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Canana University, Ogretmenler Everyone is talking about coronavirus from the last couple of months due to its
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Full list of author information is within a couple of months. Ironically, 29,185,779 are still active cases. Having seen
available at the end of the article such a drastic situation, a relatively simple epidemiological SIR model with Caputo

derivative is suggested unlike more sophisticated models being proposed nowadays
in the current literature. The major aim of the present research study is to look for
possibilities and extents to which the SIR model fits the real data for the cases chosen
from 1 April to 15 March 2020, Pakistan. To further analyze qualitative behavior of the
Caputo SIR model, uniqueness conditions under the Banach contraction principle are
discussed and stability analysis with basic reproduction number is investigated using
Ulam-Hyers and its generalized version. The best parameters have been obtained via
the nonlinear least-squares curve fitting technique. The infectious compartment of
the Caputo SIR model fits the real data better than the classical version of the SIR
model (Brauer et al. in Mathematical Models in Epidemiology 2019). Average absolute
relative error under the Caputo operator is about 48% smaller than the one obtained
in the classical case (v = 1). Time series and 3D contour plots offer social distancing to
be the most effective measure to control the epidemic.
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1 Introduction

Literature includes mathematical models for pathways for the transmission of infectious
ailments. These models play an important role in quantifying and assessing the efficient
control and preventive measures of infectious ailments [2—4]. It has been proved in multi-
farious ways that mathematical modeling is a very flexible and efficient way of researching
the dynamics of transmission of infectious ailments. Mathematical analysis and numerical
simulations can be used to create and evaluate control measures that are convincing. As
for the model of compartmental ailments, there are several infectious ailments, beginning
with the very classic SIR model to the more complex ones [1].

In December 2019, there was an emergence of a novel ailment in China which was
later declared as pandemic named COVID-19 by the World Health Organization [5]. It is
well known that the COVID-19 pandemic has given rise to fearful living and coexistence
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around the globe, with millions of people worldwide infected. The mortality-recovery ra-
tio appears to be in a positive proportion. Nevertheless, due to the sensitivity of poly-
merase chain reaction, the absence or presence of the previously infected host is observed
and the recovery rate appears to be promising in the absence of any curative vaccine.
The challenge faced by health care professionals, the World Health Organization, and
the Center for Disease Control in each quarter was whether reinfection could occur af-
ter a COVID-19 patient had been clinically treated. The subtle nature of the disease has
led many scientists and medical practitioners to massively embark on multiple studies to
combat and avoid the spread of the disease [6-11].

Out of the seven known human COVID-19, four are the known human influenza
pathogens. SARS-CoV, MERS-CoV, and 2019-nCoV are responsible for severe respiratory
diseases [12]. While COVID-19 has long been developed and studied by researchers and
medical professionals, many people are lacking knowledge of the disease, and vaccines
and antiviral drugs are still not available to directly prevent or treat the infection. The last
major outbreak of SARS-CoV in China was in 2003. It was an acute respiratory infectious
ailment with a large risk of demise. China managed the SARS outbreak through numerous
inspections and effective preventive measures. The time of incubation for COVID-19 is
substantial and very long compared to SARS. Many studies computed different periods of
incubation for the COVID-19, as an example, 5.2 days [13], 3.0 days [14], and 4.75 days
[15]. In [14], an incubation period of up to 24 days is reported, this extends to 38 days
as reported in Enshi Tujia and Miao autonomous prefecture in Hubei province of China.
Notice that people afflicted with asymptoms are very numerous [16], and in comparison
to SARS-CoV and MERS-CoV the death rate is much inferior [14]. Genetic virus studies
show that SARS-CoV and 2019-nCoV are 85% homologous [17], but 2019-nCoV binds
ACE2 to an affinity higher than SARS-CoVS [18]. In the positive reported cases induced
at COVID-19, SARS will be surpassed by the end of 29 January 2020. The variability of the
asymptomatic cases, the incubation time and the super transmissibility of the virus bring
considerable difficulties in controlling the epidemics. There is also very recent and novel
research that discussed the dynamic and transmission of COVID-19 [19, 20].

