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Abstract
In this paper, a stochastic SIRV epidemic model with general nonlinear incidence and
vaccination is investigated. The value of our study lies in two aspects. Mathematically,
with the help of Lyapunov function method and stochastic analysis theory, we obtain
a stochastic threshold of the model that completely determines the extinction and
persistence of the epidemic. Epidemiologically, we find that random fluctuations can
suppress disease outbreak, which can provide us some useful control strategies to
regulate disease dynamics. In other words, neglecting random perturbations
overestimates the ability of the disease to spread. The numerical simulations are given
to illustrate the main theoretical results.
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1 Introduction
Recent global infectious diseases (such as the outbreak of H7N9 influenza in 2013, Ebola
disease in 2014, and COVID-19 in 2019) resulted in a lot of biological deaths and sub-
stantial financial ruins. Infectious diseases are a major concern of the public. The model-
ing of infection diseases is extremely important to research the mechanisms of diseases.
A mathematical model is considered as an effective way to forecast the outbreak of a dis-
ease [1–17].

In fact, our real life is full of randomness and stochasticity. For human disease related
epidemics, the nature of epidemic growth and spread is random due to the unpredictabil-
ity in person to person contacts. Because of environmental noises, the deterministic ap-
proach has some limitations in the mathematical modeling transmission of an infectious
disease, and several authors began to consider the effect of white noise on the epidemic
systems. In order to improve the understanding of the difference of random environmental
fluctuations, many scholars have introduced white noise in deterministic models [18–39].

There are different approaches used in the literature to introduce random perturbations
into population models, both from a mathematical and biological perspective. One is to
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perturb the positive endemic equilibria in order to make the equilibria of deterministic
models robust. In this situation, the essence of the investigation using the approach is to
check if the asymptotic stability of the positive equilibria of deterministic models can be
preserved. The other important approach is with parameter perturbation. Many litera-
ture works on this approach can be found, for example, [25–29]. In epidemic models, the
natural death rate d and the disease transmission parameter β are two of the key param-
eters to disease transmission. May in [37] pointed out that all the parameters involved in
the population model exhibit random fluctuation as the factors controlling them are not
constant. And in the real situation, the natural death rate d and the disease transmission
parameter β always fluctuate around some average value due to continuous fluctuation in
the environment. In this sense, d can seem as a random variable d̃, β changes to a ran-
dom variable β̃ . More precisely, each infected individual makes –d̃ dt = –d dt + σ dB(t),
β̃ dt = β dt +σ dB(t) potentially infectious contacts with each other individual in [t, t + dt).

In recent years, the stochastic SIV and SIRV type epidemic models have been extensively
studied, and many important results have been established, see, for example, articles [18–
24, 40–43] and the references cited therein. We easily see that most of these research works
aim at the models with bilinear incidence, and there exists some research on the models
with special nonlinear incidences (see [19–21]). Particularly in [20], the authors studied a
class of stochastic SIVS epidemic models with nonlinear saturated incidence:

⎧
⎪⎪⎨

⎪⎪⎩

dS = [(1 – q)� – (μ + p)S – βSI
ψ(I) + γ I + δV ] dt – σSI

ψ(I) dB,

dI = [ βSI
ψ(I) – (μ + γ + ν)I] dt + σSI

ψ(I) dB,

dV = [q� + pS – (μ + δ)V ] dt.

A threshold value R̃0 is identified. It is shown that if R̃0 < 1, then the disease in the stochas-
tic model is extinct, and if R̃0 > 1, then any solution with positive initial value in R3

+ is
permanent in the mean. In [21], the authors studied a class of stochastic SIVR epidemic
models where vaccination is included and such that the immunity is permanent, respec-
tively:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS = [μ – βSI – (μ + φ)S] dt – σSI dB,

dI = [βSI + ρβVI – (λ + μ)I] dt + σ (S + ρV )I dB,

dV = [φS – ρβVI – μV ] dt – ρσVI dB,

dR = (λI – μR) dt.

The sufficient conditions on the exponential stability in mean square of disease-free equi-
librium are obtained.

Motivated by the above work, in this paper, we consider the following deterministic SIRV
epidemic model with nonlinear incidence rate and disease-induced mortality:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS = [(1 – ε)� – (μ + q)S – βf (S, I) + ηV ] dt,

dI = [βf (S, I) – (μ + γ + α)I] dt,

dR = [γ I – μR] dt,

dV = [ε� + qS – (μ + η)V ] dt.

(1.1)
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In model (1.1), the basic reproduction number R0 = β
∂f (S0,0)

∂I
μ+γ +α

is a threshold which com-
pletely determines the persistence or extinction of the disease. It is shown that, if R0 ≤ 1,
then the disease-free equilibrium E0 is globally asymptotically stable, and if R0 > 1, then
model (1.1) has a unique endemic equilibrium E∗ which is globally asymptotically stable.

Now, we assume that the random effects of the environment make the transmission co-
efficient β of the disease in deterministic model (1.1) generate random disturbance. That
is, β → β + σ Ḃ(t), where B(t) is a one-dimensional standard Brownian motion defined
on some probability space. Thus, model (1.1) will become the following stochastic SIRV
epidemic model with nonlinear incidence rate:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS = [(1 – ε)� – (μ + q)S – βf (S, I) + ηV ] dt – σ f (S, I) dB,

dI = [βf (S, I) – (μ + γ + α)I] dt + σ f (S, I) dB,

dR = [γ I – μR] dt,

dV = [ε� + qS – (μ + η)V ] dt.

(1.2)

The biological meaning of all parameters in (1.2) is the same as that in system (1) in [18]. All
parameter values are assumed to be nonnegative and λ, μ > 0. The portion ε� (0 ≤ ε ≤ 1)
is vaccinated, whereas the rest (1 – ε)� remains in the susceptible class.

