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Abstract
A class of inertial neural networks (INNs) with reaction-diffusion terms and distributed
delays is studied. The existence and uniqueness of the equilibrium point for the
considered system is obtained by topological degree theory, and a sufficient
condition is given to guarantee global exponential stability of the equilibrium point.
Finally, an example is given to show the effectiveness of the results in this paper.
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1 Introduction
In 1997, Wheeler and Schieve [1] introduced inductance into neural networks and ob-
tained a second-order neural network which is called inertial neural networks (INNs). In
standard neural systems, inertial terms are introduced for biological backgrounds. Ange-
laki and Correia [2] studied a model of membrane resonance in pigeon semicircular canal
type II hair cells which introduced inertial terms. The authors considered a quasi-active
membrane behavior of neurons which can be modeled by introducing inductance. Inertial
neural networks (INNs) are represented by second-order differential system. In INNs, in-
ertial terms are described by the first-order derivative terms which have important mean-
ing in biology, engineering technology, and information system, for more details, see e.g.
[3–6]. Due to the inertial terms, it is very difficult to study the dynamic properties of the
network system. Over the past years, many researchers have used different methods and
techniques to study INNs in depth and obtained a large number of results. Tu, Cao, and
Hayat [7] investigated the global dissipativity for INNs with time-varying delays and pa-
rameter uncertainties by using the generalized Halanay inequality, the matrix measure,
and the matrix-norm inequality. Wang and Jiang [8] considered a class of impulsive INNs
with time-varying delays. The global exponential stability in the Lagrange sense for INNs
with delays was discussed in [4, 5]. Draye, Winters, and Cheron [9] studied a class of self-
selected modular recurrent neural networks with postural and inertial subnetworks.

On the other hand, neural networks must be affected by reaction-diffusion terms, when
neurons are moving in asymmetric neural networks. Hence, considering the activations
change in space as well as in time is necessary for the research of neural networks. He
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and Kang [10] studied a class of parabolic systems by using a semi-discrete method and
a Lyapunov functional method. They obtained existence and several criteria of stabil-
ity of the global generalized solutions for the considered systems. Li and Cao [11] in-
vestigated stochastic Cohen–Grossberg neural networks with time-varying delays and
reaction-diffusion terms by using the Halanay inequality technique and the Lyapunov
method. The criteria of delay-independent exponential stability were established for the
above system. Carpenter [12] studied a singular perturbation problem with application to
nerve impulse equations by the use of a geometric approach. In [13], the authors studied
the exponential periodicity and stability of neural networks with Lipschitz continuous ac-
tivation functions. The considered system in [13] contains reaction-diffusion terms and
mixed delays.

Motivated by the above discussions, in this paper we are devoted to studying the exis-
tence and global asymptotic stability of the equilibrium point for a class reaction-diffusion
neural networks with distributed delays subject to Dirichlet boundary conditions. By us-
ing the Lyapunov functional method, some new stability criteria are obtained which also
guarantee the network will be asymptotically convergent to the equilibrium point. The
theoretical methods developed in this paper have universal significance and can be easily
extended to investigate many other types of neural networks with distributed delays. Our
main contributions are summarized as follows.

(i) In this paper, we firstly study a new class of INNs which contains reaction-diffusion
terms and distributed delays. In generally, the diffusion effect cannot be avoided in
the neural networks. So we must consider that the space is varying with the time.

(ii) Due to influence of reaction-diffusion terms and distributed delays, we cannot
easily obtain global exponential stability. By using the innovative mathematical
analysis skills, we overcome the above difficulty.

(iii) It is nontrivial to establish a unified framework to handle reaction-diffusion terms
and distributed time delays. Our method provides a useful reference for studying
more complex systems.

Throughout this paper, let S = {1, 2, . . . , n}. For any f = (f1, . . . , fn) ∈ R
n, denote the

norm ‖f ‖1 =
∑n

k=1 |f |k . For any u(t, x) = (u1(t, x), . . . , un(t, x)) ∈ R
n, define ‖ui(t, x)‖2 =

(
∫
�

|ui(t, x)|2 dx) 1
2 , i ∈ S.

