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Abstract
In this paper, we improve the Proinov theorem by adding certain rational expressions
to the definition of the corresponding contractions. After that, we prove fixed point
theorems for these modified Proinov contractions in the framework of dislocated
b-metric spaces. We show some illustrative examples to indicate the validity of the
main results.
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1 Introduction and preliminaries
In the nature of mathematics, there is the purpose of generalizing, expanding, and ob-
taining the most general forms of existing concepts and results. The concept of metric,
which is the most fundamental and solid basis of the analysis study, has been constantly ex-
panded and generalized with this motivation. Examples of the new metrics that have been
put forward for this purpose can be counted as quasi-metric, b-metric, partial-metric,
symmetric, D-metric, modular metric, fuzzy metric, soft-metric, G-metric, and so on. On
the other hand, it was understood that not all of these newly defined metrics provide a
new and original structure. For instance, G-metric can be reduced to semi-metric or cone
metric to a standard metric. More examples can be given, but here we stop to focus on
the main motivation. Two of the new and original generalizations of metric notions are
b-metrics [1–16] and dislocated metrics [17–21]. Very recently, these two notions have
emerged under the name of dislocated b-metric [22, 23].

Metric fixed point theory is a field of study that needs an abstract metric framework
(see, for instance, [24–27]). Very recently Proinov [28] proved a fixed point theorem that
not only unifies but also generalizes a number of well-known results in the framework of
a standard metric space. In particular, he proved that Wardowski [29] and Jleli and Samet
[30] results are not only equivalent to each other, but also they are a special case of one of
the main results of [28].

In this paper, we improve the Proinov type contractions by involving certain rational ex-
pression to the corresponding contraction thought by Proinov [28]. After then, we prove
fixed point theorems for these modified Proinov contractions in the framework of dislo-
cated b-metrics. We bring forward illustrative examples to show the validity of the main
results.
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Let S be a nonempty set and N = {1, 2, 3, . . .}. Some examples of rational contractivity
conditions are shown in the following results (see also [31]).

Theorem 1 ([32]) Let (S, d ) be a complete metric space and Z : S → S be a mapping such
that there exist k1, k2 ∈ [0, 1) with k1 + k2 < 1 such that

d (Zv, Zw) ≤ k1 · d(w, Zw)
1 + d (v, Zv)
1 + d (v, w)

+ k2 · d (v, w) (1)

for all v, w ∈ S. Then Z has a unique fixed point x ∈ S, and the sequence {Znv} converges to
the fixed point x for all v ∈ S.

Theorem 2 ([33]) Let (S, d ) be a complete metric space and Z : S → S be a continuous
mapping. If there exist k1, k2 ∈ [0, 1) with k1 + k2 < 1 such that

d (Zv, Zw) ≤ k1 · d (v, Zv)d (w, Zw)
d (v, w)

+ k2 · d (v, w) (2)

for all distinct v, w ∈ S, then Z possesses a unique fixed point in S.

Theorem 3 ([28]) Let (S, d ) be a metric space and Z : S → S be a mapping such that

�
(
d (Zv, Zw)

) ≤ �
(
d (v, w)

)

for all v, w ∈ S with d (Zv, Zw) > 0, where the functions � ,� : (0,∞) →R are such that the
following conditions are satisfied:

1. � is nondecreasing;
2. �(θ ) < �(θ ) for any θ > 0;
3. lim supθ→θ0+ �(θ ) < �(θ0+) for any θ0 > 0.

Then Z admits a unique fixed point.

Definition 4 ([34]) A function dl : S × S → [0,∞) is a dislocated-metric on S if it satisfies
the conditions:

dl1. dl(v, w) = 0 ⇒ v = w;
dl2. symmetry: dl(w, v) = dl(v, w);
dl3. the triangle inequality

dl(u, w) ≤ dl(u, v) + dl(v, w)

for all u, v, w ∈ S. In this case, the pair (S, dl) is a dislocated-metric space (shortly dl-MS).

