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Abstract
A new family of p-Bernoulli numbers and polynomials was introduced by Rahmani (J.
Number Theory 157:350–366, 2015) with the help of the Gauss hypergeometric
function. Motivated by that paper and in the light of the recent interests in finding
degenerate versions, we construct the generalized degenerate Bernoulli numbers
and polynomials by means of the Gauss hypergeometric function. In addition, we
construct the degenerate type Eulerian numbers as a degenerate version of Eulerian
numbers. For the generalized degenerate Bernoulli numbers, we express them in
terms of the degenerate Stirling numbers of the second kind, of the degenerate type
Eulerian numbers, of the degenerate p-Stirling numbers of the second kind and of an
integral on the unit interval. As to the generalized degenerate Bernoulli polynomials,
we represent them in terms of the degenerate Stirling polynomials of the second
kind.
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1 Introduction
We have witnessed in recent years that many interesting arithmetic and combinatorial re-
sults were obtained in studying degenerate versions of some special polynomials and num-
bers (see [7–13] and the references therein), which was initiated by Carlitz when he intro-
duced the degenerate Stirling, Bernoulli and Euler numbers in [3]. The studies have been
done with various different tools such as combinatorial methods, generating functions,
umbral calculus, p-adic analysis, differential equations, special functions, probability the-
ory and analytic number theory. It should be noted that studying degenerate versions can
be done not only for polynomials but also for transcendental functions. Indeed, the de-
generate gamma functions were introduced as a degenerate version of ordinary gamma
functions in [9]. The degenerate special polynomials and numbers have potential to find
diverse applications in many areas just as ‘ordinary’ special polynomials and numbers play
very important role in science and engineering as well as in mathematics. Indeed, it was
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shown in [10, 11] that the expressions of the probability distributions of appropriate ran-
dom variables can be represented in terms of both the degenerate λ-Stirling polynomials
of the second kind and the r-truncated degenerate λ-Stirling polynomials of the second
kind.

In [14], Rahmani introduced a new family of p-Bernoulli numbers and polynomials by
means of the Gauss hypergeometric function which reduce to the classical Bernoulli num-
bers and polynomials for p = 0. Motivated by that paper and as a degenerate version of
those numbers and polynomials, in this paper we introduce the generalized degenerate
Bernoulli numbers and polynomials again in terms of the Gauss hypergeometric function
which reduce to the Carlitz degenerate Bernoulli numbers and polynomials for p = 0. In
addition, we introduce the degenerate type Eulerian numbers as a degenerate version of
Eulerian numbers. The aim of this paper is to study the generalized degenerate Bernoulli
numbers and polynomials and to show their connections to other special numbers and
polynomials. Among other things, for the generalized degenerate Bernoulli numbers we
express them in terms of the degenerate Stirling numbers of the second kind, of the de-
generate type Eulerian numbers, of the degenerate p-Stirling numbers of the second kind
and of an integral on the unit interval. As to the generalized degenerate Bernoulli poly-
nomials, we represent them in terms of the degenerate Stirling polynomials of the second
kind. For the rest of this section, we recall the necessary facts that are needed throughout
this paper.

For any λ ∈R, the degenerate exponential functions are defined by

ex
λ(t) =

∞∑

n=0

(x)n,λ
tn

n!
, eλ(t) = e1

λ(t) (see [6, 9]), (1)

where (x)0,λ = 1, (x)n,λ = x(x – λ) · · · (x – (n – 1)λ) (n ≥ 1). Note that limλ→0 ex
λ(t) = ext .

Let logλ(t) be the compositional inverse function of eλ(t) with logλ(eλ(t)) = eλ(logλ(t)) =
t. Then we have

logλ(1 + t) =
∞∑

n=1

λn–1(1)n,1/λ
tn

n!
(see [7]). (2)

In [7], the degenerate Stirling numbers of the first kind are defined by

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ (n ≥ 0), (3)

where (x)0 = 1, (x)n = x(x – 1)(x – 2) · · · (x – n + 1) (n ≥ 1).
As the inversion formula of (3), the degenerate Stirling numbers of the second kind are

defined by

(x)n,λ =
n∑

k=0

S2,λ(n, k)(x)k (n ≥ 0) (see [7]). (4)

From (3) and (4), we note that

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
, (5)
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and

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0) (see [7]). (6)

It is well known that the Gauss hypergeometric function is given by

2F1

(
a, b

c

∣∣∣∣x
)

