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Abstract

This article proposes new strategies for solving two-point Fractional order Nonlinear
Boundary Value Problems (FNBVPs) with Robin Boundary Conditions (RBCs). In the
new numerical schemes, a two-point FNBVP is transformed into a system of Fractional
order Initial Value Problems (FIVPs) with unknown Initial Conditions (ICs). To
approximate ICs in the system of FIVPs, we develop nonlinear shooting methods
based on Newton's method and Halley’s method using the RBC at the right end point.
To deal with FIVPs in a system, we mainly employ High-order Predictor-Corrector
Methods (HPCMs) with linear interpolation and quadratic interpolation (Nguyen and
Jang in Fract. Calc. Appl. Anal. 20(2):447-476, 2017) into Volterra integral equations
which are equivalent to FIVPs. The advantage of the proposed schemes with HPCMs
is that even though they are designed for solving two-point FNBVPs, they can handle
both linear and nonlinear two-point Fractional order Boundary Value Problems
(FBVPs) with RBCs and have uniform convergence rates of HPCMs, O(h?) and O(h*) for
shooting techniques with Newton's method and Halley's method, respectively.

A variety of numerical examples are demonstrated to confirm the effectiveness and
performance of the proposed schemes. Also we compare the accuracy and
performance of our schemes with another method.

Keywords: Caputo fractional derivative; Nonlinear shooting method;
Predictor-corrector scheme; Robin boundary condition

1 Introduction

Fractional calculus has proven to describe many phenomena in science and engineer-
ing more accurately than integer-order calculus because of the nonlocal property of the
fractional derivative [2—7]. Many authors have introduced numerical methods for solving
fractional differential equations arising in science and engineering. The authors in Refs.
[8, 9] proposed a computational algorithm based on reproducing kernel Hilbert space
for solving time-fractional partial differential equations in porous media and nonlinear
homogeneous and nonhomogeneous time-fractional equations. In Ref. [10], a numerical
method based on multiple fractional power series solution was introduced to deal with the
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Schrédinger equation. The authors in Refs. [11-14] proposed several numerical methods
based on collocation method, finite difference method, and L1 approximation for solving
time-fractional diffusion equations. Regarding Fractional order Boundary Value Problems
(FBVPs), Ref. [15] (and the references therein) investigated a Caputo fractional hybrid two-
point boundary value problem describing the thermostat models. In Ref. [16], the authors
studied a fractional-order nonlocal continuum model of a Euler—Bernoulli beam whose
governing equation is described as a FBVP, using the fractional finite element model.

Recently, the authors in Ref. [17] developed a spectral collocation method to deal with
two-point linear multi-term FBVPs with Caputo fractional operator. In Ref. [18], the au-
thors reformulated two-point FBVPs with a Riemann-Liouville fractional operator to a
Volterra integral equation of the second kind and then developed an integral discrete
scheme based on finite difference method.

However, numerical methods for solving FNBVPs with Robin Boundary Conditions
(RBCs) have been paid less attention to and, in this paper, we consider the two-point Frac-
tional order Nonlinear Boundary Value Problem (FNBVP) with RBCs:

DZ?y(t) = f(t,y,D5'y(t)), te€la,b],
ary(a) + bry'(a) = y1, azy(b) + byy'(b) = y»,

1)
where 0 <oy <1,1<ay <2, a1,a0, 1, ¥2 € R. Di' and Dj? are Caputo fractional differen-
tiations defined as follows.

Definition 1.1 Let @ € R*. The operator J;,, defined on L, [a, b] by

Jey(8) = ﬁ / (t = 1) y(r) dr,

for a <t < b, is called the Riemann—Liouville fractional integral operator of order «.
We set o =0, ]2 = [, the identity operator.

Definition 1.2 let o € R*. The operator D¢ is defined by

t
Dey(t) = DIy (r) = m / (t - )ty *D(z) dx,

where [ ] is the ceiling function and | | is the floor function.

The multi-term Caputo sense FIVP can be transformed into the system of FIVPs by
Theorem 1.1 [19].

Theorem 1.1 Let us consider the following multi-term Caputo sense fractional differential

equation with initial conditions:

Dny(t) = f (¢, y(2), Dg'y(t), DZ*y(8), ..., Dg" ' y(2)),

j j (2)
(@) =3P, j=0,1,..., ),
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where y(a) is the jth derivative at t = a, o, > a1 > -0y >0, a; — iy < 1 for all i =
2,3,...,nand 0 <« < 1. Then we can define B;,

,31 =0,

Bi=o;i—a;i1, i=2,3,...,1.

Then the multi-term fractional differential equation with initial conditions (2) is equivalent

to the following system of fractional differential equations:

DPy,(8) = y2(8),

DRy, (t) = y5(8),

(3a)
Dy, = yu(0),
Daﬂnyﬂ =f(tx)/1,y2, cee 1yn—2ryn—l);
together with the initial conditions:
y(O) ifi =1,
¥ito) = 1yY  ifa . =1€eN, (3b)
0 else,

in the following sense:
1. Whenever the function y € C'*1[a,b) is a solution of the multi-term equation with
initial conditions (2), the vector-valued function Y := (yy,...,y,)" with

y(£) ifi=1,
D y() ifi#1,

is a solution of the system of fractional differential equations (3a) with initial conditions
(3b)

2. Whenever the vector-valued function Y := (y1,..., ¥
multi-order fractional differential equations (3a) with initial conditions (3b), the function

)T is a solution of the system of

y:= 7y is a solution of the multi-term equation with initial conditions (2).

In this paper, we propose new schemes to deal with FNBVPs and the algorithms are
summarized as follows:
1 In the case that 0 < o < 1, we transform the FNBVP (1) with a = 0 into a system of
FIVPs using Theorem 1.1.

In the case of a3 = 1, i.e. the FNBVP (1) has a single term of fractional order oy, we
substitute the integer order oy = 1 with the fractional order @; =1 — ¢, € — 0+ so that
the FNBVP satisfies the assumption, 0 < o; < 1 in Theorem 1.1. First, the Gronwall
inequality for two-term equations in [19] guarantees that the difference between the
solution of FNBVP with «; = 1 and with «; = 1 — ¢ approaches 0 as ¢ — 0+. The
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ENBVP with a3 = 1 — ¢ is transformed into a system of FIVPs and then we reduce the
number of equations in the system. We prove the reduced system is equivalent to the
original system as ¢ — 0+ in Sect. 2.

2 To deal with FIVPs, we adopt high-order predictor—corrector methods (HPCMs)
with linear interpolation and quadratic interpolation [1] into Volterra integral
equations which are equivalent to FIVDPs.

3 ICs of the FIVPs in the system equivalent to (1) are obtained by RBC at ¢ = 0. But ICs
include s := y'(0) and since s is unknown, we approximate s by means of nonlinear
shooting techniques based on Newton’s method and Halley’s method. The error
function |ayy(b,s) + byy' (b, s) — y»| is used to construct the root-finding problem in
order to make the approximate solution to y(¢) satisfy the RBC at t = b.

4 The algorithm of the proposed shooting technique is as follows: The system of FIVPs
is solved with an initial approximation to s, s at the kth iteration. Using the
approximate solution to the system obtained by HPCMs with sy, we find s; by solving
Newton’s (Halley’s) formula. We update the approximate solution to the system with
s1 and measure the norm of the error function. We repeat this process until the norm
of the error function is within the tolerance.

Similar to our proposed schemes, the authors in Refs. [20, 21] introduced numerical meth-
ods for solving FBVPs with RBCs. In Refs. [20, 21], the FBVP with RBCs is turned into
the FIVP by using a shooting method with a guess for the unknown IC y(0) and then the
FIVP is transformed into the Volterra integral equation. The integral-differential term in
the Volterra integral equation is approximated by an integral discretization scheme with
constant and first-order interpolating polynomials in paper [20] and [21], respectively.
However, the integral discretization schemes can only handle linear FBVPs and the rate
of convergence depends on the fractional order «. This is elaborately addressed in Sect. 4.
The main advantages of our proposed schemes are as follows:

1 The proposed schemes can handle both linear and nonlinear FBVPs with general
RBCs.

2 Our proposed schemes can deal with multi-term FBVPs where 0 < o; < 1 and
l<ay<2.

3 Our proposed methods with HPCMs have uniform convergence rates O(h?) and
O(K3) for shooting techniques based on Newton’s method and Halley’s method,
respectively, with enough iterations, regardless of fractional orders thanks to the
global error estimates of HPCMs in [1].