Over the last few decades, many scientists have shown that the fractional models can
more accurately explain natural phenomena than the differential equations of the integer
order. Because of this advantage, the fractional calculus has taken on the importance and
popularity of modeling realistic cases, especially those with memory effects [21-23]. Fur-
thermore, applications of the fractional calculus and mathematical modeling are found
in many fields of social sciences, engineering, and mathematical biology [24—32]. Given
this importance, we feel inspired to investigate and examine a new fractional version of
the model involving Caputo operator. To the best of our knowledge, this is the first time
Caputo operator has been employed for the model being considered.

2 Formulation of the Caputo SIR model

Although there have been various complex models proposed recently for transmission dy-
namics of COVID-19 as discussed in Sect. 1, we use a relatively simple and most popular
model used in the field of mathematical epidemiology. The SIR model [1] is the stepping
stone of all the models proposed after it. This is the reason to choose the SIR model to
investigate dynamics of the COVID-19 pandemic while using the Caputo differential op-
erator. The SIR model consists of three mutually distinct categories. First are those people
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who could potentially catch the disease S(¢), second are those who currently have the dis-
ease and can infect others I(¢) (infectives), and then R() stands for the removed, and this
is the group of people who have already caught the disease and have now either recovered
from the disease or have died with the disease. With all mathematical models, we have to
make various assumptions to simplify the real world phenomena because things are just
too complicated to express everything in a set of simple equations, so the first assumption
that we make here is that the epidemic is sufficiently short, so it does not last that long so
that we can assume that the total population remains constant. The second assumption
in the model relates to the way in which the disease is transmitted, and we assume that
the rate of increase in the infectives is proportional to the contact between the suscepti-
bles and the infectives, and we assume that this occurs at a constant rate. Finally, our third
assumption relates to the removal rate and this is the category R(¢), so there is a constant
rate which could be a death rate or a recovery rate. Having made the assumptions, a set of

equations (1)—(3) that are going to govern the model can be written down:

D(s(®) = A, &
D(I(¢)) = ﬁ% -vI, )
D(R(®)) = v1, 3)

where N =S + I + R and DD stands for the classical integer-order differential operator. We
now have three differential equations for three categories of people within the population.
So, the number of susceptibles is going to decrease according to the number of contacts
(contact rate = ) between the infectives and the susceptibles. Similarly, the number of
infectives will increase due to contact between people and decrease because of people
either recovering or dying as a result of the disease. Finally, the removed category includes
people that no longer can catch the disease either because they have recovered or died,
and this is going to increase at the constant rate (recovery rate = y) depending on how
many infectives there are. Next, we need some initial data before we can solve the system

of differential equations. Therefore,

S(0)=S,>0, I(0)=Ip>0,  R(0)=Ry>0. (4)

There are many instances wherein classical epidemiological models have been re-
investigated using operators of nonlocal nature. It is because of their memory property
which makes them the most suitable tool to capture dynamics for the spread of a disease
since epidemics are known to have memory retaining characteristics.

Having been inspired by a plethora of research works carried out in fractional mathe-
matical epidemiology (see, for example, [33—35] and most of the references cited therein),
we have introduced the following Caputo-type SIR model wherein its distinguished fea-

ture is that the dimensional inconsistency of the model has been removed by carrying the
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fractional order v in the power of biological parameters g and y:

SI

CDg,t(S(t)) = N’

1 ! - d _ v
m/o(t—lw Es(l/f)d‘ﬂ——/g

1 t a Y ’
[ e Gnay =g -

“Dy, (1) = v

1 ¢ d
CDg,t(R(t)) = m‘/(; (t=vy)™ ER(I/I)dl/I =y"I,

where “Dj, stands for the Caputo (noninteger-order) differential operator with order of

system (5) to be v € (0, 1).