=
∞∑

k=0

〈a〉k〈b〉k

〈c〉k

xk

k!
(see [1, 2, 12]), (7)

where 〈a〉0 = 1, 〈a〉k = a(a + 1) · · · (a + k – 1), (k ≥ 1).
The Euler transformation formula is given by

2F1

(
a, b

c

∣∣∣∣x
)

= (1 – x)c–a–b
2F1

(
c – a, c – b

c

∣∣∣∣x
)

(see [1, 2]). (8)

The Eulerian number
〈 n

k
〉
is the number of permutation {1, 2, 3, . . . , n} having k permutation

ascents. The Eulerian numbers are given explicitly by the finite sum

〈
n
k

〉
=

k+1∑

j=0

(–1)j
(

n + 1
j

)
(k – j + 1)n (n, k ≥ 0, n ≥ k) (9)

and

n∑

k=0

〈
n
k

〉
= n! (see [4, 5]). (10)

For n, m ≥ 0, we have

〈
n
m

〉
=

n–m∑

k=0

S2(n, k)
(

n – k
m

)
(–1)n–k–mk! (see [5]) (11)

and

xn =
n∑

k=0

〈
n
k

〉(
x + k

n

)
(see [4, 5]). (12)

Recently, the degenerate Stirling polynomials of the second kind were defined by

1
k!

(
eλ(t) – 1

)kex
λ(t) =

∞∑

n=k

S2,λ(n, k|x)
tn

n!
(k ≥ 0) (see [8]). (13)

Thus, by (13), we get

S2,λ(n, k|x) =
n∑

l=k

(
n
l

)
S2,λ(l, k)(x)n–l,λ (see [8]) (14)
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=
n∑

l=0

(
n
l

)
S2,λ(l, k)(x)n–l,λ (n ≥ 0).

For x = 0, S2,λ(n, k) = S2,λ(n, k|0) (n, k ≥ 0, n ≥ k), are called the degenerate Stirling num-
bers of the second kind.

Carlitz introduced the degenerate Bernoulli polynomials given by

t
eλ(t) – 1

ex
λ(t) =

∞∑

n=0

βn,λ(x)
tn

n!
(see [3]). (15)

When x = 0, βn,λ = βn,λ(0) (n ≥ 0), are called the degenerate Bernolli numbers.

2 Generalized degenerate Bernoulli numbers
By (1) and (2), we get

t
eλ(t) – 1

=
1

eλ(t) – 1

∞∑

n=1

λn–1(1)n,1/λ
1
n!

(
eλ(t) – 1

)n (16)

=
∞∑

k=0

λk(1)k+1,1/λ

k + 1
· 1

k!
(
eλ(t) – 1

)k

=
∞∑

k=0

λk(1)k+1,1/λ

k + 1

∞∑

n=k

S2,λ(n, k)
tn

n!

=
∞∑

n=0

( n∑

k=0

λk(1)k+1,1/λ

k + 1
S2,λ(n, k)

)
tn

n!
.

Therefore, by (15) and (16), we obtain the following theorem.

Theorem 1 For n ≥ 0, we have

βn,λ =
n∑

k=0

λk(1)k+1,1/λ

k + 1
S2,λ(n, k).

Replacing t by logλ(1 + t) in (15), we get

logλ(1 + t)
eλ(logλ(1 + t)) – 1

=
∞∑

k=0

βk,λ
1
k!

(
logλ(1 + t)

)k (17)

=
∞∑

k=0

βk,λ

∞∑

n=k

S1,λ(n, k)
tn

n!

=
∞∑

n=0

( n∑

k=0

S1,λ(n, k)βk,λ

)
tn

n!
.

On the other hand, by (2), we get

logλ(1 + t)
eλ(logλ(1 + t)) – 1

=
1
t

logλ(1 + t) =
1
t

∞∑

n=1

λn–1(1)n,1/λ
tn

n!
(18)



Kim et al. Advances in Difference Equations        (2021) 2021:175 Page 5 of 12

=
∞∑

n=0

λn(1)n+1,1/λ

n + 1
tn

n!
.

Therefore, by (17) and (18), we obtain the following theorem.

Theorem 2 For n ≥ 0, we have

n∑

k=0

S1,λ(n, k)βk,λ =
1

n + 1
λn(1)n+1,1/λ.