Definition 5 ([35]) Let s ∈ [1,∞) be a real number. A function b : S × S → [0,∞) is a
b-metric on S if it satisfies the conditions:

b1. b(v, w) = 0 ⇔ v = w,
b2. symmetry: b(w, v) = b(v, w)
b3. the generalized version of the triangle inequality involving the number s

b(u, w) ≤ s
[
b(u, v) + b(v, w)

]
for all u, v, w ∈ S.

In this case, the tripled (S, b, s) forms a b-metric space (shortly b-MS).
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Obviously, for s = 1, we find the notion of metric space.

Definition 6 ([36]) Let s ∈ [1,∞) be a real number(given). A function db : S × S → [0,∞)
is a dislocated b-metric on S if it satisfies the conditions:

db1 . db(v, w) = 0 ⇒ v = w;
db2 . db(w, v) = db(v, w);
db3 . db(u, w) ≤ s[db(u, v) + db(v, w)] for all u, v, w ∈ S.

In this case, (S, db, s) is a dislocated b-metric space (shortly db-MS).

We mention that, when s = 1, a db-MS becomes a dl-MS.

Definition 7 ([36]) A sequence {vn} on a db-MS (S, db, s) is said to be:
• db-convergent to a point v ∈ S ⇔ limn→∞ db(vn, v) = 0;
• db-Cauchy if and only if limn,p→∞ db(vn, vp) exists and tends to be finite.

Proposition 8 ([36]) In a db-MS the limit of a convergent sequence is unique.

Proposition 9 ([36]) In a db-MS every convergent sequence is db-Cauchy.

In case every db-Cauchy sequence is db-convergent, we say that the space (S, db, s) is a
complete db-MS. The next lemma will be useful in the sequel.

Lemma 10 Let a db-MS (S, db, s ≥ 1), a mapping Z : S → S, and v0 be arbitrary, but fixed
point in S. If there exists C ∈ [0, 1) such that

db
(
Znv0, Zn+1v0

) ≤ Cdb
(
Zn–1v0, Znv0

)
(3)

for every n ∈N, then the sequence {Znv0} is a db-Cauchy sequence.

Proof Let v0 be an arbitrary point in S and the sequence {vn} with

v1 = Zv0, v2 = Zv1 = Z2v0, . . . vn+1 = Zvn = Znv0

for n ∈N∪ {0}. Thus, by (3), we have

db(vn, vn+1) ≤ Cdb(vn–1, vn) ≤ C2db(vn–2, vn–1) ≤ · · · ≤ Cndb(v0, v1). (4)

We split the proof in two cases, namely s = 1 and s > 1.
1. For s = 1, db becomes a dislocated metric and by dl3 ., for n < p, we have

db(vn, vp) ≤ db(vn, vn+1) + db(vn+1, vn+2) + · · · + db(vp–1, vp)

≤ Cndb(v0, v1) + Cn+1db(v0, v1) + · · · + Cp–1db(v0, v1)

= Cn 1 – Cp–n

1 – C db(v0, v1) → 0, as n, p → ∞.

Therefore, limn,p→∞ db(vn, vp) = 0, that is, the sequence {Znv0} is Cauchy.
2. For s > 1, we distinguish two sub-cases:
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(a) If C ∈ [0, 1
s ), by (db3 ) and taking into account (4), we get

db(vn, vp) ≤ s
[
db(vn, vn+1) + db(vn+1, vp)

]

≤ sdb(vn, vn+1) + s2db(vn+1, vn+2) + · · · + sp–n–1db(vp–1, vp)

≤ sCndb(v0, v1) + s2Cn+1db(v0, v1) + · · · + sp–n–1Cp–1db(v0, v1)

= sCn
(

1 – (sC)p

1 – sC +
(sC)p–n–1

s

)
db(v0, v1) → 0, as n, p → ∞,

that is, {Znv0} is db-Cauchy.
(b) If C ∈ [ 1

s , 1), then Cn → 0, and we can find l ∈N such that Cn < 1
s . Therefore, by

(a), the sequence {Zl+nv0}n ≥ 0 is db-Cauchy. But we have

{vn} = {v0, v1, . . . , vl–1} ∪ {vl, vl+1, . . . , vl+n, . . .},

and then the sequence {Znv0}n ≥ 0 is db-Cauchy.
�

2 Main results
Henceforth, we use the following notations:

� =
{
�,� : (0,∞) →R|�(θ ) < �(θ ) for every θ ∈ (0, +∞)

}

and, respectively,

FS(Z) = {x ∈ S|Zx = x};
FS(U) = {x ∈ S|Ux = x};
FS(Z, U) = {x ∈ S|Zx = x = Ux}.