4 1t is not required to solve a matrix system as Newton’s method and Halley’s method
are applied into a system of FIVPs.

This article is organized as follows. In Sect. 2, we describe an idea about the transfor-
mation of FNBVP with RBCs (1) into a system of FIVPs. In Sect. 3, we describe nonlin-
ear shooting methods based on Newton’s method and Halley’s method, to approximate
unknown IC s := y(0) of FIVPs in the system. Also, we briefly mention how to apply the
HPCMs into a system of FIVPs in Sect. 3. In Sect. 4, we demonstrate numerical examples
verifying that the proposed shooting techniques combined with HPCMs guarantee the
global convergence rates of HPCMs. We also confirm the performance and effectiveness
of the proposed methods by comparing with the modified integral discretization scheme

in Ref. [21]. A conclusion will be given in Sect. 5. Finally tables of numerical results and
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the linear explicit method which is an alternative method for solving FIVPs are described

in the Appendix.

2 Problem formulation
In this section, we describe how to transform the FNBVP with RBCs (1) into a system of
FIVPs according to the value of «;. Basically, we apply Theorem 1.1 with §; := oy, B :=
1-oy, B3 := @y — 1 to the FNBVP in the case of 0 < a3 < 1. If o is equal to 1, then we replace
a3 with1—¢€,€ — 0+ and set B; :=1—¢, By :=¢€, B3 := oy — 1. We reduce the size of system
using the fact 8, — 0+.

Casel:0<a; <1
First, we consider a FNBVP with Dirichlet boundary conditions as follows:

Dy y(8) = f(£,5(2), Dy y(t)), £ <€[0,b]
¥0) =50,  y(b) =yp.

(4)

Applying Theorem 1.1 with B; := a1, B2 := 1 — o1, B3 := @ — 1, the ENBVP with Dirichlet
boundary conditions (4) can be transformed as follows:

Dy'y(t) = wt), ¥(0) = y0,y(]) =y,
Dy w(?) = 2(2), w(0) =0, ()
DL 2(t) = f(t,y(8), w(t)), 2(0) = yD(0).

From the system of fractional differential equations (5), we obtain the following system of
FIVPs:

D' y(t) = w(t), 5(0) = yo,
Dy M w(t) = 2(8), w(0) =0, (6)
DG () =f (6,90, (D), 2(0) =5,

where the IC s is unknown and so needs to be approximated.

Similar to the case of Dirichlet boundary conditions, the FNBVP with RBCs (1) can be

written as follows:

DS y(e) = wld), »(0) = yo = 1211
DY w(e) = 2(8), w(0) = 0 @)
D7 2(t) = £ (6,30, w(e),  2(0) =s.

Case 2: a1 =1
We consider the following FBVP with Dirichlet boundary conditions:

D?y(t) =f(t,y(2),y' (1), t€][0,b],
¥(0) = yo, (D) = yp,

®)

where 1 < a3 < 2, oy € R. Since the fractional differential equation in (8) does not satisfy
the assumption, 0 < o; < 1 in Theorem 1.1, we cannot apply the strategy used in (4) to
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(8). So we modify the equation in (8) to meet the assumption, with the same boundary
conditions as in (8) as follows:

D*y(t) = f(£,5(8), Dy y(t)), t<[0,b],
¥(0) = yo, (D) = yp,

)

where o, € (1,2), € — 0+. By Lemma 2.1, solutions of the two FBVPs (8) and (9) are ap-

proximately equal and the absolute error depends on €.

Lemma 2.1 (First Gronwall inequality for two-term equations in [19]) Let ay > 0 and

ay,0; € (0,00) be chosen so that the equation
Dy?y(t) = f (,5(2), DG y(t)),
subject to the initial conditions
YO =30 3O =y ., SO =y
and
Dz(t) = f (£,2(0), DS 2(2))
subject to the same initial conditions
20) =y,  ZD0)=y5, ..., Zl2D) =y

(where f satisfies a Lipschitz condition in its second and third arguments on a suitable
domain) has unique continuous solutions y,z : [0, T] — R. We assume further that | o] =
Loty |. Then there exist constants Ky and K, such that

9(8) - 2(8)| < Kilon — 61 |Eq, (K2 T*?), Vi€ [0,T],
where E,,, denotes the Mittag-Leffler function of order a,,.

Applying Theorem 1.1 to (9), we obtain the following system of FIVPs:

D(l)_gy(t) = W(t)’ J’(O) =Jo,
Diw(t) = 2(¢), w(0) =0, (10)
DE2(0) = £, (0, (D), 2(0) = .

Now, we show that the system of FIVPs (10) is equivalent to the following system as € — 0
using Lemmas 2.2 through 2.4 and Theorem 2.1:

Dy5(t) = Z(8), 5(0) = yo,

ol o ~ (11)
Dy* " z(t) = f (&, 5(),2(2)),  Z(0) =s.

Page 6 of 35
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Lemma 2.2 (Theorem 2.10 in [19]) Let f € Cla, b] and o > 0. Moreover, assume that oy
is a sequence of positive numbers such that oy — o as k — 0o. Then, for every § > 0,

lim sup |]"’<f(t) Jf(0)] =0

k—00 te[a+8,b]

Lemma 2.3 (Lemma 6.19in [19]) Let«, T, ¢1, > € R*. Moreover, assume that § : [0, T] —

R is a continuous function satisfying the inequality

[8(2)] §¢1+%/0t(t—r)"‘_1|3(t)|dr, vt e [0, T].
Then
8(t)| < ¢1Ea(#2£%), VEe[0, T

Lemma 2.4 LetO<y <« < f. Then, forany t € [a,b],

ey Iy t)y_[ﬁ( g LW

B-v (v
@ F(/3)( —a) ]/a}y(t)l.

Proof By Definition 1.1,

i) 110 = s [ -0 ol (oY) dr
F(la (t )@ y(r) dr
+ %ﬂ) / t(t — )7 By (1) ds.
Then
exty - s20] < 2L [ e oyt e
(b-a)f a)’s‘

/(t )~ 1|y(t)|d1:
S[M(b—a)“” F(V)( —a)f- y:|

f(t )7~ 1|y t){dr

M r6) r)
I'(y) ay , 0 e y} y
<[ 6-ar + L2 - 0 e 0

Theorem 2.1 Let1<ay <2,"T € R* andf : [0, T] x R x R — R satisfies the Lipschiz con-
dition in its second and third arguments on a suitable domain. Then we have the following
inequality:

[f (& x1,51) = f(t:%2,92)| < L(1%2 — 1] + [y2 = 311),

where "t € [0, T, x1,%2, 91,92 : [0, T] > Rand 0 < L.
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If, for any 0 < € K 1, § and y are solutions of the following systems, respectively:

Déiej\/(t) = W(t)» J’(O) =JYo,
Diw(t) = z(¢), w(0) =0,
D7l 2(t) = f(6,5(8), w(),  2(0) =s,

and

Dy 5(t) = Z(t), 5(0) = o,
D> 'E(e) = f(5,5(8), 2(2),  2(0) =5,

then
|5/(t) —5/(t)| —0, ase—0.

Proof By Lemma 6.2 in [19], FIVPs D} 3(¢) = w(t), ¥(0) = yo, and D§¥(£) = z(¢), 7(0) = yo
are equivalent to Volterra integral equations of the second kind, respectively, as follows:

JE)=yo +Jo~wlt), () =yo+ 5 ).