From (15) and (16), we note that

∞∑

n=0

βn,λ
tn

n!
=

1
eλ(t) – 1

∞∑

n=1

λn–1(1)n,1/λ
1
n!

(
eλ(t) – 1

)n (19)

=
∞∑

n=0

(–1)n(1)n+1,1/λλ
nn!

(n + 1)!
(1 – eλ(t))n

n!

=
∞∑

n=0

〈1 – λ〉n〈1〉n

〈2〉n

(1 – eλ(t))n

n!

= 2F1

(
1 – λ, 1

2

∣∣∣∣1 – eλ(t)

)
.

In view of (19), we may consider the generalized degenerate Bernoulli numbers given in
terms of Gauss hypergeometric function by

2F1

(
1 – λ, 1
p + 2

∣∣∣∣1 – eλ(t)

)
=

∞∑

n=0

β
(p)
n,λ

tn

n!
, (20)

where p ∈ Z with p ≥ –1. When p = 0, β (0)
n,λ = βn,λ, (n ≥ 0).

Let us take p = –1 in (20). Then we have

∞∑

n=0

β
(–1)
n,λ

tn

n!
= 2F1

(
1 – λ, 1

1

∣∣∣∣1 – eλ(t)

)

=
∞∑

n=0

(λ – 1)n

n!
(
eλ(t) – 1

)n =
∞∑

n=0

(
λ – 1

n

)(
eλ(t) – 1

)n (21)

= eλ–1
λ (t) =

∞∑

n=0

(λ – 1)n,λ
tn

n!
.

By comparing the coefficients on both sides of (21), we get

β
(–1)
n,λ = (λ – 1)n,λ (n ≥ 0). (22)

From (20), we note that

∞∑

n=0

β
(p)
n,λ

tn

n!
= 2F1

(
1 – λ, 1
p + 2

∣∣∣∣1 – eλ(t)

)
=

∞∑

k=0

〈1 – λ〉k〈1〉k

〈p + 2〉k

(1 – eλ(t))k

k!
(23)
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= (p + 1)!
∞∑

k=0

λk(1)k+1,1/λk!
(p + k + 1)!

1
k!

(
eλ(t) – 1

)k

= (p + 1)!
∞∑

k=0

λk(1)k+1,1/λk!
(p + k + 1)!

∞∑

n=k

S2,λ(n, k)
tn

n!

=
∞∑

n=0

( n∑

k=0

λk(1)k+1,1/λ( p+k+1
p+1

) S2,λ(n, k)

)
tn

n!
.

Therefore, by comparing the coefficients on both sides of (23), we obtain the following
theorem.

Theorem 3 For n ≥ 0 and p ≥ –1, we have

β
(p)
n,λ =

n∑

k=0

λk(1)k+1,1/λ( p+k+1
p+1

) S2,λ(n, k).

From (6), we get

∞∑

n=k

S2,λ(n, k)
tn

n!
=

1
k!

(
eλ(t) – 1

)k =
1
k!

k∑

l=0

(
k
l

)
(–1)k–lel

λ(t) (24)

=
∞∑

n=0

(
1
k!

k∑

l=0

(
k
l

)
(–1)k–l(l)n,λ

)
tn

n!
.

By (24), we get

k∑

l=0

(
k
l

)
(–1)k–l(l)n,λ =

⎧
⎨

⎩
k!S2,λ(n, k) if n ≥ k,

0 otherwise.
(25)

Let � be a difference operator with �f (x) = f (x + 1) – f (x). Then we have

�nf (x) =
n∑

k=0

(
n
k

)
(–1)n–kf (x + k).

From (25), we have

k!S2,λ(n, k) = �k(0)n,λ (n, k ≥ 0, n ≥ k). (26)

In the light of (11), we may consider the degenerate type Eulerian numbers given by

(–1)n–m

〈
n
m

〉

λ

=
n–m∑

k=0

λk(1)k+1,1/λ

(
n – k

m

)�k(0)n,λ

k!
. (27)

By (26) and (27), we get

(–1)n–m

〈
n
m

〉

λ

=
n–m∑

k=0

λk(1)k+1,1/λ

(
n – k

m

)
S2,λ(n, k). (28)
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We observe that

n∑

k=0

λk(1)k+1,1/λS2,λ(n, k)(t + 1)n–k =
n∑

k=0

λk(1)k+1,1/λS2,λ(n, k)
n–k∑

m=0

(
n – k

m

)
tm (29)

=
n∑

m=0

(n–m∑

k=0

λk(1)k+1,1/λS2,λ(n, k)
(

n – k
m

))
tm

=
n∑

m=0

(–1)n–m

〈
n
m

〉

λ

tm.