As well as we know, in modeling the dynamics of epidemic systems the incidence rate is
an important substance. In practice the nonlinear incidence is frequently used for achiev-
ing more exact results. We see that some deterministic and stochastic epidemic models
with nonlinear incidence have been extensively studied (see, for example, [30–35, 38–44]).
However, we see that stochastic epidemic models with nonlinear incidence and vaccina-
tion are barely studied. Therefore, our first question is: Can we also establish a series of
similar results on the extinction (i.e., disease-free) or persistence (i.e., endemic) of the dis-
ease for the stochastic SIRV epidemic model with nonlinear incidence and vaccination?

The main focus of this article is to investigate how environment fluctuations affect dis-
ease dynamics through studying the global dynamics of an SIRV model with nonlinear
incidence in both the deterministic and the corresponding stochastic version. The organi-
zation of this paper is as follows. In Sect. 2, we give some useful lemmas and fundamental
assumption for general nonlinear incidence functions. In Sect. 3, the results on the ex-
tinction of the disease with probability one are stated and proved. In Sect. 4, we prove
that the disease is persistent under one condition. In Sect. 5, the numerical simulations
are presented. Finally, in Sect. 6, a conclusion is given.

2 Preliminaries
Denote R4

+ = {(x1, x2, x3, x4) : xi ≥ 0, i = 1, 2, 3, 4}. For any integrable function g(t) defined
for t ≥ 0, we denote 〈g〉t = 1

t
∫ t

0 g(s) ds. The initial condition for model (1.2) is given by

S(0) = S0, I(0) = I0, R(0) = R0, V (0) = V0, (2.1)

where (S0, I0, R0, V0) ∈ R4
+. Moreover, for a nonlinear function f (S, I) in model (1.2), we

always introduce the following assumptions (see [34]).
(H) The function f (S, I) is two-order continuously differentiable for any S, I ≥ 0 with

S + I > 0, strictly monotone increasing for S ≥ 0 for any fixed I > 0, and monotone in-
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creasing for I > 0 for any fixed S ≥ 0. Moreover, the function ξ̃ (S, I) � f (S,I)
I is bounded and

monotone decreasing for I > 0 for any fixed S ≥ 0, and f (0, I) = f (S, 0) = 0 for all S, I > 0.

Remark 2.1 Define ζ̃ (S) � ∂f (S,0)
∂I , from assumption (H), ζ̃ (S) is continuous and monotone

increasing for S ≥ 0. By simple calculation, we can obtain 0 ≤ ξ̃ (S, I) ≤ ζ̃ (S) for any S > 0
and I > 0.

Lemma 2.2 For any initial value (S0, I0, R0, V0) ∈ R4
+, model (1.2) has a unique solution

(S(t), I(t), R(t), V (t)) with initial condition (2.1) defined for all t ≥ 0, and the solution re-
mains in R4

+ with probability one for any t ≥ 0. Furthermore,

�

μ + α
≤ lim inf

t→∞ N(t) ≤ lim sup
t→∞

N(t) ≤ �

μ
a.s.,

where N(t) = S(t) + I(t) + R(t) + V (t).

Proof Since the coefficients of model (1.2) are locally Lipschitz continuous, by the funda-
mental theory of stochastic differential equations, for any initial value (S0, I0, R0, V0) ∈R

4
+,

model (1.2) has a unique local solution (S(t), I(t), R(t), V (t)) defined for t ∈ [0, τe) and satis-
fies (S(t), I(t), R(t), V (t)) ∈R

4
+ a.s. for all t ∈ [0, τe), where τe is the explosion time (see [36]).

Let N(t) = S(t) + I(t) + R(t) + V (t), then we have

dN(t) =
[
� – μN(t) – αI(t)

]
dt. (2.2)

Consequently,

[
� – (μ + α)N(t)

]
dt ≤ dN(t) ≤ [

� – μN(t)
]

dt. (2.3)

Therefore, we further have, for any t ∈ [0, τe),

max

{

N(0),
�

μ + α

}

≤ N(t) ≤ max

{

N(0),
�

μ

}

� M̄ a.s.. (2.4)

This shows that 0 ≤ S(t), I(t), V (t), R(t) ≤ M̄ a.s. for all t ∈ [0, τe). It follows from assump-
tion (H) that there is a constant M0 > 0 such that maxt∈[0,τe){ f (S(t),I(t))

S(t) } ≤ M0 a.s..
To show that the solution is global, we only need to prove that τe = ∞ a.s. Let k0 ≥ 0

be large enough such that (S0, I0, R0, V0) all lie within the interval [ 1
k0

, M̄]. For each integer
k ≥ k0, define the following stopping time:

τk = inf

{

t ∈ [0, τe) : min
{

S(t), I(t), R(t), V (t)
} ≤ 1

k

}

.

Throughout this paper, we set inf Ø=∞, where Ø denotes the empty set. It is clear that τk

is increasing as k → ∞. Set τ∞ = limk→∞ τk , then τ∞ ≤ τe a.s. Namely, we need to show
that τ∞=∞ a.s. Assume that there exist a pair of constants T > 0 and ε ∈ (0, 1) such that
P{τ∞ ≤ T} > ε. Then there is an integer k1 ≥ k0 such that, for all k ≥ k1,

P{τk ≤ T} > ε. (2.5)
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Define a C2-function as follows:

V (t) = (S – 1 – log S) + (I – 1 – log I) + (R – 1 – log R) + (V – 1 – log V ).

The nonnegativity of V (t) can be seen from u – 1 – log u ≥ 0 for u ≥ 0. Using Itô’s formula
(see [45]), we obtain

dV (t) = LV (t) dt + σ

[
f (S, I)

S
–

f (S, I)
I

]

dB(t),

where

LV (t) =
(

1 –
1
S

)
(
(1 – ε)� – (μ + q)S – βf (S, I) + ηV

)

+
(

1 –
1
I

)
(
βf (S, I) – (μ + γ + α)I

)
+

σ 2f 2(S, I)
2S2 +

σ 2f 2(S, I)
2I2

+
(

1 –
1
R

)

(γ I – μR) +
(

1 –
1
V

)
(
ε� + qS – (μ + η)V

)

= � – μ(S + I + R + V ) – αI –
(1 – ε)�

S
+ (μ + q) + β

f (S, I)
S

– η
V
S

– β
f (S, I)

I
+ (μ + γ + α) – γ

I
R

+ μ –
ε�

V
– q

S
V

+ (μ + η)

+
σ 2f 2(S, I)

2S2 +
σ 2f 2(S, I)

2I2

≤ � + 4μ + q + γ + α + η + β
f (S, I)

S
+

σ 2f 2(S, I)
2S2 +

σ 2f 2(S, I)
2I2 .