Then %(£) — ¥(¢) can be expressed as a Riemann-Liouville fractional integral of w(¢) — z(¢)
as follows:

§(®) = 3(8) = Jo~ (w(t) - 2(2)). (12)

Since w(t) = J¢z(t) by Lemma 6.2 in [19] and rewriting w(t) — z(t) as w(t) — J§z(t) + J§z(t) —
z(t), we obtain the following inequality:

w(t) - 2(0)| < J5 |2(8) - 2(8)| + |J52(8) - 2(0)]. (13)

Since D3> 2(t) = £ (¢,(£), w(t)) and D> '%(t) = f (¢, 7(t), Z(t)) are equivalent to Volterra in-
tegral equations z(¢) = s +J5>~ (£, 7(¢), w(t)) and Z(¢) = s + ]3> £ (¢, 5(), w(t)) by Lemma 6.2
in [19] respectively, using the Lipschitz condition, (12), and (13), we obtain the following
inequalities:
|2(t) = 20| = 5> [£(8.5(8), w(®) - £(£,5(8), 2)) |

< I3 (6,30, w®) - £ (£,5(8),20))|

< (150 - 5(@)] + [w(o) - 2()))

< L5 g~ |wlo) - 20)| + J5|2(0) - 2(0)| (14)

+ |]§2(t) - 2(t)|]. (15)

Since 1 < a3 <2 and I'(az) = (g — 1)['(e2 — 1), we have the following inequalities for

JEH R - 2(8)):

I s 20| = s [ -0 - 20]dr

Page 8 of 35
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Taz—l B
= o 30
ap—1
%H/gz(t) a0 (16)

Similarly, we can obtain the following inequality:

oy —€

T
2—€|rez _ > €7 _ > . 1
I8 izt =20 = o — 5 V620 - 200 (17
Applying the inequality (16) into (14), we have the following inequality:
|2() - 2(t)| < L[]"‘2 Iw(e) - z(0)| + 5> e |2(2) - Z(2)|

e LCElIN a9

Using the inequalities (13) and (17), we have the following inequalities:

Jo> | wle) = 2(6)| < Jo>(Jg |2(6) - 2(0)| + [J52(8) - 2(0) )

<Jo?|2(0) - z(t)|
To2—¢€

P ez (e) -20)] . (19)

Applying the inequality (19) into (18) and using Lemma 2.4 withy =@y -1, =a; -1 +¢,
B = a2, we have the following inequalities:

2(0) - 20) sL[132|z< 30 + ez - 20

—-€+1)

+ ]2 2(t) - 2(0)| +

$2(t) - (1) ||oo]

=L[J§2*1z( 30| + 11 o) - 2(0)

e TN
{ Moy —€+1) * () } ||]()Z(t) -z(t) Hoo:|

ELH Nax—-1) . [(az-1)
[y —1+¢€) I'(cp)

T@2—€ Tozz—l .- _
' {F( * F(Olz)}HJOZ(t) 'Z(”‘)HW]’

}1”2 (e) - 2(0)

ay—€+1)
so that
|2(t) - 2(0)] < LCY>  |2(t) - 2(t)| + LC2||J2(2) - (1) | » (20)
where
1 Tle-1) . T(ap-1) N Te-1

S Tlm-1+6) Tl = T(ap—e+1) Tl
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Applying Lemma 2.3 to inequality (20), we obtain the following inequality:
|2(£) - 2(6)| < LC2||J52(2) - 2(8) || Eap1 [LCE T*>7H].
Therefore,

|5(8) = 3(0)| < Jo ¢ [w(e) - 2(0)|

< Jp|a(e) - 20| + oI5 2(®) - (2)]
< Tlz(t) - 2()| + ———

< TLC|J52(0) = 20)] _Eupa [LCI T

Tl—e B B
*Te o 1/520) - 20|
Tl—e
_ [ncggaz_l[mg 1] m] Ve - 20| .

We have C, = TLC2E,,, 1[LC}T**71] + 1%:) Then
5(6) - 5(8)| < C|J52(0) - 20|
Thus, by Lemma 2.2,

|51(t) —5/(t)| <C, ||]5:2(t) —z(t) HOO —0, ase—0. O

For the FNBVP with RBCs (1), similarly, by Lemma 2.1 and using Theorem 1.1, we obtain

the following FIVDPs:
D§<y(£) = w(e), y(0) = 1zhs,
Dyw(z) = z(t), w(0) =0, (21)

D> 2(t) =f (£, 5(8), w(t),  2(0) =s.

The system (21) can be reduced as follows:

Dy 5(8) = 2(0), 5(0) = 1zhus, )

D' 2(e) = f(6,5(0),2(0), Z(0) =s.

3 Nonlinear shooting methods and high-order predictor-corrector methods
FBVPs have been transformed to systems of FIVPs in Sect. 2. Before we address how to
deal with systems of FIVPs (6), (7), (11), and (22) using High-order Predictor—Corrector
Methods (HPCMs), the unknown IC z(0) = s should be handled first. In this section, we de-
scribe two nonlinear shooting techniques based on Newton’s method and Halley’s method
to approximate s. Both Newton’s formula and Halley’s formula are designed to determine
the solution of a system of FIVPs satisfying the RBC at the right end point of an interval.
Without loss of generality, we consider the system of FIVPs (7) that is equivalent to the
ENBVP with RBCs (1).
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In order that the RBC at the right end point a,y(b) + byy'(b) = y; is involved in approxi-
mating s, we define y(s) := y(s, t)|;- and let the error function be F(s) := ayy(s) + b, a%y(s) -
y2. We approximate the solution of the root-finding problem F(s) = 0 by using Newton’s

method and Halley’s method, respectively. For convenience, we denote

_9g(s,t) _0%g(s,1)
) Gss = T

throughout this section.

3.1 Shooting with Newton’s method
The conventional Newton formula for F(s) = 0 can be expressed as follows:

F(sg)

S k=0,1,2,...,m, (23)
Fs(sk)

Sk+1 = Sk
where m is the maximum number of iterations and

mngw

s=Sp,t=b

(24)

+ hz% [%(5, t)]

ad
= a2a_‘:(sy t)

s=Sp,t=b s=sp,t=b

Observing y,(sx) and y(sk), it turns out that they are equal to % V() |s=5;,=p and
%z(t)lszsk,t:h, respectively, in the system of FIVPs (7). Thus we solve the following sys-
tem obtained from the system of FIVPs (7) by applying the operator & using HPCMs for
each k:

Dglys(t) = Ws(t), ys(o) S _bl/al;
Dy wiy(t) = z(2), w,(0) = 0, (25)
D7 2,(8) = £i(t, 5(8), w(2)),  2(0) = 1.

Since both ¢ and s are independent variables, f;(¢, y(£), w(¢)) can be written as

£(&5@), w®) =f; - y5(8) + £ - wi(2). (26)

The detailed description of HPCMs dealing with a system of FIVPs is in Sect. 3.3. By solv-
ing the system (25), s, in Newton’s formula (23) is computed. Using the updated ap-
proximate value of IC s, si,1, we update approximate solutions of systems of FIVPs (6),
(7), (11), and (22). Repeating this process, we obtain an s; having an acceptable error of

the root-finding problem F(s) = O at an appropriate number of iterations k.

3.2 Shooting with Halley’s method
The conventional Halley formula for F(s) = 0 is as follows:

~ 2F (sg)Fs(sk)
ZFSZ(S]() - F(Sk)Fss(Sk) ’

Sk+l = Sk k=0,1,2,...,m, (27)
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where Fi(s;) is described in (24) and

0°F
Fss(sk) = g(s)

s=sg,t=b

9%y
= ﬂzﬁ(& t)

0% [y
+ bz@ [g(s,t)]

Similar to the way we found y,(sx) and y(sk) in the shooting with Newton’s method, we

s=Sg,t=b s=Sg,t=b

find yg(sk) and zg(sk) by solving the following system of FIVPs obtained by applying the
operator % using HPCMs for each k:

Dglyss(t) = Wss(t)! J’ss(O) =0,
Dzlz_al wss(t) = Zss(t)x WSS(O) = O: (28)
D z,,(8) = fis(&,y(8), (D)), 25(0) = 0.