Let the functions R1, R2 : S × S → [0,∞) be defined by

R1(v, w) = c1db(v, w) + c2db(v, Zv) + c3db(w, Uw)

+ c4
db(w, Uw)db(v, Zv)

db(v, w)
for all v, w ∈ S, v 
= w;

R2(v, w) = c1db(v, w) + c2db(v, Zv) + c3db(w, Uw) + c4
db(w, Uw)db(v, Zv)

1 + db(v, w)

+ c5
db(w, Uw)(1 + db(v, Zv))

1 + db(v, w)
for all v, w ∈ S,

where c1, c2, c3, c4, c5 are nonnegative real numbers.

Theorem 11 Let (S, db, s) be a complete db-ms, � ,� ∈ �, a number α ∈ [1,∞), and two
continuous mappings Z, U : S → S such that, for every distinct v, w ∈ S with db(Zv, Uw) > 0,
the following inequality

�
(
sαdb(Zv, Uw)

) ≤ �
(
R1(v, w)

)
(5)

holds. Assume that:
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(β1) c1 + c2 + c3 + c4 < sα and c1 > 0;
(β2) � is nondecreasing.
Then FS(Z, U) 
= ∅. Moreover, if c1 + 2c2 + 2c3 + 4c4 ≤ sα , then the set FS(Z, U) has exactly

one element.

Proof For an arbitrary (but fixed) point v0 ∈ S, let {vn} be the sequence defined as follows:

v1 = Zv0, v2 = Uv1, . . . , v2n+1 = Zv2n, v2n+2 = Uv2n+1, . . . (6)

for all n ∈ N0. First of all, we claim that vn 
= vn+1 for any n ∈ N0. Indeed, if we can find
l0 ∈N such that vl0 = vl0+1 = vl0+2 = x, then x ∈FS(Z, U).

Under this assumption, d (Zv2n, Uv2n+1) = d (v2n+1, v2n+2) > 0 and letting v = v2n and w =
v2n+1 in (5), because the functions � ,� belong to �, we have

�
(
sαdb(v2n+1, v2n+2)

)
= �

(
sαdb(Zv2n, Uv2n+1)

) ≤ �
(
R1(v2n, v2n+1)

)

≤ �

(
c1db(v2n, v2n+1) + c2db(v2n, Zv2n) + c3db(v2n+1, Uv2n+1)+

+c4
db(v2n+1,Uv2n+1)db(v2n ,Zv2n)

db(v2n ,v2n+1)

)

= �

(
c1db(v2n, v2n+1) + c2db(v2n, v2n+1) + c3db(v2n+1, v2n+2)+

+c4
db(v2n+1,v2n+2)db(v2n ,v2n+1)

db(v2n ,v2n+1)

)

= �
(
(c1 + c2)db(v2n, v2n+1) + (c3 + c4)db(v2n+1, v2n+2)

)

< �
(
(c1 + c2)db(v2n, v2n+1) + (c3 + c4)db(v2n+1, v2n+2)

)
.

Taking (β1) into account, we get

sαdb(v2n+1, v2n+2) < (c1 + c2)db(v2n, v2n+1) + (c3 + c4)db(v2n+1, v2n+2)

or

db(v2n+1, v2n+2) <
c1 + c2

sr – c3 – c4
db(v2n, v2n+1) = K · db(v2n, v2n+1), (7)

where K = c1+c2
sr–c3–c4

< 1, holds due to the first assumption in (β1).
In the same way, replacing in (5) v with v2n–1 and w with v2n, and keeping in mind (db2 ),

we have

�
(
sαdb(v2n, v2n+1)

)
= �

(
sαdb(Uv2n–1, Zv2n)

) ≤ �
(
R1(v2n–1, v2n)