Clearly, we further have

LV (t) ≤ � + 4μ + q + γ + α + η + βM0 +
σ 2M2

0
2

+
σ 2

2

(
∂f (S0, 0)

∂I

)2

� B,

where S0 = �[μ(1–ε)+η]
μ(μ+η+q) . Therefore, we have

dV (t) ≤ B dt + σ

[
f (S, I)

S
–

f (S, I)
I

]

dB(t). (2.6)

Integrating (2.6) from 0 to T ∧ τk and then taking expectations, we can obtain

EV
(
S(T ∧ τk), I(T ∧ τk), R(T ∧ τk), V (T ∧ τk)

) ≤ V (S0, I0, R0, V0) + BT < ∞. (2.7)

Set �k = {τk ≤ T} for k ≥ k1, then P{�k} ≥ ε by (2.5). Noticing that, for every ω ∈ �k ,
there is at least one of S(τk ,ω), I(τk ,ω), R(τk ,ω), V (τk ,ω) that equals to 1

k . Hence,

V
(
S(τk ,ω), I(τk ,ω), R(τk ,ω), V (τk ,ω)

) ≥ 1
k

– 1 + log k. (2.8)
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In view of (2.7) and (2.8), we have

V (S0, I0, R0, V0) + BT ≥ E
[
I�k V

(
S(τk ,ω), I(τk ,ω), R(τk ,ω), V (τk ,ω)

)]

≥ ε

(
1
k

– 1 + log k
)

,

where I�k is the indicator function of �k . Let k → ∞ lead to the contradiction

∞ > V (S0, I0, R0, V0) + BT = ∞.

Therefore, we must have τ∞ = ∞ a.s..
Furthermore, since (2.3) and (2.4) hold for all t ∈ [0,∞), we can obtain

�

μ + α
≤ lim inf

t→∞ N(t) ≤ lim sup
t→∞

N(t) ≤ �

μ
a.s.,

and when N(0) ∈ [ λ
μ+α

, �
μ

] we also have N(t) ∈ [ λ
μ+α

, �
μ

] a.s. for all t ∈ [0,∞). This competes
the proof. �

Remark 2.3 Denote the region

� =
{

(S, I, R, V ) : S ≥ 0, I ≥ 0, R ≥ 0, V ≥ 0,
�

μ + α
≤ S + I + R + V ≤ �

μ

}

.

The proof of Lemma 2.2 shows that � is globally attractive and positive invariant with
respect to model (1.2) with probability one. Therefore, in the following discussions we
can assume that the initial value (S0, I0, R0, V0) ∈ � for any solution (S(t), I(t), R(t), V (t)) of
model (1.2).

Lemma 2.4 Let (S(t), I(t), R(t), V (t)) be the solution of model (1.2) with initial value
(S(0), I(0), R(0), V (0)) ∈ �. Then

S(t) = S0 + H1(t) + G(t), (2.9)

where

H1(t) = η̃e–(μ+η+q)t + H̃0e–μt η

q + η
–

(

V (0) –
ε�

μ + η

)

e–(μ+η+q)t – H̃0e–(μ+η+q)t q
η + q

,

H̃0 = �
μ

– N(0) + R(0), η̃ = q�[(1–ε)μ+η]
μ(μ+η)(γ +η+q) , and

G(t) = –I(t) – (α + γ )
∫ t

0
e–μ(t–s)I(s) ds + q

∫ t

0
e–(μ+η+q)(t–s)I(s) ds

+ q(α + γ )
∫ t

0
e–(μ+η+q)(t–s)

∫ s

0
e–μ(s–u)I(u) du ds.

Furthermore,

〈S〉t = S0 –
(μ + η)(μ + α + γ )

μ(μ + η + q)
〈I〉t – ϕ(t), (2.10)
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where

ϕ(t) =
(μ + η)[N(t) – N(0)] – μ(V (t) – V (0)) – (μ + η)(R(t) – R(0))

μ(μ + η + q)t
. (2.11)

Proof From (2.2) and model (1.2), we can obtain

N(t) =
�

μ
+

[

N(0) –
�

μ

]

e–μt – α

∫ t

0
e–μ(t–s)I(s) ds, (2.12)

V (t) =
ε�

μ + η
+

(

V (0) –
ε�

μ + η

)

e–(μ+η)t + q
∫ t

0
S(s)e–(μ+η)(t–s) ds, (2.13)

and

R(t) = R(0)e–μt + γ

∫ t

0
I(s)e–μ(t–s) ds. (2.14)

Combining with (2.12), (2.13), and (2.14), we can obtain

S(t) = Ã – H(t) – I(t) – (α + γ )
∫ t

0
e–μ(t–s)I(s) ds – q

∫ t

0
S(s)e–(μ+η)(t–s) ds, (2.15)

where

H(t) =
(

V (0) –
ε�

μ + η

)

e–(μ+η)t + R(0)e–μt +
(

�

μ
– N(0)

)

e–μt

and Ã = �[(1–ε)μ+η]
μ(μ+η) .

By (2.15), we further have

d
[

eqt
∫ t

0
S(s)e(μ+η)s ds

]

=
{

Ãe(μ+η)teqt – H(t)e(μ+η)teqt – I(t)e(μ+η)teqt – αe(μ+η)teqt
∫ t

0
e–μ(t–s)I(s) ds

– γ e(μ+η)teqt
∫ t

0
I(s)e–μ(t–s) ds + eqtq

∫ t

0
S(s)e(μ+η)s ds

– e(μ+η)teqtp
∫ t

0
S(s)e–(μ+η)(t–s) ds

}

dt.