Since ¢ and s are independent variables, fi(¢, y(£), w(¢)) can be written as

fy : yss(t) +fw : Wss(t) +fyy : _ys(t)2 +fww ° Ws(t)2 +fwy : Ws(t)ys(t)' (29)

3.3 High-order predictor-corrector methods for system of FIVPs

In order to find a s; with an acceptable accuracy, we iteratively solve systems of FIVPs (25)
or (28). Once we find the si, we solve systems of FIVPs (6), (7), (11), or (22). In this subsec-
tion, we describe how to deal with those systems of FIVPs using High-order Predictor—
Corrector Methods (HPCMs) introduced in Ref. [1]. Without loss of generality, we con-
sider the following FIVP:

Dyy(e) =f (& x(2)),  tel0,b], (30)
DY) =¢;, i=0,...,|a].

For convenience, let us denote y; as approximated value of y(¢;) except for yy = o and let

fi=f(,3), ¥; be a corrector of y;, y; be a predictor of y;, and f =f(t;,5)),j = 1,...,N. If

j=0then f; = (0, co). We divide the domain €2 as follows:

Oyi={fjla=to<- - <tj< <ty <tp1<---<ity=Db}

For simplicity, let the step size be uniform, which means ¢,, - ¢ =4,j=0,1,...,N - L.

Then (30) can be rewritten at time £,,,; as follows:

Li1

1 & .
y(twl):g(tmnm; / (b1 = 1) f (1,3(0)) 7, (31)

where g(t,41) = Zlfé Mci. We interpolate f(z,y(t)) using linear or quadratic Lagrange

i!

polynomials over each interval J; = £, £;,1],j = 0,1,...,N — 1. Then we obtain the following

predictor—corrector schemes.
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1 HPCM with linear Lagrange polynomial:

1 n-1 y 2
yf,+1 :g(tn+1) + m [Z(Bni]ﬁ + Bni i*l)
=0
' (32)
+Bi1:l n +B%H}:l n+1:|’
where
t]+1
Bl=; / (bt — 0 L (ty1 - ),
. 1 [Hq
Bfl’-{—l = —Z / (tn+1 — T)ail(tl’ — T)dT,
i
yh 1 = 8(ti1) + Gayp(bus1) + b1 fr + B2, fo (33)
bl l il a-1 d
el = 7 (L1 —T) 7 (tn — 1) dr1,
t
) 1 tnsl L
Ba=—y f (b — 0 (60 — 1),
tn
1 n— 1
Gof(tui) = o) B,)\f, + B}, 1+1)
/:0
2 HPCM with quadratic Lagrange polynomial:
c 1 1,0
Yns1 :g(tn+1) + m An+].f0 +An+]f1/2 +An+]f1
n-1 )
Y (Afa + AL+ A fi) (34)
j=1

1,n 2,n 3,n
A ]f;’l 1+An+ n An+ n+1:|’

where
1,0 2 tjﬂ a-1
A = ﬁ (tus1 — ) (L1 — T)(t1 — T) dT,
i
2,0 4 tjﬂ a-1
A= iR / (tp1 =) (Lo —T)(t — T) dT,
i
30 2 [0 1
A= [ =0 - - 0,
i
L 1 firl a—1
n+l = ﬁ / (tn+1 - T) (tj - T)(tj+1 - 'L') d‘L’,
i
2 1 tjs1

Ay,’+1 = _ﬁ (tm—l - T)ail(tj—l - T)(tj+1 - T) d":;
b
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Lis1
3 1 i+
A ]

== (tus1 — T (o1 - DG - T) dT,
212 ),

P

" .1 is found as follows:

and the predictor

Vo1 = 8(tn) + Guf(tust) + @pyifra + @y ifrt + Aorfor (35)
where
1
Gt = | A1+ 2 A2
n-1
1,/ 2,j 3,/
S A m)}
j=0
1 1 tn+1 1
2a,,, = ﬁ (tns1 — 1) (tye1 — )0 — 1) d1,
tn

tnsl

1
a%H—l = _ﬁ f (tne1 — T)a_l(tn—Z - 1), — 1) dr,

tn
tntl

1
a?H—l = ﬁ /tn (tne1 — T)ail(tn—Z — 7)1 —T)drT.

Remark 3.1 Using the HPCM with linear and quadratic interpolations, we find predictors

C

Yo.1» Wh.1, 2., individually and then find correctors y%,,, W, ,, 25, .

The entire steps of
the proposed schemes are summarized in Appendix B.

The following theorems [1] bound the global error E,,; of the HPCM with linear and
quadratic interpolations, respectively.

Theorem 3.1 (Theorem 2.4 in [1]: Global error of HPCM with linear interpolation) De-
fine E,,1 to be global error. Suppose f (-, ¥(-)) € C?[a, b] and furthermore is Lipschitz contin-

uous in the second argument, then we have
En+1 = |y(tn+1) _5)n+1| < O(hz),
given E; < Ch.

Theorem 3.2 (Theorem 3.4 in [1]: Global error of HPCM with quadratic interpolation)
Suppose f(-,y(-)) € C3|a, b] and is Lipschitz continuous in the second argument, then we
have

En+1 S O(h?))’
given E1,Ey < O(h3) and E1jp < O(h>%),0<a < 1.
4 Numerical examples

In this section, we experimentally illustrate the performance of the proposed schemes. Nu-

merically, we verify that our proposed schemes can deal with more complex FBVPs than

Page 14 of 35
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the integral discretization schemes in [20, 21]. For that purpose, the proposed schemes
are implemented in FNBVPs with 0 < a3 < 1 whose exact solutions are polynomial, expo-
nential, and sine functions in Examples 4.1 through 4.3. We investigate absolute errors in
maximum norm, convergence rates, and absolute values of the approximated error func-
tion |EF(s)| with various values of parameters. We discuss linear FBVPs with o1 = 1 whose
exact solutions have low regularity and high regularity in Examples 4.4 and 4.5, respec-
tively. We compare numerical results obtained by our proposed schemes with the integral
discretization schemes. But we emphasize that our proposed methods can deal with many
different FBVPs unlike the another method in Examples 4.4 and 4.5. Regarding the numer-
ical results shown in the Appendix, let us summarize the parameters used:

« h denotes the size of time sub-interval.

+ 5o denotes the initial approximation of the sequence {si} in proposed shooting
methods.

+ k denotes the number of iterations needed to meet a tolerance in the sequence {sx}
generated by the proposed Newton's method or Halley’s method.

+ m denotes the maximum number of iterations in Newton’s and Halley’s methods.

«+ Tol denotes the tolerance used to measure the error of the approximated error
function |EF(sx)| in Newton’s method and Halley’s method.

+ N denotes the number of time sub-intervals.

+ 77 denotes the approximate solution at ¢; obtained by the proposed shooting
technique based on either Newton’s method or Halley’s method, with HPCM. (%))
denotes the exact solution at #;.

« Max. error denotes the pointwise absolute errors in the maximum norm. (i.e.
max; <j<n [y — y(t)|)

+ E, g(t) denotes the two-parameter function of Mittag-Leffler type [7].

In Examples 4.1 through 4.3, we transform the FNBVP into the system of FIVPs (7) and
so means an initial approximation to y'(0). In Examples 4.4 and 4.5, the linear FBVP is
transformed into the system of FIVPs (22) with € = 1071° and sy means an initial approxi-
mation to y(0). For all examples except for Example 4.4, we implement the shooting tech-
nique based on Newton’s method (Halley’s method) combined with HPCM with linear
(quadratic) interpolation to verify the order of convergence O(h?) (O(h?)), respectively.

Example 4.1 Consider the following double-term FNBVP with RBCs:

rG - rG _
Df)‘zy(t) = r(s(_§2>t4 - F(S(—021)t4 “ - +y2 +D‘(§1y(t),

y0)+y(0)=0,  y(1)+y(1)=5,
where the exact solution is y(¢) = £*.

Example 4.2 Consider the following double-term FNBVP with RBCs:

= = INE)) - I'4) .
D2 y(t) = M2 2E) 3o, (AE) — (A2 2r(3_a2)t2 @y 4 )3 6F(4—a2)t3 )
—A? +y* —tB + Dy y(t),

y(0)+y'(0)=0,  y(1)+y(1)~ 0.2699,
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where
r=1,
A2 A3
A= —(1+at+ =2+ =1,
2 3!