Lemma 1.1 ([14]) Let H(λ, x) : [0, 1] × �̄ → R
n be a continuous homotopic mapping. If

H(λ, x) = y has no solutions in ∂� for λ ∈ [0, 1] and y ∈ R
n \ H(λ, ∂�), where ∂� denotes

the boundary of �, then the topological degree deg(H(λ, x),�, y) of H(λ, x) is a constant
which is independent of λ. Thus, deg(H(0, x),�, y) = deg(H(1, x),�, y).

Lemma 1.2 ([14]) Let H(x) : �̄ →R
n be a continuous mapping. If deg(H(x),�, y) �= 0, then

there exists at least one solution H(x) = y in �.

The rest of this paper is organized as follows. In Sect. 2, the reaction-diffusion neural
networks with distributed delays are presented. In Sect. 3, the existence and global expo-
nential stability of the equilibrium point for the considered model are studied. An example
is presented to illustrate our theoretical results in Sect. 4. Finally, conclusions are drawn
in Sect. 5.
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2 Problem formulation
The classic INNs with distributed delays are described as follows:

u′′
i (t) = – ai(t)u′

i(t) – bi(t)ui(t) +
n∑

j=1

pij(t)fj
(
uj(t)

)

+
n∑

j=1

∫ t

–∞
σij(t – s)fj

(
uj(s)

)
ds + Ii(t),

(2.1)

which has been extensively studied, see e.g. [4–6] and related references. By the use of the
variable transformation function

vi(t) =
dui(t)

dt
+ aiui(t),

system (2.1) can be rewritten as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dui(t)
dt = –aiui(t) + vi(t),

dvi(t)
dt = –biui(t) +

∑n
j=1 pijfj(uj(t))

+
∑n

j=1 qij
∫ t

–∞ σij(t – s)fj(uj(s)) ds + Ii.

(2.2)

Add the reaction-diffusion terms in (2.2), then

⎧
⎪⎪⎨

⎪⎪⎩

∂ui(t,x)
∂t =

∑l
k=1

∂
∂xk

(Dik
∂ui
∂xk

) – aiui + vi(t, x),
∂vi(t,x)

∂t =
∑l

k=1
∂

∂xk
(Dik

∂vi
∂xk

) – biui +
∑n

j=1 pijfj(uj)

+
∑n

j=1 qij
∫ t

–∞ σij(t – s)fj(uj(s, x)) ds + Ii,

(2.3)

where i ∈ S, x = (x1, . . . , xl)� ∈ � ⊂R
l , � is a bounded compact set and has smooth bound-

ary, ui(t, x) denotes the state of ith neuron at time t and in space x, Ii is the external in-
put on the ith neurons, fj(·) is the activation function which is a continuous function,
σij : [0,∞) → [0,∞) is a delay kernel, ai, bi, Dik , pij, and qij are constants, ai > 0 is the
damping coefficient, bi > 0 denotes the strength of different neuron, Dik = Dik(t, x, u) ≥ 0
is the transmission diffusion operator, pij and qij are connection weights. The boundary
conditions and initial conditions of system (2.3) are given by

⎧
⎨

⎩

∂ui
∂n = ( ∂ui

∂x1
, . . . , ∂ui

∂xl
)� = 0, i ∈ S,

∂vi
∂n = ( ∂vi

∂x1
, . . . , ∂vi

∂xl
)� = 0, i ∈ S

(2.4)

and
⎧
⎨

⎩

ui(s, x) = φi(s, x), s ∈ (–∞, 0], i ∈ S,

vi(s, x) = ψi(s, x), s ∈ (–∞, 0], i ∈ S.
(2.5)

Remark 2.1 When reaction-diffusion terms Dik = 0, ui(t, x) = ui(t), and vi(t, x) = vi(t), sys-
tem (2.3) is changed into system (2.2). System (2.2) and system (2.3) are different types of
equations. Hence system (2.3) is not equivalent to original system (2.2). This paper aims to
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study a class of inertial neural networks (2.3) with reaction-diffusion terms and distributed
delays.

3 Main results
We need the following assumptions for activation functions and delay kernels functions:

(H1) There exists positive constant li such that

∣
∣fi(u) – fi(v)

∣
∣ ≤ li|u – v| ∀u, v ∈R, i ∈ S.

