0)

〈
�i

kl(·), h(·)〉.

(4.16)

Substituting from (4.15) in (4.14), then using (4.16), one obtains (4.12). �
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Example 4.4 Consider the boundary value problem

�Y (n) + 4Y (n) = tY (n), n ∈ I, (4.17)

with the boundary conditions

Y (0, m) = 0, Y (N + 1, m) = 0, y(n, 0) = 0, Y (n, M + 1) = 0. (4.18)

This problem is separable into

y(n + 1) + y(n – 1) = λy(n), y(0) = 0, y(N + 1) = 0, n ∈ ZN ,

z(m + 1) + z(m – 1) = μz(m), z(0) = 0, z(M + 1) = 0, m ∈ ZM,
(4.19)

where t = λ + μ. The solution of the first problem of (4.19) under the condition y(0) = 0 is

y(n) =

⎧
⎨

⎩

sin nσ
sinσ

, cosσ = λ
2 , | λ

2 | ≤ 1,
sinh nω
sinhω

, coshω = | λ
2 |, | λ

2 | > 1.

The first case of y(n) generates all eigenvalues and eigenvectors of the first problem of
(4.19), so we will consider only the case |λ| ≤ 2. Let φ(n,λ) = sin nσ

sinσ
, then the eigenvalues

of the first problem of (4.19) are the zeros of φ(N + 1,λ) = 0, which gives σk = kπ/(N + 1),
then the eigenvalues and the eigenvectors are

λk = 2 cos
kπ

N + 1
, φk(n) =

sin knπ
N+1

sin kπ
N+1

, k = 1, 2, . . . , N .

The other values of k lead to the same eigenvalues. Similarly for the second problem of
(4.19) we have

μl = 2 cos
lπ

M + 1
, ψl(m) =

sin lmπ
M+1

sin lπ
M+1

, l = 1, 2, . . . , M.

Here we have

G(λ) =
sin((N + 1) cos–1 λ

2 )
sin(cos–1 λ

2 )
, G′(λk) =

N + 1
2

(–1)k+1

sin2( kπ
N+1 )

.

Also

H(μ) =
sin((M + 1) cos–1 μ

2 )
sin(cos–1 μ

2 )
, H ′(μk) =

M + 1
2

(–1)l+1

sin2( lπ
M+1 )

.

Thus, for the transform

F(λ,μ) =
N∑

n=1

M∑

m=1

f (n, m)
sin(n cos–1 λ

2 )
sin(cos–1 λ

2 )
sin(m cos–1 μ

2 )
sin(cos–1 μ

2 )
, f ∈ �2(I),
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has the expansion

F(λ,μ) =
4

(N + 1)(M + 1)

N∑

k=1

M∑

l=1

(–1)k+lF
(

2 cos
kπ

N + 1
, 2 cos

lπ
M + 1

)

× sin((N + 1) cos–1 λ
2 ) sin2( kπ

N+1 )
(λ – 2 cos kπ

N+1 ) sin(cos–1 λ
2 )

sin((M + 1) cos–1 μ

2 ) sin2( lπ
M+1 )

(μ – 2 cos lπ
M+1 ) sin(cos–1 μ

2 )
.

Example 4.5 Consider the partial difference problem (4.17) with the boundary conditions

Y (0, m) – Y (1, m) = 0, Y (N + 1, m) = 0,

Y (n, 0) + Y (n, 1) = 0, Y (n, M + 1) = 0,
(4.20)

which is separable into

y(n + 1) + y(n – 1) = λy(n), y(0) – y(1) = 0, y(N + 1) = 0, n ∈ ZN ,

z(m + 1) + z(m – 1) = μz(m), z(0) + z(1) = 0, z(M + 1) = 0, m ∈ ZM,
(4.21)

t = λ + μ. The solutions which generate all the eigenfunctions of (4.21), according to the
notations of Sect. 2, are

φ(n,λ) =
cos(n – 1

2 )σ
cos σ

2
, ψ(n,λ) =

sin(n – 1
2 )η

sin η

2
,

where cosσ = λ
2 , cosη = μ

2 . The zeros of φ(N + 1,λ) = 0, ψ(M + 1,λ) = 0, give σk = (2k–1)π
2N+1

and ηl = 2lπ
2M+1 . Then the eigenvalues and the eigenvectors are

λk = 2 cos
(2k – 1)π

2N + 1
, φk(n) =

cos
(n– 1

2 )(2k–1)π
2N+1

cos (2k–1)π
2(2N+1)

, k = 1, 2, . . . , N ,

μl = 2 cos
2lπ

2M + 1
, ψl(m) =

sin
2(m– 1

2 )lπ
2M+1

sin 2lπ
2(2M+1)

, l = 1, 2, . . . , M.

Here we have

G(λ) =
cos((N + 1

2 ) cos–1 λ
2 )

cos( cos–1 λ
2

2 )
, G′(λl) =

N + 1
2

2
(–1)k–1

cos (2k–1)π
4N+2 sin (2k–1)π

2N+1

,

H(μ) =
sin((M + 1

2 ) cos–1 μ

2 )

sin( cos–1 μ
2

2 )
, H ′(μl) =

M + 1
2

2
(–1)l–1

sin 2lπ
4M+2 sin 2lπ

2M+1
.

If f ∈ �2(I), then the transform

F(λ,μ) =
N∑

n=1

M∑

m=1

f (n, m)
cos((n – 1

2 ) cos–1 λ
2 )

cos( cos–1 λ
2

2 )

sin((m – 1
2 ) cos–1 μ

2 )

sin( cos–1 μ
2

2 )
,
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has the expansion

F(λ,μ)

= 4
N∑

k=1

M∑

k=1

(–1)k+lF
(

2 cos
(2k – 1)π

2N + 1
, 2 cos

2lπ
2M + 1

)

× cos((N + 1
2 ) cos–1 λ

2 ) cos (2k–1)π
4N+2 sin (2k–1)π

2N+1

(N + 1
2 )(λ – 2 cos (2k–1)π

2N+1 ) cos( cos–1 λ
2

2 )

sin((M + 1
2 ) cos–1 μ

2 ) sin 2lπ
4M+2 sin 2lπ

2M+1

(M + 1
2 )(λ – 2 cos 2lπ

2M+1 ) sin( cos–1 μ
2

2 )
.
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