B=A"ME 5 o (M)

— ()\,&tl_al + )\2 F(B) t2—o¢1 + AB F(4) tS_al),
r2-o) 2I'(3 — o) 6 (4— o)

2 3
and the exact solution is y(£) = € — (1 + At + 212 + 5-£7).

Example 4.3 Consider the following double-term FNBVP with RBCs:

DEy(t) = F2 () + gl 1302 4 (sin(t) — £ + )2 - 5

=)
(1) r@) ,1- @) ,3- o1
—F2(t) + oot o _ sra-ant @1 + Dyt y(¢),

¥(0) +y'(0) =0, y(1) + 9/ (1) ~ 4.84399,
where

o 1,.
F)(L )(t) _ _El(l)h)(!—a'\)t(fa'\—a)

. [E[a]—a+l(i)\t) - (—Umﬂ)El,(a]-a+1(—i)~t)],

A=1,

. 3
and the exact solution is y(¢) = sin(At) — £ + %.

In Examples 4.1, 4.2, and 4.3, we observe the following:

1 For all three examples, w(¢), z(2), f(t,y, w) (e.g. Dy y(2), ¥/ (¢), f (¢, v, Dy*¥(t))) belong to
C3[0,1]. By Theorems 3.1 and 3.2, thus, computed convergence profiles are estimated
O(h?) and O(h3) for the HPCM with linear (quadratic) interpolation combined with

shooting technique based on Newton’s (Halley’s) method, respectively.

Table 1 Errors of shooting techniques |F(spm)| in (41) versus the maximum number of iterations with
various values of sg in Example 4.1. We set h=0.01, o¢1 =04, 0 = 1.7

m  Newton's method Halley's method

So = 0.2 So = 04 So = 0.6 So = 0.8 So = 1.0 So = 0.2 So = 04 So = 0.6 So = 0.8 So = 1.0

0604011 1305541 2105771 3.00776 4.017051 0.603191 1304704 2104838 3.006644 4.01565

0.042234 1.48E-01 0.303846 5.05E-01 0.753495 0.054329 1.90E-01 0392297 6.59E-01 0995211
0000274 3.25E-03 0.01249 3.10E-02 0.061341 0.000604 6.84E-03 0.025715 631E-02 0.124161
7.31E-08 7.33E-07 2.17E-05 1.46E-04 0.000578 9.11E-08 824E-06 1.34E-04 0.000813 0.003036
228E-11 229E-10 6.71E-09 4.22E-08 125E-07 258E-11 232E-09 341E-08 856E-08 1.15E-06
711E-15 7.09E-14 210E-12 132E-11 391E-11 622E-15 655E-13 9.64E-12 242E-11 3.26E-10
0 0 8.88E-16 444E-15 107E-14 888E-16 O 266E-15 6.22E-15 9.15E-14
0 0 0 0 1.78E-15 8.88E-16 0 8.88E-16 0 8.88E-16
0 0 0 0 0 8.88E-16 0 8.88E-16 0 8.88E-16
0 0 0 0 0 8.88E-16 0 8.88E-16 0 8.88E-16

O O 00 N0y W=
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Table 2 Pointwise absolute errors in the maximum norm and computed rates of convergence
versus the number of sub-intervals N with so = 0.2, 1.0 for each in Example 4.1. We set oty = 0.4,
ay=1.7,and mis fixed at 10

N

Newton’s method Halley's method
sp=02 so=10 s0=02 so=10
Max. error Rate Max. error Rate Max. error Rate Max. error Rate

10
20
40
80
160
320

1.17E-02 - 1.17E-02 - 1.02E-03 - 1.02E-03 -

5.63E-03 1.059 5.63E-03 1.059 1.83E-04 2486 1.83E-04 2486
1.78E-03 1.665 1.78E-03 1.665 3.63E-05 2.333 3.63E-05 2.332
4.92E-04 1.855 4.92E-04 1.854 5.47E-06 2.730 5.47E-06 2.730
1.29E-04 1.931 1.29E-04 1.931 7.51E-07 2.866 7.51E-07 2.866
3.30E-05 1.966 3.30E-05 1.966 9.88E-08 2925 9.88E-08 2925

Tables 1, 4, 7 show the absolute values of approximated error function (41) at s,, (i.e.
|a@2y5 (Sm) + 225 () — v2]) versus the maximum number of iterations 7 with various
initial values so. y%,(s,x) and z5,(s,,) are computed by using proposed schemes. We set
oy =04, oy =1.7, h = 0.01 in all tables. From numerical results in those tables, we can
verify that the sequence {si} obtained by the proposed shooting algorithms
approaches to the IC s within the error at least 107® when m is at most 10 with

50 =0.2,0.4,0.6,0.8,1.0 for each. This leads us to the conclusion that the proposed
shooting techniques show a good performance with remarkable accuracy regarding to
approximation of the IC s.

Tables 2, 5, 8 show pointwise absolute errors in the maximum norm and convergence
rates computed versus the number of sub-intervals N in the cases of sy = 0.2,1.0 for
each of Newton’s and Halley’s method. We set &3 = 0.4, a5 = 1.7. The sequence {si}
was computed up to s19 so, based on the observation of Tables 1, 4, 7, we see that the
error of the approximated error function |E(s¢)| does not have an effect on the
convergence rate of y; obtained by HPCMs. In Tables 2, 5, 8, we can see that
computed convergence profiles obtained by the proposed schemes approach 2 for
Newton’s method and 3 for Halley’s method as N is increased. Thus numerical results
shown in those tables support that the proposed methods follow global error
estimates of HPCMs.

Proposed methods are tested for a variety of values of o1, @ and numerical results for
each pair of (a3, a3) are shown in Tables 3, 6, 9. For each pair of fractional orders

(or1, ) pointwise absolute errors in the maximum norm, computed convergence
rates, CPU time executed in seconds, and number of iterations k such that

|E(s¢)| < Tol versus the number of sub-intervals N are listed in the tables. The initial
approximation to s was set sp = 0.2 in all three tables. In order to minimize the
number of iterations k, the tolerance was set Tol = 10~ for Newton’s method and

Tol = 107'° for Halley’s method in Table 3, Tol = 10~1° for both shooting techniques in
Table 6, and Tol = 107** for Newton's method and 7ol = 107 for Halley’s method in
Table 9. Numerical results shown in the tables demonstrate that, for all suggested
pairs of fractional orders, rates of convergence approach 2 for Newton’s method, 3 for
Halley’s method that are theoretical convergence rates of HPCMs. In Tables 3 and 9,
we observe that the number of iterations k required to meet the tolerance at (0.9,1.1)
is relatively greater than other pairs of fractional orders for both Newton’s and
Halley’s method.
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Table 4 Errors of shooting techniques [F(sm)] in (41) versus the maximum number of iterations m for
each sg in Example 4.2 as we set a1 =04, ar = 1.7, h=0.01

m  Newton's method Halley's method
So = 02 So= 04 So = 0.6 So = 0.8 So= 1.0 So= 02 So = 04 So = 0.6 So = 0.8 So = 1.0

0414113 0.890547 142639 202066 2674035 0414046 0890413 1426145 2020256 2673415
0.027748 9.51E-02 0.190648 3.11E-01 0456212 003142 1.08E-01 0.219523 3.66E-01 0.549419
0.000177 1.93E-03 0.007068 1.70E-02 0.032652 0.000258 2.80E-03 0.010391 2.54E-02 0.050225
1.51E-08 9.56E-07 120E-05 6.71E-05 0.000243 1.61E-08 2.10E-06 2.89E-05 1.70E-04 0.000646
6.59E-13 4.20E-11 557E-10 3.99E-09 245E-08 1.25E-13 152E-11 133E-12 6.56E-09 1.08E-07
0 1.89E-15 244E-14 1.75BE-13 1.07E-12 555E-17 167E-16 1.11E-16 5.11E-14 840E-13
0 0 0 1.67E-16 5.55E-17 5.55E-17 5.55E-17 555E-17 555E-17
0 0 0 5.55E-17 5.55E-17 555E-17 555E-17 555E-17 0O