(H2) σij : [0,∞) → [0,∞) is a real-valued nonnegative continuous function that satisfies

∫ ∞

0
σij(s) ds = 1, i, j ∈ S.

Theorem 3.1 Under assumptions (H1) and (H2), system (2.3) has one unique equilibrium
point if

bi – ai –
n∑

j=1

(|pij| + |qij|
)
lj > 0. (3.1)

Proof Assume that (u∗�, v∗�)� is an equilibrium point of system (2.3), where u∗ =
(u∗

1, . . . , u∗
n)�, v∗ = (v∗

1, . . . , v∗
n)�. By assumption (H2), we have

⎧
⎨

⎩

aiu∗
i – v∗

i = 0,

biu∗
i –

∑n
j=1 pijfj(u∗

j ) –
∑n

j=1 qijfj(u∗
j ) – Ii = 0.

Denote h(u, v) = (h1, . . . , hn, h̃1, . . . , h̃n)�, where

⎧
⎨

⎩

hi = aiui – vi,

h̃i = biui –
∑n

j=1(pij + qij)fj(uj) – Ii.

Then the equilibrium point of system (2.3) is the solution of the following system:

⎧
⎨

⎩

hi = 0,

h̃i = 0.
(3.2)

Define a bounded open set � and a homotopic map H(λ, u, v) as follows:

� =
{

(u, v)� : |ui| ≤ ρi, |vi| ≤ aiρi, i ∈ S
}

,

and

H(λ, u, v) = λh(u, v) + (1 – λ)
(
u�, v�)�,
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where u = (u1, . . . , un)�, v = (v1, . . . , vn)�, ρi =
1+|Ii|+

∑n
j=1(|pij|+|qij|)fj(0)

bi–ai–
∑n

j=1(|pji|+|qji|)lj . By assumption (H1), we
have

∥
∥H(λ, u, v)

∥
∥

1 =
n∑

i=1

∣
∣λhi + (1 – λ)ui

∣
∣ +

n∑

i=1

∣
∣λh̃i + (1 – λ)vi

∣
∣

≥ (1 – λ)
n∑

i=1

|ui| + (2 – λ)
n∑

i=1

|vi|

+ λ

n∑

i=1

(

bi – ai –
n∑

j=1

(|pji| + |qji|
)
lj

)

|ui|

– λ

n∑

i=1

(

|Ii| +
n∑

j=1

(|pij| + |qij|
)
fj(0)

)

.

When (u�, v�)� ∈ ∂�, by condition (3.1), we have

∥
∥H(λ, u, v)

∥
∥

1 > 0.

Hence, we get

H(λ, u, v) �= 0 for
(
u�, v�)� ∈ ∂�,λ ∈ [0, 1].

From Lemma 1.1 and 1.2, we have deg(h,�, 0) = deg(H ,�, 0) = 1 and system (2.3) has at
least one solution in �. Next, we show that the solution of system (2.3) is unique. Assume
that (u∗�, v∗�)� and (ũ�, ṽ�)� are two solutions of system (2.3), where u∗ = (u∗

1, . . . , u∗
n)�,

v∗ = (v∗
1, . . . , v∗

n)�, ũ = (ũ1, . . . , ũn)�, ṽ = (ṽ1, . . . , ṽn)�. Thus,

⎧
⎨

⎩

ai(u∗
i – ũi) – (v∗

i – ṽi) = 0,

bi(u∗
i – ũi)) –

∑n
j=1(pij + qij)(fj(u∗

j ) – fj(ũj)) = 0.
(3.3)

From the second equation of system (3.3) and assumption (H2), we have

bi
∣
∣u∗

i – ũi
∣
∣ –

n∑

j=1

(|pij| + |qij|
)
lj
∣
∣u∗

j – ũj
∣
∣ ≤ 0

and u∗� = ũ�, v∗� = ṽ�. Thus the equilibrium point of system (2.3) is unique. �

The second equation of system (2.3) does not contain the term vi which is not a match-
ing system. For obtaining exponential stability of system (2.3), we consider the following
generalized system:

⎧
⎪⎪⎨

⎪⎪⎩

∂ui(t,x)
∂t =

∑l
k=1

∂
∂xk

(Dik
∂ui
∂xk

) – aiui + vi(t, x),
∂vi(t,x)

∂t =
∑l

k=1
∂

∂xk
(Dik

∂vi
∂xk

) – civi – biui +
∑n

j=1 pijfj(uj)

+
∑n

j=1 qij
∫ t

–∞ σij(t – s)fj(uj(s, x)) ds + Ii,

(3.4)

where ci > 0, i ∈ S, whose boundary conditions and initial conditions are (2.4) and (2.5),
respectively.
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Definition 3.1 If (u∗�, v∗�)� is an equilibrium point of (3.4) and (u�, v�)� is any solution
of (3.4) satisfying

lim
t→+∞

[ n∑

i=1

∥
∥ui(t) – u∗

i (t)
∥
∥

2 +
n∑

i=1

∥
∥vi(t) – v∗

i (t)
∥
∥

2

]

≤ M
(∥
∥φ – u∗∥∥

2 +
∥
∥ψ – v∗∥∥

2

)
e–δt ,

where M ≥ 1, δ > 0,

∥
∥φ – u∗∥∥

2 = sup
s∈(–∞,0]

n∑

i=1

∥
∥ui(s, x) – u∗

i
∥
∥

2,
∥
∥ψ – v∗∥∥

2 = sup
s∈(–∞,0]

n∑

i=1

∥
∥vi(s, x) – v∗

i
∥
∥

2.

We call (u∗�, v∗�)� globally exponentially stable.

Theorem 3.2 Assume that system (3.4) has a unique equilibrium point. Assume further
(H3)

bi – ai –
n∑

j=1

(|pij| + |qij|
)
lj > 0 and ci > 1 for i, j ∈ S.

Then the unique equilibrium point of system (3.4) is globally asymptotically stable.

Proof Suppose that system (3.4) has the unique equilibrium point (u∗�, v∗�)�, and
(u�, v�)� is any solution of system (3.4). Rewrite system (3.4) as the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂(ui–u∗
i )

∂t =
∑l

k=1
∂

∂xk
(Dik

∂(ui–u∗
i )

∂xk
) – ai(ui – u∗

i ) + (vi – v∗
i ),

∂(vi–v∗
i )

∂t

=
∑l

k=1
∂

∂xk
(Dik

∂(vi–v∗
i )

∂xk
) – ci(vi – v∗

i ) – bi(ui – u∗
i ) +

∑n
j=1 pij(fj(uj) – fj(u∗

j ))

+
∑n

j=1 qij
∫ t

–∞ σij(t – s)(fj(uj(s, x)) – fj(u∗
j )) ds.

(3.5)

Multiply both sides of the first equation of (3.5) by ui – u∗
i and integrate them

1
2

d
dt

∫

�

(
ui – u∗

i
)2 dx =

l∑

k=1

∫

�

(
ui – u∗

i
) ∂

∂xk

(

Dik
∂(ui – u∗

i )
∂xk

)

–
∫

�

ai
(
ui – u∗

i
)2 dx +

∫

�

(
vi – v∗

i
)(

ui – u∗
i
)

dx.

(3.6)

Use the boundary condition (2.4), then

l∑

k=1

∫

�

(
ui – u∗

i
) ∂

∂xk

(

Dik
∂(ui – u∗

i )
∂xk

)

= –
l∑

k=1

∫

�

Dik

(
∂(ui – u∗

i )
∂xk

)2

dx. (3.7)

By (3.6) and (3.7), we have

d‖ui – u∗
i ‖2

2
dt

≤ –2ai
∥
∥ui – u∗

i
∥
∥2

2 + 2
∥
∥ui – u∗

i
∥
∥

2

∥
∥vi – v∗

i
∥
∥

2
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i.e.

d‖ui – u∗
i ‖2

dt
≤ –ai

∥
∥ui – u∗

i
∥
∥

2 +
∥
∥vi – v∗

i
∥
∥

2. (3.8)

Multiply both sides of the second equation of (3.5) by vi – v∗
i and integrate them