(2.16)

Integrating (2.16) from 0 to t and multiplying by e–(μ+η)t , we can obtain
∫ t

0
S(s)e–(μ+η)(t–s) ds

= S0(1 – e–(μ+η+q)t) –
∫ t

0
H(s)e–(μ+η+q)(t–s) ds

–
∫ t

0
I(s)e–(μ+η+q)(t–s) ds – α

∫ t

0
e–(μ+η+q)(t–s)

∫ s

0
e–μ(s–u)I(u) du ds

– γ

∫ t

0
e–(μ+η+q)(t–s)

∫ s

0
e–μ(s–u)I(u) du ds.

(2.17)

By substituting (2.17) into (2.15), we further obtain (2.9).
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Next, we prove (2.10), from (2.2) and model (1.2) we further have

1
t
(
N(t) – N(0)

)
= � – μ〈S〉t – (μ + α)〈I〉t – μ〈R〉t – μ〈V 〉t ,

1
t
(
R(t) – R(0)

)
= γ 〈I〉t – μ〈R〉t ,

and

1
t
(
V (t) – V (0)

)
= ε� + q〈S〉t – (μ + η)〈V 〉t .

Consequently,

1
t
[
(μ + η)(N(t) – N(0)

]
– (μ + η)

(
R(t) – R(0)

)
– μ

(
V (t) – V (0)

)

=
[
(μ + η)� – με� – μ(μ + η)〈S〉t – μq〈S〉t – (μ + α)(μ + η)〈I〉t – (μ + η)γ 〈I〉t

]
.

Therefore,

(
μ(μ + η) + μq

)〈S〉t

= (μ + η)� – με� –
(
(μ + α)(μ + η) + (μ + η)γ

)〈I〉t

–
1
t
[
(μ + η)

(
N(t) – N(0)

)
– (μ + η)

(
R(t) – R(0)

)
– μ

(
V (t) – V (0)

)]
.

Thus, we finally obtain (2.10). This completes the proof. �

3 Extinction of the disease
Define the parameter

R̃0 =
βζ̃ (S0)

μ + γ + α
–

σ 2(ζ̃ (S0))2

2(μ + γ + α)
= R0 –

σ 2(ζ̃ (S0))2

2(μ + γ + α)
,

where we can easily see that R0 is the basic reproduction number of deterministic model
(1.1). On the extinction of the disease in probability for model (1.2) we have the following
result.

Theorem 3.1 Let (S(t), I(t), R(t), V (t)) be any solution of model (1.2) with initial value
(S(0), I(0), R(0), V (0)) ∈ �. Assume that one of the following conditions holds:

(a) R̃0 < 1 and ∂2f (S,0)
∂S∂I is decreasing for S > 0; (b) σ 2 > β2

2(μ+γ +α) .
Then we have

lim sup
t→∞

log I(t)
t

≤ (μ + γ + α)(R̃0 – 1) < 0 a.s. if condition (a) holds;

lim sup
t→∞

log I(t)
t

≤ β2

2σ 2 – (μ + γ + α) < 0 a.s. if condition (b) holds.

Proof Using Itô’s formula to ln I(t), and then integrating from 0 to t for any t > 0, we can
obtain

1
t

log
I(t)
I(0)

= β
〈
ξ̃ (S, I)

〉

t – (μ + γ + α) –
σ 2

2
〈(
ξ̃ (S, I)

)2〉

t +
σ

t

∫ t

0
ξ̃
(
S(s), I(s)

)
dB(s). (3.1)
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By the Cauchy–Schwarz inequality, we further have

1
t

log
I(t)
I(0)

≤ β
〈
ξ̃ (S, I)

〉

t – (μ + γ + α) –
σ 2

2
〈
ξ̃ (S, I)

〉2
t +

σ

t

∫ t

0
ξ̃
(
S(s), I(s)

)
dB(s). (3.2)

If condition (a) holds, we further have

1
t

log
I(t)
I(0)

≤ β
[〈
ξ̃ (S, I)

〉

t + ϕ(t)
]

– (μ + γ + α) –
σ 2

2
[〈
ξ̃ (S, I)

〉

t + ϕ(t)
]2

– �(t) +
σ

t

∫ t

0
ξ̃
(
S(s), I(s)

)
dB(s),

(3.3)

where

�(t) = βϕ(t) –
σ 2

2
[
2
〈
ξ̃ (S, I)

〉

tϕ(t) + ϕ2(t)
]
.

By the mean value theorem, we have

ξ̃ (S, I) = ζ̃
(
S0) +

∂ζ̃ (ξ )
∂S

(
S – S0), (3.4)

where ξ is situated between S0 and S. Since ∂ζ̃ (S)
∂S � ∂2f (S,0)

∂S∂I is decreasing for S > 0, if S > S0,
then ξ ∈ (S0, S), we obtain

∂2f (ξ , 0)
∂S∂I

(
S – S0) ≤ ∂2f (S0, 0)

∂S∂I
(
S – S0), (3.5)

and if S ≤ S0, then ξ ∈ (S, S0), we also have

∂2f (ξ , 0)
∂S∂I

(
S – S0) ≤ ∂2f (S0, 0)

∂S∂I
(
S – S0). (3.6)

Substituting (3.5) and (3.6) into (3.4) yields that

ξ̃ (S, I) ≤ ζ̃
(
S0) +

∂ζ̃ (S0)
∂S

(
S – S0). (3.7)

Substituting (2.10) into (3.7), we further get

〈
ξ̃ (S, I)

〉

t ≤ ζ̃
(
S0) –

∂ζ̃ (S0)
∂S

(
(μ + η)(μ + α + γ )

μ(μ + η + q)
〈I〉t + ϕ(t)

)

.

Since ∂ζ̃ (S0)
∂S � ∂2f (S0,0)

∂S∂I ≥ 0 by assumption (H), we hence have

〈
ξ̃ (S, I)

〉

t + ϕ(t) ≤ ζ̃
(
S0) +

(

1 –
∂ζ̃ (S0)

∂S

)

ϕ(t). (3.8)
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We obtain immediately from substituting (3.8) into (3.3) that

1
t

log
I(t)
I(0)

≤ βζ̃
(
S0) – (μ + α + γ ) –

σ 2

2
(
ζ̃
(
S0))2 – �(t)

+
σ

t

∫ t

0
ξ̃
(
S(s), I(s)

)
dB(s) + �(t),

where

�(t) = β

(

1 –
∂ζ̃ (S0)

∂S

)

ϕ(t) – σ 2ζ̃
(
S0)

(

1 –
∂ζ̃ (S0)

∂S

)

ϕ(t) –
σ 2

2

(

1 –
∂ζ̃ (S0)

∂S
ϕ(t)

)2

.