From (29) and Theorem 3, we note that

β
(p)
n,λ =

n∑

k=0

λk(1)k+1,1/λ

(
p + k + 1

k

)–1

S2,λ(n, k) (30)

= (p + 1)
n∑

k=0

λk(1)k+1,1/λS2,λ(n, k)
∫ 1

0
tp(1 – t)k dt

= (p + 1)
∫ 1

0

n∑

k=0

λk(1 – t)ntp(1)k+1,1/λS2,λ(n, k)
(

1 +
t

1 – t

)n–k

dt

= (p + 1)
∫ 1

0
(1 – t)ntp

n∑

k=0

〈
n
k

〉

λ

(–1)n–k
(

t
1 – t

)k

dt

= (p + 1)
n∑

k=0

〈
n
k

〉

λ

(–1)n–k
∫ 1

0
(1 – t)n–ktp+k dt

= (p + 1)
n∑

k=0

〈
n
k

〉

λ

(–1)n–k (n – k)!(p + k)!
(p + n + 1)!

=
p + 1

n + p + 1

n∑

k=0

〈
n
k

〉

λ

(–1)n–k
(

p + n
p + k

)–1

.

Therefore, by (30), we obtain the following theorem.

Theorem 4 For n, p ≥ 0, we have

β
(p)
n,λ =

p + 1
n + p + 1

n∑

k=0

〈
n
k

〉

λ

(–1)n–k
(

p + n
p + k

)–1

.

Let r be a positive integer. The unsigned r-Stirling number of the first kind
[n

k
]

r is the
number of permutations of the set [n] = {1, 2, 3, . . . , n} with exactly k disjoint cycles in such
a way that the numbers 1, 2, 3, . . . , r are in distinct cycles, while the r-Stirling number of the
second kind

{n
k
}

r counts the number of partitions of the set [n] into k non-empty disjoint
subsets in such a way that the numbers 1, 2, 3, . . . , r are in distinct subsets. In [13], Kim
et al. introduced the unsigned degenerate r-Stirling numbers of the first kind

[n
k
]

r,λ as a
degenerate version of

[n
k
]

r and the degenerate r-Stirling number of the second kind
{n

k
}

r,λ
as a degenerate version of

{n
k
}

r . It is well known that the degenerate r-Stirling numbers of
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the second kind are given by

(x + r)n,λ =
n∑

k=0

{
n + r
k + r

}

r,λ
(x)k (n ≥ 1). (31)

From (31), we note that

1
k!

(
eλ(t) – 1

)ker
λ(t) =

∞∑

n=k

{
n + r
k + r

}

r,λ

tn

n!
(k ≥ 0, r ≥ 1). (32)

By the Euler transformation formula in (8) and (32), we get

∞∑

n=0

β
(p)
n,λ

tn

n!
= 2F1

(
1 – λ, 1
p + 2

∣∣∣∣1 – eλ(t)

)
(33)

= ep+λ

λ (t)
∞∑

k=0

〈p + 1 + λ〉k〈p + 1〉k

〈p + 2〉k

(1 – eλ(t))k

k!

=
p + 1

〈1〉p+1,1/λ

∞∑

k=0

λk〈1〉p+k+1,1/λ

p + k + 1
(–1)k

k!
(
eλ(t) – 1

)kep+λ

λ (t)

=
p + 1

〈1〉p+1,1/λ

∞∑

k=0

λk〈1〉p+k+1,1/λ

p + k + 1
(–1)k

∞∑

m=k

{
m + p
k + p

}

p,λ

tm

m!
(1 + λt)

=
∞∑

m=0

p + 1
〈1〉p+1,1/λ

m∑

k=0

λk〈1〉p+k+1,1/λ

p + k + 1
(–1)k

{
m + p
k + p

}

p,λ

tm

m!
(1 + λt)

=
∞∑

n=0

{
p + 1

〈1〉p+1,1/λ

n∑

k=0

λk〈1〉p+k+1,1/λ

p + k + 1
(–1)k

{
n + p
k + p

}

p,λ

}
tn

n!