1
2

d
dt

∫

�

(
vi – v∗

i
)2 dx

=
l∑

k=1

∫

�

(
vi – v∗

i
) ∂

∂xk

(

Dik
∂(vi – v∗

i )
∂xk

)

–
∫

�

ci
(
vi – v∗

i
)2 dx

–
∫

�

bi
(
ui – u∗

i
)(

vi – v∗
i
)

dx +
n∑

j=1

pij

∫

�

(
fj(uj) – fj

(
u∗

j
))(

vi – v∗
i
)

dx

+
∫

�

(
vi – v∗

i
)
[ n∑

j=1

qij

∫ t

–∞
σij(t – s)

(
fj
(
uj(s, x)

)
– fj

(
u∗

j
))

ds

]

dx.

(3.9)

Use the boundary condition (2.4), then

l∑

k=1

∫

�

(
vi – v∗

i
) ∂

∂xk

(

Dik
∂(vi – v∗

i )
∂xk

)

= –
l∑

k=1

∫

�

Dik

(
∂(vi – v∗

i )
∂xk

)2

dx. (3.10)

In view of (3.9), (3.10), assumption (H1), and Hölder’s inequality, we have

d‖vi – v∗
i ‖2

2
dt

≤ – 2ci
∥
∥vi – v∗

i
∥
∥2

2 + 2bi
∥
∥ui – u∗

i
∥
∥

2

∥
∥vi – v∗

i
∥
∥

2

+ 2
n∑

j=1

|pij|lj
∥
∥uj – u∗

j
∥
∥

2

∥
∥vi – v∗

i
∥
∥

2

+ 2
n∑

j=1

|qij|lj

∫ t

–∞
σij(t – s)

∥
∥vi – v∗

i
∥
∥

2

∥
∥uj – u∗

j
∥
∥

2 ds

i.e.

d‖vi – v∗
i ‖2

dt
≤ – ci

∥
∥vi – v∗

i
∥
∥

2 + bi
∥
∥ui – u∗

i
∥
∥

2 +
n∑

j=1

|pij|lj
∥
∥uj – u∗

j
∥
∥

2

+
n∑

j=1

|qij|lj
∫ t

–∞
σij(t – s)

∥
∥uj – u∗

j
∥
∥

2 ds.

(3.11)

Let
⎧
⎨

⎩

φi(ξi) = bi – ai – ξi – lj
∑n

j=1(|pij| + |qij|
∫ ∞

0 eξisσij(s) ds), ξi ∈ [0,∞),

ψi(ηi) = ci – 1 – ηi, ηi ∈ [0,∞),
(3.12)

where i ∈ S. By assumption (H3), we have ψi(0) = ci – 1 > 0 for i ∈ S. By condition (3.1),
φi(0) = bi – ai –

∑n
j=1(|pij| + |qij|)lj > 0 for i ∈ S. It is easy to see that φi(ξi) and ψi(ηi) are
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continuous for ξi,ηi ∈ [0,∞), and φ′
i(ξi) < 0 and ψ ′

i (ηi) < 0 i.e. φi(ξi) and ψi(ηi) are strictly
decreasing functions on [0,∞). Hence, there exist constants ξ ∗

i ,η∗
i ∈ (0,∞) such that

⎧
⎨

⎩

φi(ξ ∗
i ) = bi – ai – ξ ∗

i – lj
∑n

j=1(|pij| + |qij|
∫ ∞

0 eξ∗
i sσij(s) ds) = 0,

ψi(η∗
i ) = ci – 1 – η∗

i = 0.
(3.13)

Choose δ = mini∈S{ξ ∗
i ,η∗

i } > 0. By (3.13) we get

⎧
⎨

⎩

φi(δ) = bi – ai – δ – lj
∑n

j=1(|pij| + |qij|
∫ ∞

0 eξ∗
i sσij(s) ds) ≥ 0,

ψi(δ) = ci – 1 – δ ≥ 0.
(3.14)

Construct the following Lyapunov functional:

V (t) =
n∑

i=1

(

eδt∥∥ui – u∗
i
∥
∥

2 + eδt∥∥vi – v∗
i
∥
∥

2

+
n∑

j=1

|qij|lj
∫ ∞

0
σij(s)