)

= �
(
(c1 + c2)db(v2n–1, v2n) + (c3 + c4)db(v2n, v2n+1)

)

< �
(
(c1 + c2)db(v2n–1, v2n) + (c3 + c4)db(v2n, v2n+1)

)
, (8)

which leads us to

db(v2n, v2n+1) <
c1 + c2

sα – c3 – c4
db(v2n–1, v2n) = K · db(v2n–1, v2n). (9)
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Consequently, (7) and (9) show us that

db(vn, vn+1) < K · db(vn–1, vn) (10)

for any n ∈ N, where K ∈ (0, 1). By Lemma 10 it follows that {vn} is a Cauchy sequence.
Thus, limn,p→∞ db(vn, vp) exists and is finite. Moreover, since the db-ms is complete, we get
that there exists x ∈ S such that limn→∞ vn = x and

lim
n→∞ db(vn, x) = lim

n,p→∞ db(vn, vp) = 0. (11)

Since the mappings Z and U are supposed to be continuous, we have

Zx = Z
(

lim
n→∞ v2n

)
= lim

n→∞ Zv2n = lim
n→∞ v2n+1 = x

= lim
n→∞ v2n+2 = lim

n→∞ Uv2n+1

= U
(

lim
n→∞ v2n+1

)
= Ux,

that is, FS(Z, U) 
= ∅. If we suppose that there exist x, y ∈ FS(Z, U) such that x 
= y, by (5)
and since � ,� ∈ �, we have

�
(
sαdb(x, y)

)
= �

(
sαdb(Zx, Uy)

) ≤ �
(
R1(x, y)

)
< �

(
R1(x, y)

)
,

where

R1(x, y) = c1db(x, y) + c2db(x, Zx) + c3db(y, Uy) + c4
db(y, Uy)db(x, Zx)

db(x, y)

= c1db(x, y) + c2db(x, x) + c3db(y, y) + c4
db(y, y)db(x, x)

db(x, y)
.

However, applying (db3 ) and taking into account (db2 ),

R1(x, y) ≤ c1db(x, y) + 2c2db(x, y) + 2c3db(x, y) + 4c4
d 2

b (x, y)
db(x, y)

= (c1 + 2c2 + 2c3 + 4c4)db(x, y).

Moreover, by (β2) we get

sαdb(x, y) < (c1 + 2c2 + 2c3 + 4c4)db(x, y) ≤ sαdb(x, y),

which is a contradiction. Therefore, db(x, y) = 0 and from (db1 ) it follows that x = y, that is,
the set FS(Z, U) has exactly one element. �

Corollary 12 Let (S, db, s) be a complete db-ms, � ,� ∈ �, a number α ∈ [1,∞), and a
continuous mapping Z : S → S such that, for every distinct v, w ∈ S with db(Zv, Zw) > 0, the
following inequality

�
(
sαdb(Zv, Zw)

) ≤ �
(
R∗

1(v, w)
)

(12)
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holds, where for c1, c2, c3, c4 nonnegative real numbers,

R∗
1(v, w) = c1db(v, w) + c2db(v, Zv) + c3db(w, Zw) + c4

db(w, Zw)db(v, Zv)
db(v, w)

for all v, w ∈ S, v 
= w. Assume that:
(β1) c1 + c2 + c3 + c4 < sα and c1 > 0;
(β2) � is nondecreasing.

Then FS(Z) 
= ∅. Moreover, if c1 ≤ 1, then the set FS(Z) has exactly one element.

Proof Let Z = U in Theorem 11. �

Theorem 13 Let (S, db, s) be a complete db-ms, � ,� ∈ �, a number α ∈ [1,∞), and two
mappings Z, U : S → S such that, for every distinct v, w ∈ S with db(Zv, Uw) > 0, the follow-
ing inequality

�
(
sαdb(Zv, Uw)

) ≤ �
(
R2(v, w)

)
(13)

holds. Assume that:
(β1) c1 + c2 + c3 + c4 + c5 < sα , c1 > 0, c2 ≤ 1, c3 + c5 ≤ 1;
(β2) � is nondecreasing.
Then FS(Z, U) 
= ∅. Moreover, if c1 ≤ 1, then the set FS(Z, U) has exactly one element.