0 0 0 0 555E-17 555E-17 555E-17 555E-17 0O

0 0 0 0 5.55E-17 5.55E-17 555E-17 555E-17 0O

O O 00 N0y W N—

o O O O

7 1
7 1
7 1
7 1

Table 5 Pointwise absolute errors in the maximum norm and computed rates of convergence versus
the number of sub-intervals N in Example 4.2 as we set oy =04, o = 1.7, h=0.01,m =10 and no To/

N Newton’s method Halley's method
sp=02 so=10 sp=02 so=10
Max. error Rate Max. error Rate Max. error Rate Max. error Rate
10 1.10E-03 - 1.10E-03 - 5.65E-05 - 5.65E-05 -
20 4.05E-04 1434 4.05E-04 1434 1.71E-05 1.725 1.71E-05 1.725
40 1.19E-04 1.765 1.19E-04 1.765 2.82E-06 2.599 2.82E-06 2.599
80 3.21E-05 1.893 3.21E-05 1.893 3.99E-07 2.824 3.99E-07 2.824
160 8.32E-06 1.949 8.32E-06 1.949 5.29E-08 2913 5.29E-08 2913
320 2.12E-06 1.974 2.12E-06 1.974 6.84E-09 2952 6.84E-09 2.952

5 Figures 1, 2, and 3 illustrate convergence profiles obtained by the proposed methods
with the variety of fractional orders. From the figures, we can see that computed rates
of convergence are nearly O(h?) and O(k®) for the proposed shooting method with
Newton’s and Halley’s schemes, respectively. Figures 4 and 5 display graphs of
pointwise absolute errors versus the time step 4. The approximate solution is
computed by the proposed method with Newton’s method (in Fig. 4) and Halley’s
method (in Fig. 5), respectively.

Example 4.4 Consider the following single-term linear FBVP with RBCs:

Dy?y(t) = o(t) — (2t + 6)y (1)
y(o) - ﬁ)’/(o) =71 y(l) +y,(1) =,

where 1 <oy <2,

_ F(Ol2 + 1) F(20[2) t(

w(t) — az-1) 4 F(4) t(B—OlZ) + F(S) t(4—012)

I " (e T(&—a) F(5-a)

+ (2 +6) (0t + 2y — 1)£27% + 3+ 1267 + 48%),
and the exact solution is y(£) = £%2 + £2%271 4+ 1 + 3¢ + 4¢3 + t* [21].

Since D' y(¢), ¥'(¢), Dy?y(t) do not belong to C3[0, 1], global error estimates of HPCMs
in Theorems 3.1 and 3.2 cannot be applied to Example 4.4. Alternatively, we adopt the lin-
ear explicit method described in Appendix A with proposed shooting techniques. In this
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Table 7 Errors of shooting techniques [F(sm)] in (41) versus the maximum number of iterations m
with various initial approximations sg in Example 4.3 as we set a1 =04, oy = 1.7, h=0.01

m  Newton's method Halley's method
So= 02 So = 04 So= 0.6 So = 0.8 So = 1.0 So = 02 So = 04 So = 0.6 So = 0.8 So = 1.0

0487617 0.891569 1.202993 1407814 1485109 0487722 0.891834 1203474 1408578 1.486244
0.101684 3.44E-01 0.653431 9.74E-01 1.258505 0.106265 3.56E-01 0.668984 9.90E-01 1.270771
0.004491 5.07E-02 0.182979 4.14E-01 0.72559 0.005185 5.68E-02 0.199315 4.40E-01 0.757881
1.26E-05 1.14E-03 0.014409 0.073158 0.226095 1.69E-05 1.51E-03 1.80E-02 8.68E-02 0.255888
1.13E-08 1.57E-06 0.000101 0.002343 0.021949 1.54E-08 2.39E-06 1.63E-04 3.48E-03 2.96E-02
1.01E-11 141E-09 949E-08 4.43E-06 0.000225 1.39E-11 2.16E-09 1.59E-07 8.62E-06 422E-04
9.06E-15 1.26E-12 848E-11 397E-09 222E-07 125E-14 195E-12 144E-10 7.82E-09 4.62E-07
6.94E-18 1.12E-15 7.58E-14 355BE-12 1.99E-10 6.94E-18 1.76E-15 1.30E-13 7.06E-12 4.17E-10
0 1.39E-17 6.94E-17 3.16E-15 1.78E-13 6.94E-18 6.94E-18 1.25E-16 6.37E-15 3.77E-13
0 6.94E-18 694E-18 694E-18 1.67E-16 6.94E-18 0 6.94E-18 6.94E-18 333E-16

O O 00 N0y W N—

Table 8 Pointwise absolute errors in the maximum norm and computed rates of convergence
versus the number of sub-intervals N in Example 43 aswe set oy =04, 0 = 1.7, m=10

N Newton’s method Halley's method
50=O.2 So=1.0 So=0.2 So=1.0
Max. error Rate Max. error Rate Max. error Rate Max. error Rate
10 1.73E-04 - 1.73E-04 - 1.19E-05 - 1.19E-05 -
20 6.85E-05 1.338 6.85E-05 1.338 3.97E-06 1.578 3.97E-06 1.578
40 2.07E-05 1727 2.07E-05 1.727 6.62E-07 2.586 6.62E-07 2.586
80 5.63E-06 1.877 5.63E-06 1.877 9.28E-08 2.834 9.28E-08 2.834
160 147E-06 1.942 147E-06 1.942 1.22E-08 2.926 1.22E-08 2.926
320 3.74E-07 1.971 3.74E-07 1.971 1.56E-09 2.966 1.56E-09 2.966

example, we compare the accuracy and convergence rate of the approximate solution ob-
tained by the proposed shooting technique based on Newton’s method with the modified
integral discretization scheme [21] for each oy = 1.1,1.3,1.5,1.7,1.9. In Table 10, we can
observe that our proposed method consumes less CPU time than the modified integral
discretization scheme [21] even though both methods shows the equal performance.

Example 4.5 Consider the following single-term linear FBVP with RBCs:

Dg*y(t) = F(t) - cos(t)y(t) - sin(2)y'(£)
¥0) - =y O =y, Yy +YD) =

whose 1 < @ < 2 and the exact solution is

t3
y(£) = sin(Af) — £ + rx

In Example 4.5, we compare the performance of our proposed methods with the
modified integral discretization scheme [21]. Table 11 shows pointwise absolute errors
and computed convergence profiles versus the number of sub-intervals for each oy =
1.1,1.3,1.5,1.7,1.9. In Table 11, we can see that, for all values of «;, the computed rates
of convergence obtained by the proposed shooting technique based on Halley’s method
combined with third-order HPCM are around 3.0 while the computed rates of conver-

gence obtained by the modified integral discretization scheme [21] are around 2.0.
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@,=0.1, Newton
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Pointwise absolute errors in maximum norm
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Figure 1 Pointwise absolute errors in maximum norm of Example 4.1 versus the time step h when
(0t1,02) =(0.9,1.1),(1.5,0.5),(1.9,0.1). Graphs demonstrate that computed convergence profiles are nearly
O(h?) and O(h3) for Newton's and Halley's method, respectively
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Figure 2 Pointwise absolute errors in maximum norm of Example 4.2 versus the time step h when
(007, 00) =(0.9,1.1),(1.5,0.5),(1.9,0.1). Graphs demonstrate that computed convergence profiles are nearly
O(h?) and O(h?) for Newton's and Halley's method, respectively