∫ t

t–s

∥
∥uj(ρ, x) – u∗

j
∥
∥

2eδ(ρ+s) dρ ds

)

. (3.15)

Calculating the upper right Dini derivative of V (t) along the solutions of system (3.4), in
view of assumption (H3), we have

D+V (t) ≤ eδt
n∑

i=1

(

(δ + bi – ai)
∥
∥ui – u∗

i
∥
∥

2 + (δ + 1)
∥
∥vi – v∗

i
∥
∥

2

+
n∑

j=1

|pij|lj
∥
∥uj – u∗

j
∥
∥

2 +
n∑

j=1

|qij|lj
∫ t

–∞
σij(t – s)

∥
∥uj – u∗

j
∥
∥

2 ds

)

= eδt
n∑

j=1

[

δ + bi – ai +
n∑

i=1

|pij|lj +
n∑

i=1

|qij|lj
∫ t

–∞
σij(t – s) ds

]

× ∥
∥uj – u∗

j
∥
∥

2

+ eδt
n∑

i=1

(δ + 1 – ci)
∥
∥vi – v∗

i
∥
∥

2

= – eδt
n∑

j=1

[

ai – δ – bi –
n∑

i=1

|pij|lj –
n∑

i=1

|qij|lj
∫ t

–∞
σij(t – s) ds

]

× ∥
∥uj – u∗

j
∥
∥

2

– eδt
n∑

i=1

(ci – δ – 1)
∥
∥vi – v∗

i
∥
∥

2

≤ 0.

(3.16)

By (3.16) we have

V (t) ≤ V (0) for t > 0. (3.17)
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By (3.15) we have

V (t) ≥ eδt
n∑

i=1

(∥
∥ui – u∗

i
∥
∥

2 +
∥
∥vi – v∗

i
∥
∥

2

)
(3.18)

and

V (0) =
n∑

i=1

(
∥
∥ui(0, x) – u∗

i
∥
∥

2 +
∥
∥vi(0, x) – v∗

i
∥
∥

2

+
n∑

j=1

|qij|lj
∫ ∞

0
σij(s)

∫ 0

–s

∥
∥uj(ρ, x) – u∗

j
∥
∥

2eδ(ρ+s) dρ ds

)

≤
(

1 +
n∑

j=1

|qji|li

∫ ∞

0
σji(s)

∫ 0

–s
eδ(ρ+s) dρ ds

)

sup
s∈[0,∞)

n∑

i=1

∥
∥ui(s, x) – u∗

i
∥
∥

2

+ sup
s∈[0,∞)

n∑

i=1

∥
∥vi(s, x) – v∗

i
∥
∥

2

≤ M

(

sup
s∈[0,∞)

n∑

i=1

∥
∥ui(s, x) – u∗

i
∥
∥

2 + sup
s∈[0,∞)

n∑

i=1

∥
∥vi(s, x) – v∗

i
∥
∥

2

)

,

(3.19)

where

M = max
i∈S

{ n∑

j=1

|qji|li

∫ ∞

0
σji(s)

∫ 0

–s
eδ(ρ+s) dρ ds, 1

}

.

From (3.17)–(3.19), we have

n∑

i=1

∥
∥ui(s, x) – u∗

i
∥
∥

2 +
n∑

i=1

∥
∥vi(s, x) – v∗

i
∥
∥

2

≤ Me–δt

(

sup
s∈[0,∞)

n∑

i=1

∥
∥ui(s, x) – u∗

i
∥
∥

2 + sup
s∈[0,∞)

n∑

i=1

∥
∥vi(s, x) – v∗

i
∥
∥

2

)

≤ M
(∥
∥φ – u∗∥∥

2 +
∥
∥ψ – v∗∥∥

2

)
e–δt .

The proof is completed. �

Remark 3.1 We really want to obtain global exponential stability for system (2.3). How-
ever, system (2.3) has strong non match, which is different from some reaction-diffusion
systems in [11–13]. For system (2.3), constructing a proper Lyapunov functional is very
difficult because of its strong non match. Hence, we study system (3.4) which is similar to
system (2.3) and obtain global exponential stability of system (3.4) by constructing a proper
Lyapunov functional and some mathematical analysis technique. We hope that some au-
thors will solve the global exponential stability problem of system (2.3) by the innovative
approach.