3 Existence and uniqueness results

Among the vital areas in the concept of noninteger-order differential equations is the con-

cept of existence and uniqueness of solutions in a dynamical system. Recently, the theory

has attracted many researchers’ attention [36]. By means of a fixed point theorem, we re-

port the existence and uniqueness of (5). Take into account the proposed model (5) in the

form as comes next:

Dy.S(t) = A1(4,S,LR),
Dy I(t) = Ay(t,S,LR),
CD(‘)’+R(t) = A3(t,S,I,R),

with

A(6S,1R) =~
As(t,S,1,R) = =" F = 'L,
A3(t’S,I,R) = va.

Therefore, (5) can accommodate the form

DY) =R Y(®); te]=[0,b,0<a<1,
T(O) = TO > 01

only if

T(t) = (S»IrR)T;
T(O) = (50710rR0)T7
R(E Y () = (0, S,LR)T, i=1,2,3,

with T representing the transpose. Now, we can write (8) as

T(6) = Yo+ TER( ()

— L ‘ _ v-1
_TO+F(\))/0 (t—x) R(K,T(K))d/c.

(6)

7)

(8)

)

(10)
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Consider the Banach space on [0, 5], with [0, 5] denoting a set of continuous functions
from on R with the associated norm given by || || = sup,. 7 || be E = C([0, b]; R). Also,

take into account the following theorem.

Theorem 3.1 Surmise that R € C([J,R]) and also maps J x R® (bounded subset) to rel-
atively R (compact subsets). Additionally, 3 a constant Lr > 0 such that (A1) |R(t, T1(¢)) -
R, To(0)| < LrIY1(E) = Y2 @)|;VE € T and each Y1,y € C([T,R]). (10) which is an
equivalence of (5) accommodates a unique solution only if QLR < 1, and

b\)
TTWw+1)

Proof Take into account P: E — E expressed as

(PY)(£) = To + m (- )" R (e, T (1)) dic. (11)

(11) shows that the unique solution for (5) represents the fixed point of P. Moreover, take
sup,c 7 IR(¢,0)|| = My and k > || Yol + QM. Therefore, it will suffice to verify PH, C H,,
and the set given by H, = {Y € E: || Y| < «} is convex and closed. Now, for any T € H,,

we have
1 t
|(PT)(t)| <|Yo| + m/ (t—K)”_1|R(/<,T(K))|d/<

v-1
<o+ o )/(t K) [|R(K T(K)) K,O)|+|R(/<,0)|]dfc

(Lrk + M) b1
ETO+W\/(;(t_K) dk

Yo+ (Lri +M)
'(v+1)

(12)

<o+ Q(,CRK +M1)

<k

)

which affirms the result. Further, for given Y3, T5 € E, one reaches

[(PY1)(®) - (PY)(8)] < ﬁ /Ot(t—K)”l|R(/c,T1(/<)) - R(k, Yo (k)) | dic

= I{:(—f),/o (t =) 1) = Ta)| dic (13)

< QLR |Y1(2) - Ta(t)],

indicating that ||(PY7) — (PYy)|| < QLR Y1 — Y2||. Thus, as a consequence of the Banach

contraction rule, (5) possesses a unique solution on 7. O

Now, we want show the existence of solutions of (5) by means of the Schauder fixed

point principle.
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Lemma 3.2 Take M # } as a bounded, convex, and closed subset of a Banach space E.
Consider Py, P, as operators in obedience of the following:

o P1Y1 + Py Yy € M, when Y1,y € M;

o Py is continuous and compact;

» P, is a contraction mapping.
Then 3u € M so that u = Pru + Pyu.

Theorem 3.3 Surmise that R : J x R® — R is continuous and satisfies condition (A,).
Additionally, take into account that (A;) |R(t, )| < K(t)forall(t,Y) € J x RéandK €
C([0,b], Ry).

Then (5) possesses at least one solution on J only if
L | T1(to) = Yalto) | < 1.