The algorithm of the proposed shooting techniques with second-order HPCM requires
less than the number of arithmetic operations needed by the modified integral discretiza-
tion scheme to solve a FBVP with RBCs than the modified integral discretization scheme
[21] because the predictor and corrector in HPCMs share the computation of the memory
effect. As a result the proposed shooting technique based on Newton’s method consumes
less CPU than the modified discretization scheme [21] and the CPU time executed by the
proposed shooting technique based on Halley’s method is approximately equal to the CPU
time executed by the modified integral discretization scheme [21], as shown in Table 11.
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Figure 3 Pointwise absolute errors in maximum norm of Example 4.3 versus the time step h when
(0t1,02) =(0.9,1.1),(1.5,0.5),(1.9,0.1). Graphs demonstrate that computed convergence profiles are nearly
O(h?) and O(h3) for Newton's and Halley's method, respectively

x107
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Figure 4 Pointwise absolute errors in maximum norm obtained by the proposed shooting technique with
Newton's method of Example 4.3 versus the time step h when (a7, ¢02) = (04,1.7), s =0.2, N=320, m= 10

Figure 6 illustrates convergence profiles obtained by the proposed methods and the
modified integral discretization scheme [21] with the variety of fractional orders. From
the graphs, we can see that computed rates of convergence are nearly O(h?) for the pro-
posed shooting method with Newton’s technique and the modified integral discretization
scheme [21], O(h3) for the proposed shooting method with Halley’s scheme, respectively.
Plots exhibited in Figs. 7, 8, 9 display pointwise absolute errors in maximum norm ver-
sus the time step /# and the approximate solution is computed by the modified integral

discretization scheme [21] (in Fig. 7), the proposed shooting technique with Newton’s
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x10°°

Pointwise absolute error in maximum norm

t

Figure 5 Pointwise absolute errors in maximum norm obtained by the proposed shooting technique with
Halley's method of Example 4.3 versus the time step h when (a1, o) = (04,1.7), so =02, N=320,m =10

method (in Fig. 8), the proposed shooting technique with Halley’s method (in Fig. 9), re-

spectively.
Example 4.6 Consider the following single-term linear FBVP with RBCs:

Dgy(¢) +2y/(¢) + 3y(t) = 1.25,
¥(0) — —2=y'(0)=0.4,  y(1)=17,

ay—1
where 1 < oy < 2.

The exact solution of Example 4.6 is unknown so we alter the measure to estimate the
errors employing the uniform two-mesh differences and orders of convergence introduced
in [22]:

c c
ey = max |y: — Vs;
1§j§N|yI y2]

’

where y5; denotes the approximate solution at fy; by the proposed methods with /z = 1/2N.

Using the errors ey, we estimate the convergence profiles as follows:

EN
N = 10g2<a>.

In this example, we compare performances of our proposed shooting methods with the
finite difference method proposed in [22] and the numerical results are shown in Table 12.
We observe the following from the results:
1 In Table 12, uniform two-mesh difference errors and convergence rates computed by
(a) the finite difference method [22],
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Figure 6 Pointwise absolute errors in maximum norm of Example 4.5 versus the time step h when
oy =1.1,1.5,1.9. Graphs demonstrate that computed convergence profiles are nearly O (h?) for Newton's and
modified integral discretization scheme [21], Oh3) for Halley's method, respectively
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Figure 7 Pointwise absolute errors in maximum norm obtained by the modified integral discretization
scheme [21] of Example 4.5 versus the time step h when (a1, a5) = (1 = 1071°,1.7), s = 0.2, N = 320, To/ = 10

(b) the proposed shooting technique based on Newton’s method with linear explicit
method described in Appendix A,

(c) the proposed shooting technique based on Newton’s method with HPCM,
(d) the proposed shooting technique based on Halley’s method with HPCM
versus the number of time step N as o = 1.3,1.5,1.7,1.9 are demonstrated. We set
50 =0.2, Tol = 10712 as our proposed methods are implemented.

2 Itis evident that the uniform two-mesh difference errors computed by our proposed
methods are less than the finite difference method [22] for all N and .
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Figure 8 Pointwise absolute errors in maximum norm obtained by the proposed shooting technique with
Newton's method of Example 4.5 versus the time step h when (o, @) = (1 - 107'6,1.7), s = 0.2, N = 320,
Tol=107
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Figure 9 Poinwise absolute errors in maximum norm obtained by the proposed shooting technique with
Halley’s method of Example 4.5 versus the time step h when (ot a2) = (1= 107'6,1.7), 5 = 0.2, N = 320,
Tol=107

3 The convergence rates obtained by the proposed method with Newton’s method are
nearly 2 for all a; but the rates of convergence computed by Halley’s method are
nearly 3 when ay = 1.3 only. Nevertheless we can see that the convergence profiles
obtained by our proposed methods are higher than the finite difference method [22].
Figure 10 shows two-point difference errors in maximum norms versus the number
of step N.
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Table 12 The uniform two-mesh difference error and computed rates of convergence obtained by
the proposed methods, Newton's method, and Halley's method. We set s = 0.2, Tol = 10710

o) N=64 N=128 N=256 N=512 N=1024 N=2048

Finite difference method [22]

13 error 6.557E-002 4.240E-002 2.509E-002 1.387E-002 7.337E-003 3.782E-003
rate 0.629 0.757 0.855 0919 0.956 0977

15 error 2.271E-002 1.265E-002 6.749E-003 3.509E-003 1.795E-003 9.104E-004
rate 0.844 0.906 0.944 0.967 0.980 0.988

1.7 error 1.110E-002 5.968E-003 3.140E-003 1.628E-003 8.356E-004 4.262E-004
rate 0.895 0.927 0.948 0.962 0.971 0.978

19 error 5.650E-003 2.978E-003 1.557E-003 8.090E-004 4.184E-004 2.156E-004
rate 0.017 0.050 0.084 0.117 0.168 0.255

Newton’s method with linear explicit

13 error 5.35E-03 2.55E-03 1.14E-03 4.95E-04 2.09E-04 8.68E-05
rate 0.935 1.068 1.157 1211 1.244 1.265

1.5 error 5.35E-03 2.55E-03 1.14E-03 495E-04 2.09E-04 8.68E-05
rate 0.935 1.068 1.157 1211 1.244 1.265

1.7 error 4.19E-04 1.39E-04 4.51E-05 1.45E-05 4.62E-06 1.46E-06
rate 1.562 1.594 1618 1.636 1.650 1.660

1.9 error 1.00E-04 2.85E-05 8.07E-06 2.27E-06 6.35E-07 1.77E-07
rate 1.798 1.810 1.821 1.830 1.837 1.844

Newton's method

13 error 4.04E-03 6.03E-04 4.95E-05 8.12E-06 5.88E-06 2.17E-06
rate 2.238 2.745 3.607 2.606 0.465 1438

15 error 241E-04 8.57E-05 2.50E-05 6.74E-06 1.74E-06 442E-07
rate 0.329 1.489 1.775 1.893 1.949 1.980

1.7 error 1.53E-04 4.05E-05 1.03E-05 2.58E-06 6.40E-07 1.58E-07
rate 1.779 1919 1.975 1.998 2010 2017

19 error 9.08E-05 2.29E-05 5.74E-06 1.43E-06 3.58E-07 8.92E-08
rate 1.941 1.984 1.997 2.001 2.003 2.004

Halley's method

13 error 1.00E-03 9.19E-05 6.67E-06 3.25E-07 1.60E-08 8.44E-09
rate 3.056 3456 3.782 4.358 4.348 0.920

15 error 8.24E-06 2.48E-06 8.70E-07 3.02E-07 1.05E-07 3.64E-08
rate 2111 1.732 1.511 1.524 1.526 1.525

1.7 error 1.26E-05 3.60E-06 1.07E-06 3.26E-07 9.97E-08 3.06E-08
rate 1.862 1.802 1.746 1.719 1.707 1.703

19 error 4.87E-06 1.06E-06 2.53E-07 6.42E-08 1.68E-08 4.44E-09
rate 2.365 2.200 2.063 1.980 1.937 1916

5 Conclusion
We introduced new numerical schemes for solving FNBVPs with any RBCs. The idea was
to transform a FNBVP into a system of FIVPs. By doing that we could adopt a pre-existing
numerical method for solving the system of FIVPs and we mainly employed HPCMs.
The unknown IC s in the system was approximated by the proposed shooting methods
based on Newton’s and Halley’s method and this is the main algorithm of the proposed
schemes. Under the assumption that m is large enough so that |E(s,,)| is small enough, the-
oretical convergence rates of proposed methods were O(/?) for shooting with Newton’s
method and O(/3) for shooting with Halley’s method on account of global error estimates
in HPCMs.