From Lemma 2.2 and expression (2.11) of ϕ(t), we can obtain limt→∞ ϕ(t) = 0 a.s., which
implies that limt→∞ �(t) = 0 and limt→∞ �(t) = 0 a.s.. Therefore, by the large number
theorem for martingales, we finally have

lim sup
t→∞

log I(t)
t

≤ (μ + γ + α)(R̃0 – 1) < 0 a.s.. (3.9)

If condition (b) holds, then from (3.2) we have

log I(t)
t

≤ log I(0)
t

+
β2

2σ 2 – (μ + γ + α) +
σ

t

∫ t

0
ξ̃
(
S(s), I(s)

)
dB(s).

With the large number theorem for martingales, we obtain

lim sup
t→∞

log I(t)
t

≤ β2

2σ 2 – (μ + γ + α) < 0 a.s.. (3.10)

This completes the proof. �

Theorem 3.2 Assume that the conditions of Theorem 3.1 hold. Then, for any solution
(S(t), I(t), R(t), V (t)) of model (1.2) with initial value (S(0), I(0), R(0), V (0)) ∈ �, we have

lim
t→∞

(
S(t), I(t), R(t), V (t)

)
=

(
S0, 0, 0, V 0) a.s.,

where V 0 = �(με+q)
μ(μ+η+q) .

Proof From (3.9) and (3.10) we easily obtain limt→∞ I(t) = 0 a.s. Now, let us prove the
assertion S(t) → S0 a.s., V (t) → V 0 a.s., and R(t) → 0 a.s. as t → +∞. According to (2.10)
we get

lim
t→∞ S(t) = S0 + lim

t→∞ H1(t) + lim
t→∞ G(t).

Clearly, limt→∞ H1(t) = 0, and

lim
t→∞ G(t) = lim

t→∞

{

–I(t) – (α + γ )
∫ t

0
e–μ(t–s)I(s) ds + q

∫ t

0
e–(μ+η+q)(t–s)I(s) ds

+ q(α + γ )
∫ t

0
e–(μ+η+q)(t–s)

∫ s

0
e–μ(s–u)I(u) du ds

}

.
(3.11)
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Using L’Hospital’s rule, we compute to obtain

lim
t→∞(α + γ )

∫ t

0
e–μ(t–s)I(s) ds

= lim
t→∞(α + γ )e–μt

∫ t

0
eμsI(s) ds = α lim

t→∞

∫ t
0 eμsI(s) ds

eμt

= (α + γ ) lim
t→∞

eμtI(t)
eμtμ

=
(α + γ )

μ
lim

t→∞ I(t) = 0,

(3.12)

lim
t→∞ e–(μ+η+q)tq

∫ t

0
e(μ+η+q)sI(s) ds = p lim

t→∞

∫ t
0 e(μ+η+q)sI(s) ds

e(μ+η+q)t

= q lim
t→∞

e(μ+η+q)tI(t)
e(μ+η+q)t(μ + η + q)

=
q

μ + η + q
lim

t→∞ I(t) = 0

(3.13)

and

q(α + γ ) lim
t→∞

∫ t

0
e–(μ+η+q)(t–s)

∫ s

0
e–μ(s–u)I(u) du ds

= q(α + γ ) lim
t→∞

∫ t

0
I(u) du

∫ t

u
e–(μ+η+q)(t–s)e–μ(s–u) ds

=
q(α + γ )

η + q
lim

t→∞ e–μt
∫ t

0
I(u)eμu(1 – e–(η+q)(t–u))du

=
q(α + γ )

η + q

(

lim
t→∞ e–μt

∫ t

0
I(u)e–μu du – lim

t→∞ e–t(μ+η+q)
∫ t

0
e(μ+η+q)uI(u) du

)

=
q(α + γ )

η + q

(

lim
t→∞

∫ t
0 I(u)eμu du

eμt – lim
t→∞

∫ t
0 e(μ+η+q)uI(u) du

e(μ+η+q)t

)

=
αq

μ(η + q)
lim

t→∞ I(t) –
q(α + γ )

(η + q)(μ + η + q)
lim

t→∞ I(t) = 0.

(3.14)

From (3.11), (3.12), (3.13), and (3.14), it follows that limt→∞ G(t) = 0 a.s.. Therefore,
limt→∞ S(t) = S0 a.s..

From (2.12), we easily get limt→∞ R(t) = 0 a.s. Then, by using (2.12), we further obtain

lim
t→∞ V (t) = lim

t→∞

(
�

μ
– S(t) – I(t) – R(t) – H0e–μt – α

∫ t

0
e–μ(t–s)I(s) ds

)

=
�

μ
– S0 –

α

μ
lim

t→∞ I(t) =
�(με + q)

μ(μ + η + q)
= V 0 a.s.,

where H0 = �
μ

– S(0) – I(0) – R(0) – V (0). This completes the proof. �

4 Permanence in the mean
On the permanence in the mean with probability one for model (1.2) we have the following
result.
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Theorem 4.1 Assume R̃0 > 1. Then any solution (S(t), I(t), R(t), V (t)) of model (1.2) with
initial value (S(0), I(0), R(0), V (0)) ∈ � is permanent in the mean. Namely, we have

lim inf
t→∞ 〈S〉t ≥ (1 – ε)�

μ + q + βMS
a.s.,

lim inf
t→∞ 〈I)〉t ≥ μ + α + γ

βP1
μ+α+γ

μ
+ q(1+α+γ )

μ+η+q σ 2P3ζ̃ (S0) + βP2 + 4σ 2P2
3M̃

(R̃0 – 1) > 0 a.s.,

lim inf
t→∞ 〈R〉t ≥ γ

μ
T a.s.,

lim inf
t→∞ 〈V 〉t ≥ ε�

μ + η
a.s.,

where the constants P1, P2, P3, M̃, MS , and T will be defined below.