Proof Consider sup,. 7 [K(£)| = | K|l and ¢ > | To|l + QIK|, with B, = {Y e E: | T] < ¢}.

Take into account Py, P, on B; given by

1

(P1Y)(t) = o)

/t(t - K)”_IR(K, T(K)) dk, teJ,
0
and

P,1)(t) =T(t), teJ.

Therefore, YY1, T, € B, we have

[PY)® + (Y@ < 1ol + ﬁ /0 (£ =) R (10, Y1 () | e

14
<ol + QUK e
< <o0.
Thus, PlTl +P2T2 (S] B;.
Now, the contraction of P, will be proved.
Given any ¢ € J and Y1, Y, € B, it yields
| P10)(@) = (P 12)(@)]| < [ Yi(t0) ~ Yo (t0) . (15)

Having R as a continuous function, P, is continuous. Furthermore, V¢ € J and Y, € B,

1P Y] < QUK < +00,

Page 6 of 17
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P; is uniformly bounded. At last, we prove that P; is compact. Start with
SUP(, vye7 <, | R, Y (K))| = R, which yields

(P (8) = (PLO)(E)| = ——

o) /0 1 [(tz k) (- K)U_I]R(K, T(K)) dk

+/t12(t2—/c)”172(/c,'¥‘(/<))d/c ae)
'(v)
Or

as try — t.

< =2 -0)"+ (5 -1)]
N
Hence, P; is equicontinuous and so is relatively compact on B;. In accordance with the

Arzela—Ascoli principle, P; is compact on B, . Having satisfied all the claims of Lemma 3.2,
(5) possesses at least one solution on 7. O

4 Stability analysis

Here, the stability of (5) will scrutinize the aspect of Ulam—Hyers and generalized Ulam—
Hyers [37, 38]. It has been proved that stability analysis is important for an approximate
solution. Assume ¢ > 0 and take into account the inequality

“Dy. YY) -R(ET®)| <e, te], (17)
and ¢ = max(¢)7,j=1,...5.

Definition 1 (8), which is the equivalence of (5), is Ulam—Hyers stable if 3 X'z > 0, so that
¥ & >0 and a solution T € E holds for (1), there is the unique solution Y € E for (8), with

Y6 -Y(@)] < Xre, te],
where Xz = max(Xg,)".

Definition 2 (8), which is the equivalence of (5), is referred to as generalized Ulam—Hyers
stable if 3 a continuous function 9% : R, — R,, with 9% (0) = 0, so that V solution Y € E
of (17), there is the unique solution Y € E for (8), so that

Y@ -Y@)| <vre, te€],
where ¥ = max(9z,;)".

Remark1 A function Y € E satisfies (17) if and only if 3 a function / € E with the property
as comes next:

(i) 1h(t)| <&, h=max(h)",t €J;

(ii) CDYY () =R Y (@) +h(t),t €].

Lemma 4.1 Surmise that Y € E holds for (17), then Y holds for the following:

Y(#) - Yo - ﬁ /Ot(t - K)V_IR(K, ?(K)) di| < Qe. (18)
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Proof By utilizing (ii) of 1,
Dy Y (&) =R(6, T (1)) +h(D)
and Lemma 4.1, we have that

Y v 1 v=-1
Y(t) = T0+m/ (t—«) RK T(/c))dx+m/ (t—«)""h(k)dxk. (19)

Considering (i) of 1 yields

‘Y(t)—?o—ﬁfo (t—/()”’lR(K,Y(K))dK

1 [t .
— — )" )| d
_F(V)/o(t )" | die (20)

< Qe.
Hence, we complete the result. 0

Theorem 4.2 Surmise that R :] x R> — R is continuous ¥ Y € E and assumption (A,)
holds with 1 — QLy > 0. Then (8), which is the equivalence of (5), is Ulam—Hyers and,
consequently, generalized Ulam—Hyers stable.