+
∞∑

n=1

{
n(p + 1)
〈1〉p+1,1/λ

n–1∑

k=0

λk+1〈1〉p+k+1,1/λ

p + k + 1
(–1)k

{
n + p – 1

k + p

}

p,λ

}
tn

n!
,

where 〈x〉0,λ = 1, 〈x〉n,λ = x(x +λ) · · · (x + (n – 1)λ)(n ≥ 1). Therefore, we obtain the following
theorem.

Theorem 5 For n ≥ 1 and p ≥ 0, we have

β
(p)
n,λ =

p + 1
〈1〉p+1,1/λ

n∑

k=0

λk〈1〉p+k+1,1/λ

p + k + 1
(–1)k

{
n + p
k + p

}

p,λ

+ nλ
(p + 1)

〈1〉p+1,1/λ

n–1∑

k=0

λk〈1〉p+k+1,1/λ

p + k + 1
(–1)k

{
n + p – 1

k + p

}

p,λ
.

Note that

lim
λ→0

β
(p)
n,λ =

p + 1
p!

n∑

k=0

(–1)k (p + k)!
p + k + 1

{
n + p
k + p

}

p,λ
.
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From Theorem 3, we have

∞∑

n=0

β
(p)
n,λ

tn

n!
=

∞∑

n=0

( n∑

k=0

λk(1)k+1,1/λ( p+k+1
p+1

) S2,λ(n, k)

)
tn

n!
(34)

=
∞∑

k=0

λk(1)k+1,1/λ( p+k+1
p+1

)
1
k!

(
eλ(t) – 1

)k

= (p + 1)
∞∑

k=0

p!k!
(k + p + 1)!

λk(1)k+1,1/λ
1
k!

(
eλ(t) – 1

)k

= (p + 1)
∞∑

k=0

(–1)kλk(1)k+1,1/λ

k!
(
1 – eλ(t)

)k
∫ 1

0
(1 – x)pxk dx

= (p + 1)
∞∑

k=0

(–1)k
(

λ – 1
k

)(
1 – eλ(t)

)k
∫ 1

0
(1 – x)pxk dx

= (p + 1)
∫ 1

0
(1 – x)p(1 – x

(
1 – eλ(t)

))λ–1 dx.

Therefore, we obtain the following theorem.

Theorem 6 For p ≥ 0, we have

∞∑

n=0

β
(p)
n,λ

tn

n!
= (p + 1)

∫ 1

0
(1 – x)p(1 – x

(
1 – eλ(t)

))λ–1 dx.

3 Generalized degenerate Bernoulli polynomials
In this section, we consider the generalized degenerate Bernoulli polynomials which are
derived from the Gauss hypergeometric function. In the light of (20), we define the gen-
eralized degenerate Bernoulli polynomials by

∞∑

n=0

β
(p)
n,λ(x)

tn

n!
= 2F1

(
1 – λ, 1
p + 2

∣∣∣∣1 – eλ(t)

)
ex
λ(t). (35)

When x = 0, β (p)
n,λ(0) = β

(p)
n,λ (n ≥ 0). Thus, by (35), we get

∞∑

n=0

β
(p)
n,λ(x)

tn

n!
= 2F1

(
1 – λ, 1
p + 2

∣∣∣∣1 – eλ(t)

)
ex
λ(t) (36)

=
∞∑

l=0

β
(p)
l,λ

tl

l!

∞∑

m=0

(x)m,λ
tm

m!

=
∞∑

n=0

( n∑

l=0

(
n
l

)
β

(p)
l,λ (x)n–l,λ

)
tn

n!
.

Therefore, by comparing the coefficients on both sides of (36), we obtain the following
theorem.
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Theorem 7 For n ≥ 0, we have

β
(p)
n,λ(x) =

n∑

l=0

(
n
l

)
β

(p)
l,λ (x)n–l,λ.

From (35), we note that

∞∑

n=1

d
dx

β
(p)
n,λ(x)

tn

n!
= 2F1

(
1 – λ, 1
p + 2

∣∣∣∣1 – eλ(t)

)
d

dx
ex
λ(t)

=
1
λ

log(1 + λt)2F1

(
1 – λ, 1
p + 2

∣∣∣∣1 – eλ(t)

)
ex
λ(t)

=
1
λ

∞∑

l=1

(–1)l–1λl

l
tl

∞∑

m=0

β
(p)
m,λ(x)

tm

m!