Proof We consider formula (3.1). From (2.9), by the mean value theorem, for any t ≥ 0,
we have

ξ̃
(
S(t), I(t)

)
= ζ̃

(
S0) +

∂ξ̃ (ξ (t), I(t))
∂S

(
S(t) – S0) +

∂ξ̃ (S0, ζ (t))
∂I

I(t)

= ζ̃
(
S0) +

∂ξ̃ (ξ (t), I(t))
∂S

(
H1(t) + G(t)

)
+

∂ξ̃ (S0, ζ (t))
∂I

I(t)

(4.1)

and

(
ξ̃
(
S(t), I(t)

))2

≤ (
ζ̃
(
S(t)

))2

=
(
ζ̃
(
S0))2 + 2ζ̃

(
S0)(ζ̃

(
S(t)

)
– ζ̃

(
S0)) +

(
ζ̃
(
S(t)

)
– ζ̃

(
S0))2

=
(
ζ̃
(
S0))2 + 2ζ̃

(
S0)∂ζ̃ (ξ (t))

∂S
(
S(t) – S0) +

(
∂ζ̃ (ξ (t))

∂S

)2(
S(t) – S0)2

=
(
ζ̃
(
S0))2 + 2ζ̃

(
S0)∂ζ̃ (ξ (t))

∂S
(
H1(t) + G(t)

)
+

(
∂ζ̃ (ξ (t))

∂S

)2(
H1(t) + G(t)

)2,

(4.2)

where ξ (t) is situated between S0 and S(t) and ζ (t) ∈ (0, I(t)). According to Lemma 3 given
in [34], we obtain

P1 = max
�

{∣
∣
∣
∣
∂ξ̃ (S, I)

∂S

∣
∣
∣
∣

}

< ∞, P2 = max
�

{∣
∣
∣
∣
∂ξ̃ (S0, I)

∂I

∣
∣
∣
∣

}

< ∞

and

P3 = max
�

{∣
∣
∣
∣
∂ζ̃ (S)
∂S

∣
∣
∣
∣

}

< ∞.
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From (3.1) and combining with (4.1) and (4.2), we can obtain

1
t

log I(t) ≥ log I(0)
t

+
1
t

∫ t

0

[

βζ̃
(
S0) – (μ + γ + α) –

σ 2

2
(
ζ̃
(
S0))2

]

ds

+
β

t

∫ t

0

∂ξ̃ (ξ (s), I(s))
∂S

(
H1(s) + G(s)

)
ds +

β

t

∫ t

0

∂ξ̃ (S0, ζ (s))
∂I

I(s)] ds

–
σ 2

t

∫ t

0
ζ̃
(
S0)∂ζ̃ (ξ (s))

∂S
(
H1(s) + G(s)

)
ds

–
σ 2

t

∫ t

0

(
∂ζ̃ (ξ (s))

∂S

)2(
H2

1 (s) + G2(s)
)

ds +
σ

t

∫ t

0
ξ̃ (S(s), I(s) dB(s).

(4.3)

We then compute to obtain

〈G〉t ≥ –
1
t

∫ t

0
I(u) du –

(α + γ )
t

∫ t

0

∫ u

0
e–μ(u–s)I(s) ds du

≥ –
1
t

∫ t

0
I(u) du –

(α + γ )
μ

1
t

∫ t

0
I(u) du = –

μ + α + γ

μ
〈I〉t ,

(4.4)

〈G〉t ≤ q
t

∫ t

0

∫ u

0
e–(μ+η+q)(u–s)I(s) ds du

+
q(α + γ )

t

∫ t

0

∫ u

0
e–(μ+η+q)(u–s)

∫ s

0
e–μ(s–w)I(w) dw ds du

≤ q(1 + α + γ )
μ + η + q

〈I〉t ,

(4.5)

and

〈
G2〉

t ≤ 4
t

∫ t

0

[

I2(u) + (α + γ )2
(∫ u

0
e–μ(u–s)I(s) ds

)2

+ q2
(∫ u

0
e–(μ+η+q)(u–s)I(s) ds

)2

+
[
q(α + γ )

]2
(∫ u

0
e–(μ+η+q)(u–s)

∫ s

0
e–μ(s–w)I(w) dw ds

)2]

du

≤ 4
t

∫ t

0

[
�

μ
I(u) +

(α + γ )2�

μ2

∫ u

0
e–μ(u–s)I(s) ds

+
q2�

μ(μ + η + q)

∫ u

0
e–(μ+η+q)(u–s)I(s) ds

+
q2(α + γ )2�

μ2(μ + η + q)

∫ u

0
e–(μ+η+q)(u–s)

∫ s

0
e–μ(s–w)I(w) dw ds

]

du

≤ 4M̃〈I〉t ,

(4.6)

where

M̃ =
�

μ
+

(α + γ )2�

μ3 +
q2�

μ(μ + η + q)2 +
q2(α + γ )2�

μ2(μ + η + q)2 .
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From (4.4), (4.5), and (4.6), we can rewrite (4.3) as

log I(t)
t

≥ log I(0)
t

+
[

βζ̃
(
S0) – (μ + γ + α) –

σ 2

2
(
ζ̃
(
S0))2

]

– βP1
μ + α + γ

μ
〈I〉t –

q(μ + α + γ )σ 2P3

μ(μ + η + q)
ζ̃
(
S0)〈I〉t – βP2〈I〉t

– 4σ 2P2
3M̃〈I〉t + �(t),

(4.7)

where

�(t) =
ln I(0)

t
– βP1〈H1〉t – σ 2P3ζ̃

(
S0)〈H1〉t – σ 2P2

3
〈
H2

1
〉

t +
σ

t

∫ t

0
ξ̃
(
S(s), I(s)

)
dB(s).