Proof Surmise that T € E holds for (17) and Y € IE is a unique solution of (8). Therefore,
Ve>0,te]and Lemma 4.1, it yields

|'Y"(t) - T(t)| = rtr;zjljx Y@ -, - ﬁ/ (t—K)”_lR(K,T(K)) di

< max
teJ

Y -1 0——/ (t—-K)"~ 1R(K T(K))

+ max

e T(v) / (=) Rk, T () = Rk, Y ()| dic

S T(t)—’?o—m‘/(; (t—K)U_lR(K,’?(K))dK

LR ! v=1|~r
m/(;(t—/c) |T(K)—T(K)’dl(

< Qe+ QLR|Y () - Y ()

So,
[T -7 < Xre,
where
Yo = Q
1oLy

Equating 9 (¢) = X're so that ¥z (0) = 0, one concludes that (5) is stable for both Ulam—
Hyers and generalized Ulam—Hyers. g

Page 8 of 17
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5 Estimation of parameters

A disease model like the one being investigated in the present research study is widely
accepted and validated if its simulations for infectious compartment agree well with those
of available real cases of the disease. In order to do so, one needs to obtain values of the
parameters of the model in a best possible way so that they cause the model to be in
good agreement with the available data. This brings into attention a few existing meth-
ods for getting best values of such parameters. The Bayesian technique, probability plot-
ting, maximum likelihood estimation, and least-squares method are among the methods
that exist for parameter estimation. In this study, we have used the least-squares method
to compute the parameters (8 = transmission rate and y = recovery rate) of model (5).
Since there are only two non-demographical parameters for the proposed model, they
are best fitted using the real cases of COVID-19 pandemic throughout Pakistan (source
http://covid.gov.pk/stats/pakistan). Daily cases of the disease are taken from 1 April to 15
May 2020 when the present research study was being conceived and prepared.

In the least-squares approach, the objective function requires to be minimized. The ob-
jective is based upon adjusting the parameters for a model function to fit a data set in a best
possible way. A simple data set consists of # points (data pairs) (xx, %),k = 1,...,n, where
x; shows an independent variable and y, stands for a dependent variable whose value
is computed using observation. The model function possesses the form g(x, p), where m
adjustable parameters are kept in the vector p. The goal is to notice the parameters for
the model that fit the data in a best possible way. Such a fit of a model to a data point is
measured by its residual, defined as the difference between the real available value of the
dependent variable and the value predicted by the model:

"k = Yk — Xk, p). (21)

The least-squares method obtains the optimal parameter values by minimizing the sum

of squared residuals as shown below:

n

S=Y (r0*=Y_ (5 - gbswp))”. (22)
k=1

k=1

For initial conditions, the overall population of Pakistan is found to be N(0) = 212.2M, the
initial susceptible population is estimated to be S(0) = 212,197,711, the initial exposed
population is estimated to be E(0) = 2,289, and the initial recovered population is esti-
mated to be R(0) = 0. There are only two biological parameters best fitted via the least-
squares fitting method thereby yielded best fit of the model’s solution to the real cases
chosen from Pakistan as depicted by Fig. 1 under the classical situation, that is, when
v = 1 wherein the best parameters are as follows: 8 = 3.0918 and y = 3.0190 for the trans-
mission and recovery rate, respectively. The average absolute relative error between the
real cases and the model’s simulations for the infectious compartment is decreased. Such a
value for the error is approximately 3.3603e — 02. Figure 1 shows the real cases by black cir-
cles, while the best fitted curve is shown by the blue solid line and the residuals are shown
by side. The biological parameters included in the model are listed in Table 1 along with
their best estimated values obtained via the least-squares technique. These parameters
have finally produced the value of the basic reproduction number equal to Ry = 1.0241
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Figure 1 (a) Best data fitting for COVID-19 daily cases (black circles) in Pakistan from 1 April to 15 May 2020
with the infectious class /(t) (solid blue line) of the model under the classical case (v = 1) and the (b)
respective residuals