Remark 3.2 In this paper, Lemma 1.1 and Lemma 1.2 belong to topological degree theory.
We use Lemma 1.1 and Lemma 1.2 for obtaining the existence result of system (2.3). We
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give some details for the use of topological degree theory as follows: firstly, we show that
the mapping H(λ, x) = y has no solutions in ∂� for λ ∈ [0, 1] and y ∈ Rn \ H(λ, ∂�); after
that, we prove deg(H(x),�, y) �= 0. Then there exists at least one solution H(x) = y in �.

Remark 3.3 In Theorem 3.1, for obtaining

H(λ, u, v) �= 0 for
(
u�, v�)� ∈ ∂�,λ ∈ [0, 1],

by using some inequality technique, we give estimation of ‖H(λ, u, v)‖1. In Theorem 3.2,
for obtaining the stability result of system (3.4), we construct a proper Lyapunov functional
and use some complex mathematical analysis skills.

4 Numerical example
This section presents an example that demonstrates the validity of our theoretical re-
sults. Consider the following two-dimensional neural networks with distributed delays
and reaction-diffusion terms:

⎧
⎪⎪⎨

⎪⎪⎩

∂ui(t,x)
∂t =

∑l
k=1

∂
∂xk

(Dik
∂ui
∂xk

) – aiui + vi(t, x),
∂vi(t,x)

∂t =
∑l

k=1
∂

∂xk
(Dik

∂vi
∂xk

) – biui +
∑n

j=1 pijfj(uj)

+
∑n

j=1 qij
∫ t

–∞ σij(t – s)fj(uj(s, x)) ds + Ii,

(4.1)

where

i, j, k = 1, 2, Dik = 1 > 0,
∫ ∞

0
σij(s) ds =

∫ ∞

0
e–s ds = 1,

bi = 5, ai = 2, pij = qij = 0.5, fi(y) = 1 + y for y ∈R.

Obviously,

li = 1,
∣
∣fi(u) –

∣
∣fi(v)

∣
∣
∣
∣ ≤ |u – v| for u, v ∈R

and

bi – ai –
n∑

j=1

(|pij| + |qij|
)
lj = 1 > 0.

Thus, all assumptions of Theorem 3.1 hold and (4.1) has a unique equilibrium point. The
solution of system (4.1) is shown in Fig. 1.

Remark 4.1 For all we know, the INNs with reaction-diffusion terms and distributed de-
lays are a new model in the present paper. Using topological degree theory and the math-
ematical analysis technique, we get some brand new results on the existence, uniqueness,
and global exponential stability of solution of INNs. We can confirm the truth of the pro-
posed methods, for example, in [4–6, 12, 13] cannot be generalized to the problems stud-
ied in this article.
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Figure 1 State trajectories of system (4.1)

Remark 4.2 In [13], the authors gave some numerical simulations of a periodic solution
for a class of neural networks with reaction-diffusion terms and both variable and un-
bounded delays. Numerical simulations in the present paper show the solution properties
of second-order system, but neural networks in [13] are a first-order system. Hence, nu-
merical simulations in the present paper are more complicated than the existing ones. For
more similar numerical simulations of a first-order system, see e.g. [10–12].

5 Conclusions and discussions
In this paper we study the dynamic behaviors of solutions for inertial neural networks
with reaction-diffusion terms and distributed delays. First, by applying topological degree
theory to the system, we get a set of sufficient conditions for guaranteeing the existence
and uniqueness of solutions. Then, the global exponential stability of the equilibrium point
is obtained by using the Lyapunov functional. The efficacy of the obtained results has
been demonstrated by numerical simulations. It is important to note that the practical
implementation of INNs is typically encountered with certain type of uncertainties such
as interval parameters. These results can be applied to design globally exponentially stable
networks and thus have important significance in both theory and applications. Extending
the results of this paper to INNs with interval uncertainties proves to be an interesting
problem.
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