According to L’Hospital’s rule, we get

lim
t→∞〈H1〉t = lim

t→∞

{
1
t

∫ t

0

[

η̃e–(μ+η+q)s + H̃0e–μs η

q + η
–

(

V (0) –
ε�

μ + η

)

e–(μ+η+q)s

– H̃0e–(μ+η+q)s q
η + q

]

ds
}

= η̃ lim
t→∞

1 – e–(μ+η+q)t

t(μ + η + q)
+ H̃0

η

q + η
lim

t→∞
1 – e–μt

μt

–
1

μ + η + q

(

V (0) –
ε�

μ + η

)

lim
t→∞

1 – e–(μ+η+q)t

t

–
q

(η + q)(η + q + μ)
H̃0 lim

t→∞
1 – e–(μ+η+q)t

t

= 0

(4.8)

and

lim
t→∞

〈
H2

1
〉

t ≤ lim
t→∞

{
4
t

∫ t

0

[

η̃2e–2(μ+η+q)s + H̃2
0 e–2μs

(
η

q + η

)2

+
(

V (0) –
ε�

μ + η

)2

e–2(μ+η+q)s + H̃2
0 e–(μ+η+q)s

(
q

η + q

)2]

ds
}

= 0.

(4.9)

From equations (4.8) and (4.9), by the strong law of large numbers, we obtain that
limt→∞ �(t) = 0 a.s.. Therefore, we finally have

lim inf
t→∞ 〈I〉t ≥ βζ̃ (S0) – (μ + γ + α) – σ 2

2 (ζ̃ (S0))2

βP1
μ+α+γ

μ
+ q(1+α+γ )

μ+η+q σ 2P3ζ̃ (S0) + βP2 + 4σ 2P2
3M̃

:= T > 0 a.s.. (4.10)

Next, we prove the permanence in the mean of S(t). The proof is similar to [34]. Ac-
cording to Lemma 3 given in [34], we have MS � max�{ f (S,I)

S } < ∞. Integrating the first
equation of model (1.2) from 0 to t, we can obtain

S(t) – S(0)
t

≥ (1 – ε)� –
1
t

∫ t

0
[βMS + μ + q]S(s) ds –

σ

t

∫ t

0
f
(
S(s), I(s)

)
dB(s).
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Taking t → ∞ and the strong law of large numbers, we further have

lim inf
t→∞ 〈S〉t ≥ (1 – ε)�

μ + q + βMS
a.s..

Secondly, from (4.10) and integrating the third equation of model (1.2) from 0 to t, we
can obtain

lim inf
t→∞ 〈R〉t ≥ γ

μ
T a.s..

Lastly, integrating the last equation of model (1.2), we obtain

V (t) – V (0)
t

≥ ε� –
1
t

∫ t

0
[μ + η]V (s) ds.

Therefore, taking t → ∞, we finally have

lim inf
t→∞ 〈V 〉t ≥ ε�

μ + η
a.s..

This completes the proof. �

Remark 4.2 Comparing R0 = βζ̃ (S0)
μ+γ +α

with R̃0, we can easily see that R̃0 < R0 for any σ > 0 and
if σ = 0, then R̃0 = R0. Namely, the environmental noise can greatly change the properties
of an epidemic model.

5 Numerical simulation
In this section we analyze the stochastic behavior of model (1.2) by means of the numerical
simulations in order to make readers understand our results better. The numerical sim-
ulation method can be found in [32]. The corresponding discretization system of model
(1.2) is given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk+1 = Sk + [(1 – q)� – βf (Sk , Ik) – (μ + p)Sk + δVk]�t

+ f (Sk , Ik)[σξk
√

�t + 1
2σ 2(ξ 2

k – 1)�t],

Ik+1 = Ik + [βf (Sk , Ik) – (μ + γ + α)Ik]�t

+ f (Sk , Ik)[σξk
√

�t + 1
2σ 2(ξ 2

k – 1)�t],

Rk+1 = Rk + [γ Ik – μRk]�t,

Vk+1 = Vk + [q� + pSk – (μ + α)Vk]�t,

where ξk (k = 1, 2, . . .) are the Gaussian random variables which follow the standard normal
distribution N(0, 1).

Example 1 In model (1.2), we take f (S, I) = SI
N (standard incidence).

Case 1. (i) Choose � = 0.2, β = 0.99, μ = 0.1, γ = 0.15, σ = 1.05, p = 0.07, δ = 0.6, q = 0.08,
and α = 0.2. For deterministic model (1.1), R0 = 2.5 > 1. From the numerical simulations
(see Fig. 1.a), it is clear that the endemic equilibrium E∗ is also globally asymptotically
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Figure 1 Simulation for paths S(t), I(t), R(t), and V(t) for the stochastic system and the corresponding
deterministic system with initial value (S(0), I(0),R(0),V(0)) = (0.5, 0.06, 0.5, 0.5) and step size �t = 0.001

stable if only the basic reproduction number R0 is greater than one. For the corresponding
stochastic model (1.2), we have R̃0 = 0.975 < 1, which is the case of Theorem 3.1. From the
numerical simulations, we see that the disease will die out (see Fig. 1.b).

(ii) Choose � = 3.4, β = 1.2, μ = 0.2, γ = 0.4, σ = 0.9, p = 0.07, δ = 0.6, q = 0.08, and
α = 0.4. By computing, we have σ 2 – β2

2(μ+γ +α) = 0.09 > 0, which is the case of Theorem 3.1.
From the numerical simulations, we see that the disease will die out (see Fig. 1.c).

Case 2. Choose � = 3.4, β = 1.2, μ = 0.1, γ = 0.3, σ = 1.15, p = 0.02, δ = 0.6, q = 0.01,
and α = 0.2. By computing, we have R0 = 2.4, R̃0 = 1.298 > 1. The numerical simulations
are given in Figs. 2.a and 2.b, which show that model (1.2) is permanent in the mean with
probability one.

Example 2 In model (1.2), take f (S, I) = h(S)g(I) = SI
1+ωI2 , where ω is a positive constant.