In Examples 4.1 through 4.3, we verified that the proposed schemes can handle double-
term FNVBPs with RBCs whose exact solutions include polynomial, exponential, and sine
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Figure 10 Two-mesh difference errors in maximum norm obtained by the proposed methods and a finite
difference [22] of Example 4.6 versus the number of step N when (a1, @) = (1 -1076,1.5),(1 - 107'6,1.9)
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function. Convergence profiles obtained by the proposed schemes were computed as ex-
pected by the global error estimates. However, Tables 3, 6, and 9 suggest that the conver-
gence rate of the sequence {si} depends on fractional orders. We still need to address an
error analysis of shooting techniques based on Newton’s and Halley’s methods for solving
a system of FIVPs. This will be considered in a subsequent paper. Examples 4.4 and 4.5
demonstrated the performance of proposed methods for solving single-term linear FB-
VPs with exact solutions having low regularity and high regularity, respectively. Tables 10
and 11 showed that the proposed methods can deal with not only nonlinear FBVPs but
also linear FBVPs. In Example 4.4, we adopted the linear explicit method described in Ap-
pendix A and this shows that the proposed shooting techniques can be assembled with not
only HPCMs but also other pre-existing numerical schemes for solving a system of FIVPs.
In Example 4.5, we observed that computed convergence rates obtained by our proposed
shooting technique based on Halley’s method with third-order HPCM are higher than the

modified integral discretization scheme [21].

Appendix A: Linear explicit method
Let us consider the following linear single-term FBVP with RBCs:

Dg?y(t) =f(t) + c(8)y(t) + b(2)y (¢),
a1y(0) + b1y’ (0) = 1, axy(1) + boy' (1) = s,

(36)
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where 1 < oy < 2. By Lemmas 2.1 through 2.4 and Theorem 2.1, the FBVP (36) is equivalent

to the following system:

D{ey(t) = z(¢) y(0) =,
Dgz(t) = f(£) + c()y(t) + b(H)z(t)  z(0) = (y1 — a15)/b;.

37)

Expressing the solution of (37) as the discretized form of the Volterra integral equation,

which is equivalent to (37), we obtain

Wewnt) = (0) + f "ty - 1) (r) d,

0

'l-e)
2tu1) = 2(0) + 52 f (tn) (38)

o | =0 et s b

T )y,

The approximation solutions to y(t,.1) and z(¢,,1) in (38) with sx can be explicitly de-

scribed as follows:

1 n tir1
n+l =Sk T 5 Lyl — - d )
Va1 s,+F(1—€)j=ZO/t, (tne1 — 1) 2(7) d7

— a8k _
S
1

Zn+1 =

1 " tj+1 ~ oyt
o) ;;/; (tws1 — T (c()y(7) + b(r)z(7)) dT.

+

I(

Replacing y(7) and z(t) with linear interpolation, we have

1 bir1 _ tj+1 -7 tj -7
Yn+1 =Sk + m 12:/t (ts1 —7)°° <TZ/ + _—th+1 dr,

- a8 @
Zysl = lellk +]()2 lf(tn+l)
1 n tj 1 t (39)
+ ,+ p— ‘[
+ (a1 — )7L { AL c(t)y; + b(t)z;

F(Olz)JZ:O:/t, 1 I ( j1)j 1/)

-t

_—h(C(tj+1)J’j+1 + b(tj+1)Z/+1) dr.

Let us shorten the expression of y,,1, z,,1 in (39) as follows:

n
1 2
Yn+l = Sk + Z[A/ Zj +Aj Zj+1],
j=0
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Y1 — a1k -1
Zp+l = h— +]gz f(tn+l)
1

n-1
+ Z[B,l (c@)y; + b()z) + B} (c(t1)yjer + b(t121)701) |
=0

+ B;%, (C(tn)yn + b(tn)zn) + B%, (C(tn+1)yn+l + b(tn+1)zn+1)-

We omit describing the definitions of A;, Bl‘f, i=1,2,j=0,...,n, because that is straight-
forward. Substituting the explicit form of y,,,; into the right-hand side of z,,,;, we have

Y1 — a18k
by

n-1

+ Z[Bll (C(tj)yj + b(tj)Zj) + B]2 (C(t]’+1)yj+1 + b(tj+1)Zj+1)]
j=0

+ Bi (C(tn)yn + b(tn)zn)

+ B2 |:C('fn+1) isk +> (Alz +A,22;+1)} + b(tn+1)zn+lj|

j=0

+]((;271f(tn+1)

Zn+1 =

= w +]gz_1f(tl’l+l) (40)
b
n-1
+ Z[B} (c(t)y; + b(5)z)) + sz (ctr1)yjer + b(E:1)7101) |

Jj=0

+B! (c(tn)yn + b(tn)Zn)
n-1

+ B2c(ty1) {sk + Z(A}zj + Afz,ﬂ) +Alz,
=0

+ (B;%Aflc(twrl) + b(tn+1))zn+1'

Since the right-hand side of (40) is linear in zj, j = 0,...,# + 1, z,,1 can be explicitly ex-
pressed as follows:

n-1

—as _

Zpyl = |:V1Tllk +ng lf(t}’l+1) + Z[Bll (C(tj)yj + b(tj)zj)
j=0

+ BIZ (C(tj+1)yj+1 + b(tj+1)zj+l)] + B;11 (C(tn)yn + b(tn)zn)

n-1
+ Bic(t,,,,l){sk + Z(A}zj +Afz/+1) +Ai,zn}j|

J=0

/[1 - {B;%,Aic(twrl) + b(tn+1)}]~

Appendix B: Step of algorithm
Steps of the proposed algorithms for solving the FNVBP (7)

Input parameters: fractional orders «;, ay; endpoints 0, b; RBCs ay, by, y1, az, b, ya;
number of time sub-intervals N; maximum number of iterations in Newton’s and Halley’s

methods m; initial approximation of s sy; tolerance 7Tol.
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Step 1) Seth=b/N,t,=n-h, k=0.
Step 2) While (k < m) do Steps 3---6.
Step 3) Forn=0,...,N—1do Steps3-1---3-3.
3-1) Compute predictors ¥, ,, W, ,, Z., using the formulas (33)
(Newton’s method) or (35) (Halley’s method) with s individ-
ually.
3-2) Compute f;,; = (Ers1, V1) Whs)-
3 —3) Compute correctors y5,,, W5, z,, using the formulas (32)
(Newton’s method) or (34) (Halley’s method) individually.
Step 4) Compute the approximated error function with s;:

|F(si)| = |any (sc) + baziy(si) = 2. (41)

If |F(s¢)| < Tol then STOP.
Do Step 5 to compute Fi(sg) (Newton’s or Halley’s method) and Fi(sx) (Halley’s
method).
Step 5) Forn=0,...,N—1do Steps5-1---5-5.
5-1) Compute predictors y2 .\, W,,.1, Z.,,,; in (25) using the for-
mulas (33) (Newton’s method) or (35) (Halley’s method) indi-
vidually.

5-2) Compute predictors ¥,

s,n+17

W

'S,

a1r Zos e in (28) using the for-
mulas (35) (Halley’s method) individually. (Skip step for New-
ton’s method.)

5-3) Compute f¥ | defined by (26) (Newton’s and Halley’s meth-

s,n+1

ods). Compute /£ | defined by (29) (Halley’s method).

s,n+1

5—4) Compute correctors y;,,, Ws,,1» Ze .1 in (25) using the for-
mulas (32) (Newton’s method) or (35) (Halley’s method) indi-
vidually.

5—5) Compute predictors y; .1, We 415

z¢, 141 in (28) using the for-
mulas (34) (Halley’s method) individually. (Skip step for New-
ton’s method.)
Step 6) Compute si,1 using the formulas (23) (Newton’s method) or (27) (Hal-
ley’s method).
k=k+1.
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