Table 1 Best fitted parameters employed in model (5) for its classical v = 1 and fractional
v =8.561591e-01 version

Parameter Description Value Sources
B Transmission rate 3.0918¢ 3.9405 Fitted
y Recovery rate 3.0190° 3.8010F Fitted

for the real COVID-19 cases under the classical situation in Pakistan from 1 April to 15
May 2020. Moreover, similar analysis for the Caputo fractional-order model is carried out
wherein the best fitted parameters are found as 8 = 3.9405 and y = 3.8010 for the trans-
mission and recovery rate, respectively. One distinguished feature in the present research
study is the computation of an optimum value of the fractional-order parameter v which is
8.561591e-01. Hence, the basic reproduction number is obtained as Ry = 1.0313 and the
corresponding average absolute relative error is 1.7360e-02 for the Caputo model, whereas
3.3603e-02 is the average absolute relative error when v = 1. This clearly reveals the su-
periority of the fractional operator over the classical one. Figure 2 shows the real cases
by black circles, while the best fitted curve obtained under the Caputo fractional case is
shown by the blue solid line and the residuals are shown by side.

6 Sensitivity analysis

In this portion, the concept of sensitivity analysis is employed to discover the robust sig-
nificance of the generic parameters that are present in the basic reproduction number Ry.
Further, with the aid of parameter values from reliable assumptions, both analytic and nu-
merical values of the parameters in R are obtained. The analytic expressions obtained can
be used to shed some light on how to control the onset of the model in variant localities if
and only if the dynamics follow model (1). The threshold value R, is a quantity of which
lowering the number to less than unity is considered as the major way of curtailing and
aborting the spread of the ailment. The sensitivity index technique is used to measure the
most sensitive parameters in the model, those with positive sign are considered as highly
and proportionally sensitive for increasing the value of R, while those with negative sign

Page 10 of 17
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Figure 2 (a) Best data fitting for COVID-19 daily cases (black circles) in Pakistan from 1 April to 15 May 2020
with the infectious class /(t) (solid blue line) of the model under the Caputo operator (v =8.561591e-01) and
the (b) respective residuals

Table 2 The elasticity indices for Ro = 1.0313 to the parameters of model (5)

Parameter Baseline value Elasticity index
B 3.9405F 8.561591e-01
y 3.8010 -8.561591e-01

are less sensitive for the decrease of R and the other category are neutrally sensitive (with
zero relative sensitivity). It is popularly known that the cause of raping transmission is as-
sociated directly with the basic reproduction number . The elasticity indices of R, to
the associated parameters in the model are defined as follows [39]:
IR P;
R 0 2L (23)
! JaP; Ro
where R denotes the basic reproduction ratio and P; is as stated above. R for model (5)

under consideration is defined by the following expression:

Ry = (é> (24
14

Thus, after some computation we reach

Tﬁ =V,
(25)
T, =-v.

The numerical values showing the relative significance of the Ry parameters are given in
Table 2. Positive relationship parameter is 8, while that of negative relations is y. A nega-
tive relationship indicates that an increase in this parameter’s value would help to reduce
the brutality of the disease. While a positive relationship indicates that an increase in the
values of that parameter would have a substantial effect on the frequency of the spread of
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Figure 3 Normalized local sensitivity indices of R via bar chart
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Figure 4 Normalized local sensitivity indices of R for each parameter

the ailment. Figure 3 falls in a positive upper part, while Fig. 4 falls in a negative lower part
as stated in Table 2.