Case 1. Choose � = 0.4, β = 0.04, μ = 0.1, γ = 0.03, σ = 0.08, α = 0.02, p = 0.02, q = 0.01,
ω = 1, and δ = 0.16. By computing, we have σ 2 – β2

2(μ+γ +α) = 0.0034 > 0, which is the case
of Theorem 3.1. From the numerical simulations given in Fig. 3.b, we see that disease will
die out.

Case 2. Choose � = 0.4, β = 0.2, μ = 0.1, γ = 0.3, σ = 0.05, α = 0.2, p = 0.02, q = 0.01,
ω = 1, and δ = 0.16. We have R0 = 1.23, R̃0 = 1.201 > 1. The numerical simulations found
in Fig. 3.c show that model (1.2) is permanent in the mean with probability one.
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Figure 2 Simulation for paths S(t), I(t), R(t), and V(t) for the stochastic system with initial value
(S(0), I(0),R(0),V(0)) = (0.5, 0.06, 0.5, 0.5) for different noise intensities σ = 1.15 (a) and σ = 0.9 (b)

Figure 3 Simulation for paths S(t), I(t), R(t), and V(t) for the stochastic system and the corresponding
deterministic system with initial value (S(0), I(0),R(0),V(0)) = (0.5, 0.06, 0.5, 0.5) and step size �t = 0.001

Example 3 In model (1.2), take f (S, I) = SI
1+ω1S+ω2I (Beddington–DeAngelis incidence),

where ω1 and ω2 are nonnegative constants.

Case 1. Choose � = 0.4, β = 0.1, μ = 0.08, γ = 0.03, σ = 0.2, α = 0.02, δ = 0.06, q = 0.08,
p = 0.07, m = 0.1, and n = 0.5. By computing we have R0 = 1.04489, R̃0 = 0.6811 < 1, which
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Figure 4 Simulation for paths S(t), I(t), R(t), and V(t) for the stochastic system and the corresponding
deterministic system with initial value (S(0), I(0),R(0),V(0)) = (0.5, 0.06, 0.5, 0.5) and step size �t = 0.001

is the case of Theorem 3.1. From the numerical simulations given in Fig. 4.b, we see that
the disease will die out.

Case 2. Choose � = 0.4, β = 0.2, μ = 0.02, γ = 0.04, σ = 0.09, α = 0.02, δ = 0.06, q = 0.08,
p = 0.07, m = 0.1, and n = 0.5. By computing, we have R0 = 1.176, R̃0 = 1.1729 > 1. The
numerical simulations given in Fig. 4.c show that model (1.2) is permanent in the mean
with probability one.

6 Conclusion
Environmental noises have a critical influence on the development of an epidemic. In this
paper, we study the dynamics of a stochastic SIRV model with general nonlinear incidence
rate. We assume that the stochastic perturbation is a white noise type which perturbs the
disease transmission coefficient β . This is a well-established way of introducing stochastic
environmental noise into biologically realistic population dynamic models that were used
in [44, 46].

The value of our study lies in two aspects: Mathematically, we show that the global dy-
namics of deterministic model (1.1) can be governed by its reproduction number R0, while
the dynamics of its stochastic version (1.2) is seen to be governed by R̃0. In addition, we
have provided the analytic results on the existence of the global positive solution, the ex-
tinction (i.e.,disease-free) or persistence (i.e.,endemic) of the disease for stochastic model
(1.2).
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Epidemiologically, we summarize our main findings as follows:
1. Noise can suppress the disease outbreak: Theorem 3.1 (a) indicates that the extinc-

tion of the disease in stochastic model (1.2) occurs if the basic reproduction number
R̃0 = βζ̃ (S0)

μ+γ +α
– σ 2(ζ̃ (S0))2

2(μ+γ +α) < 1. We show that deterministic model (1.1) admits a unique en-
demic equilibrium E∗ which is globally asymptotically stable if its basic reproduction num-
ber R0 > 1. Notice that R̃0 < R0, and it is possible that R̃0 < 1 < R0. This is the case when
deterministic model (1.1) has an endemic (see Fig. 1a) while stochastic model (1.2) has
disease extinction with probability one (see Fig. 1b). This implies that large noise intensi-
ties can inhibit the spread of a disease, which means the random perturbations can change
the disease dynamics.

2. The effects of the intensity of noise level: From part (b) of Theorem 3.2, under large
noise intensity case, i.e., the condition σ 2 > β2

2(μ+γ +α) holds, the disease will become ex-
tinct exponentially. In other words, in the case of sufficiently large noise, we should use
the stochastic model rather than the deterministic model to describe the population dy-
namics (see Fig. 1.c). One can know that if R0 > 1, model(1.1) admits a globally stable
endemic equilibrium E∗. In this case, when the noise intensity σ is small enough to imply
that R̃0 > 1 from Theorem 4.1, one can know that the stochastic model preserves the prop-
erty of the global stability, and the noise can force the solutions of model (1.2) to oscillate
strongly around the endemic point (see Figs. 2.a and 2.b). In addition, from Figs. 2.a and
2.b, one can observe the effects of increasing noise intensity σ on the increased level of
non-equilibrium fluctuation in the stochastic dynamics of model (1.2).

Furthermore, from Theorems 3.1, 4.1 and numerical simulation results (e.g., Figs. 1–4),
we can conclude that, when the intensity of noise is small, the stochastic model preserves
the property of the global stability. In this case, we can ignore noise and use the deter-
ministic model to approximate the population dynamics. However, the large intensity of
noise can force the solution of model (1.2) to oscillate strongly around the disease-free or
endemic points, or the extinction. In these cases, we cannot ignore the effect of noise and,
therefore, we cannot use the deterministic model but the stochastic model to describe the
disease dynamics.

Some interesting topics deserve further investigations. SDEs are being increasingly used
in a wide range of areas, for example, finance and biology. There has recently been a large
explosion in the number of papers using SDEs to model how diseases spread. However,
these papers introduce stochasticity in a different way by parameter perturbation, which
is appropriate if one of the parameters is a random variable. Another way to introduce
stochasticity into deterministic models is telegraph noise where the parameters switch
from one set to another according to a Markov switching process. Therefore, we may study
a stochastic version of model (1.2) including Markovian switching into all parameters.
These studies are in progress.
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