=
∞∑

n=1

( n∑

l=1

(–λ)l–1

l
n!β (p)

n–l,λ(x)
(n – l)!

)
tn

n!
.

Thus, we have

d
dx

β
(p)
n,λ(x) =

n∑

l=1

(–λ)l–1(l – 1)!
(

n
l

)
β

(p)
n–l,λ(x).

Proposition 8 For n ≥ 1, we have

d
dx

β
(p)
n,λ(x) =

n∑

l=1

(–λ)l–1(l – 1)!
(

n
l

)
β

(p)
n–l,λ(x).

By (13), we easily get

∞∑

n=k

S2,λ(n, k|x)
tn

n!
=

1
k!

(
eλ(t) – 1

)kex
λ(t)

=
1
k!

k∑

l=0

(
k
l

)
(–1)k–lel+x

λ (t)

=
∞∑

n=0

(
1
k!

k∑

l=0

(–1)k–l(l + x)n,λ

)
tn

n!
.

Thus we have

1
k!

k∑

l=0

(
k
l

)
(–1)k–l(l + x)n,λ =

⎧
⎨

⎩
S2,λ(n, k|x), if n ≥ k,

0, otherwise.
(37)

From (37), we note that

S2,λ(n, k|x) =
1
k!

�k(x)n,λ (n ≥ k).
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Lemma 9 For n, k ≥ 0 with n ≥ k, we have

S2,λ(n, k|x) =
1
k!

�k(x)n,λ (n ≥ k).

Now, we observe that

∞∑

n=0

β
(p)
n,λ(x)

tn

n!
=

∞∑

k=0

(p + 1)!k!
(p + k + 1)!

λk(1)k+1,1/λ
1
k!

(
eλ(t) – 1

)kex
λ(t) (38)

=
∞∑

k=0

(1)k+1,1/λλ
k

( p+k+1
p+1

)
∞∑

n=k

S2,λ(n, k|x)
tn

n!

=
∞∑

n=0

( n∑

k=0

(1)k+1,1/λλ
k

( p+k+1
p+1

) S2,λ(n, k|x)

)
tn

n!
.

Therefore, by (38), we obtain the following theorem.

Theorem 10 For n ≥ 0, we have

β
(p)
n,λ(x) =

n∑

k=0

(1)k+1,1/λλ
k

( p+k+1
p+1

) S2,λ(n, k|x).

Remark 11 Let p be a nonnegative integer. Then, by Theorem 7 and (35), we easily get

β
(p)
n,λ(x + y) =

n∑

k=0

(
n
k

)
β

(p)
k,λ(x)(y)n–k,λ (n ≥ 0),

β
(p)
n,λ(x + 1) – β

(p)
n,λ(x) =

n–1∑

k=0

(
n
k

)
β

(p)
k,λ(x)(1)n–k,λ (n ≥ 1),

β
(p)
n,λ(mx) =

n∑

k=0

(
n
k

)
β

(p)
k,λ(x)(m – 1)n–k(x)n–k,λ/m–1 (n ≥ 0, m ≥ 2).

4 Conclusion
This work was motivated by Rahmani’s paper [14] in which a new family of p-Bernoulli
numbers and polynomials was constructed by means of the Gauss hypergeometric func-
tion. This family of numbers and polynomials generalizes the classical Bernoulli numbers
and polynomials, in the sense that they reduce to the classical Bernoulli numbers and
polynomials for p = 0. In the light of the regained recent interests in them, we were in-
terested in finding a degenerate version of those numbers and polynomials. Indeed, the
generalized degenerate Bernoulli numbers and polynomials, which reduce to the Carlitz
degenerate Bernoulli numbers and polynomials for p = 0, were constucted in terms of the
Gauss hypergeometric function. Moreover, the degenerate type Eulerian numbers were
introduced as a degenerate version of Eulerian numbers.

In this paper, we expressed the generalized degenerate Bernoulli numbers in terms of the
degenerate Stirling numbers of the second kind, of the degenerate type Eulerian numbers,
of the degenerate p-Stirling numbers of the second kind and of an integral on the unit
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interval. In addition, we represented the generalized degenerate Bernoulli polynomials in
terms of the degenerate Stirling polynomials of the second kind.

It is one of our future projects to continue pursuing this line of research. Namely, by
studying degenerate versions of some special polynomials and numbers, we want to find
their applications in mathematics, science and engineering.
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