7 Numerical simulations

This is the place where we get deep insights into the model’s dynamical behavior. The
present section offers the numerical simulations of Caputo model (5) while using the bio-
logical parameters as listed in Table 1. We have employed the FDE12 technique in order to
get the solution of the nonlinear model shown in equations (5) and achieved the graphical
results based upon parameters which are taken to be variables. Susceptible S(¢), infectious
I(t), and recovered R(t) populations are investigated with different values of the parame-
ters. It may also be noted that the optimized value of the fractional order v = 8.561591e-01
is used during each simulation. As shown in (a) plot of Fig. 5, the susceptible individuals
decrease as the transmission rate increases; in contrast, the susceptible individuals de-
crease as the recovery rate decreases as shown by (b) plot of Fig. 5. Similarly, the slightly in-
creased value of the transmission rate § is responsible for the spread of the virus (Fig. 6(a)),
and the number of infectious individuals decreases when there is an improvement in their
recovery which is observed in (b) plot of Fig. 6. Surprisingly, an increasing value of 8 causes
an increase in the recovered population after a certain level of time interval as shown in
(a) plot of Fig. 7, and similar surprising behavior is noted in (b) plot of Fig. 7. However, this
should be obvious since with rapid transmission rate there will be more effective strate-

gies used by public health sectors and concerned government to overcome the situation
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Figure 6 Behavior of the infectious population under varying values of 8 and y

leading to an increase in the recovered population with similar sort of explanation for (b)
plot of Fig. 7.

We have also investigated the effects of fractional order v on the dynamical behavior
of Caputo model (5) for all three compartments. As can be seen in Fig. 8, the suscepti-
ble population decreases if v increases, whereas Fig. 9 shows an increase in the infectious
population for increasing values of v, and this makes sense because the susceptible pop-
ulation, after being infected, is shifted to I compartment thereby leading to an increase
therein. It is observed in Fig. 10 that the recovered population propels forward if v gets
large. Finally, we have also shown the dynamics of the basic reproduction number R, un-
der different effects of the transmission rate 8 and the recovery rate y in Fig. 11, wherein
even a slightly larger value of 8 brings the reproduction number near to 1, which is clearly
an alarming situation for policy makers to devise an effective approach to prevent R, to

be greater than 1.



Alshomrani et al. Advances in Difference Equations (2021) 2021:185 Page 14 of 17

x10° x108

3 = 38.920504

[ = 3.930504

st v = 3.600986
(= 3.940504

recovered, R(t)
o
recovered, R(t)

= 3.700986

=3

[} 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
time (days) time (days)
(a) (b)

Figure 7 Behavior of the recovered population under varying values of B and y

x108
2.13 T v = 6.561591e-01
L
212}
211}
_ v =7.561591e-01
7 v =8.561591e-01
s 21f
o
B
2 2.09
=]
2
2081 v = 9.561591e-01
207}
2.06

0 5 10 15 20 25 30 35 40
time (days)

Figure 8 Behavior of the susceptible population for different values of the fractional-order parameter v

8 Conclusion

Using Caputo differential operator famous to have nonlocal nature, which is perfectly suit-
able to investigate transmission dynamics of a disease, we have fractionalized the SIR epi-
demic model having order v without violating dimensional consistency between param-
eters and the operator itself. The proposed Caputo SIR model is used to comprehend the
behavior of the devastating disease of COVID-19 that has recently emerged in the entire
community of humankind. The model has shown promising results for it is proved to have
a unique solution on the basis of the Banach contraction principle. Using Ulam—Hyers and
its generalized version, the Caputo model is shown to be stable. Fitted parameters of the
model, using real incidence cases of the virus from 1 April to 15 May 2020, are obtained
under the least-squares approach wherein the fractional order v is also optimized to be
8.561591e-01: one of the major contributions in the present work. Using these values, it
has been proved that the Caputo model outperforms its classical version by 48% while the

basic reproductive number is R = 1.0313. Sensitivity of the parameters § and y relating
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with Ry is also investigated. Various numerical simulations carried out suggest that the
epidemic can effectively be controlled only if its contact rate is lowered, and this is possi-
ble when people observe social distancing and wear protective masks. On the other hand,
an underdeveloped country like Pakistan will be in huge trouble if such measures are not
strictly followed upon. Our future study will explore the effects of nonsingular differential
operators on the standard SIR model.
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