Proof Let v0 ∈ S be a chosen point and {vn} be the sequence defined by (6) in the proof of
Theorem 11. Thus, following the same arguments, we can assume that db(Zv2n, Uv2n+1) > 0
and from (13) we get

�
(
sαdb(v2n+1, v2n+2)

)
= �

(
sαdb(Zv2n, Uv2n+1)

) ≤ �
(
R2(v2n, v2n+1)

)

= �

(
c1db(v2n, v2n+1) + c2db(v2n, Zv2n) + c3db(v2n+1, Uv2n+1)+

+c4
db(v2n+1,Uv2n+1)db(v2n ,Zv2n)

1+db(v2n ,v2n+1) + c5
db(v2n+1,Uv2n+1)[1+db(v2n ,Zv2n)]

1+db(v2n ,v2n+1)

)

< �

(
(c1db(v2n, v2n+1) + c2db(v2n, v2n+1) + c3db(v2n+1, v2n+2)+

+c4
db(v2n+1,v2n+2)db(v2n ,v2n+1)

1+db(v2n ,v2n+1) + c5
db(v2n+1,v2n+2)[1+db(v2n ,v2n+1)]

1+db(v2n ,v2n+1)

)

≤ �
(
(c1 + c2)db(v2n, v2n+1) + (c3 + c4 + c5)db(v2n+1, v2n+2)

)
.

Since by (β2) � is nondecreasing, we deduce that

0 < sαdb(v2n+1, v2n+2) < (c1 + c2)db(v2n, v2n+1) + (c3 + c4 + c5)db(v2n+1, v2n+2),

which is equivalent to

0 < db(v2n+1, v2n+2) < Cdb(v2n, v2n+1), (14)

where C = c1+c2
sα–c3–c4–c5

< 1 by (β1). Similarly, taking v = v2n and w = v2n–1 in (5) and keeping
in mind (db2 ), we get

0 < db(v2n, v2n+1) < C1db(v2n+1, v2n+2). (15)
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However, from relations (14), (15), together with Lemma 10, we find that {vn} is a Cauchy
sequence in a complete db-ms. Therefore, there exists x ∈ S such that

lim
n,p→∞ db(vn, vp) = 0 = lim

n→∞ db(vn, x). (16)

Without loss of generality, we can suppose that x 
= vn for any n ∈N. Supposing that x 
= Zx,
by (5), we have

�
(
sαdb(Zx, Uv2m–1)

) ≤ �
(
R2(x, v2m–1)

)
< �

(
R2(x, v2m–1)

)
,

or, taking (β2) into account,

sαdb(Zx, Uv2m–1) < R2(x, v2m–1). (17)

However, since

R2(x, v2m–1) = c1db(x, v2m–1) + c2db(x, Zx) + c3db(v2m–1, Uv2m–1)

+ c4
db(v2m–1, Uv2m–1)db(x, Zx)

1 + db(x, v2m)
+ c5

db(v2m–1, Uv2m–1)[1 + db(x, Zx)]
1 + db(x, v2m)

= c1db(x, v2m–1) + c2db(x, Zx) + c3db(v2m–1, v2m)

+ c4
db(v2m–1, v2m)db(x, Zx)

1 + db(x, v2m–1)
+ c5

+db(v2m–1, v2m)[1 + db(x, Zx)]
1 + db(x, v2m–1)

,

we obtain

0 < lim sup
m→∞

R2(x, v2m–1) < c2db(x, Zx). (18)

On the other hand,

db(x, Zx) ≤ s
[
db(x, v2m) + db(v2m, Zx)

]

≤ sdb(x, v2m) + sαdb(Uv2m–1, Zx)

< sdb(x, v2m) + R2(x, v2m–1),

and then

0 < lim sup
m→∞

db(x, Zx) < lim sup
m→∞

R2(x, v2m–1) < c2db(x, Zx),

which contradicts our assumption c2 ≤ 1. Thus, we get db(x, Zx) = 0, that is, x = Zx. More-
over, if we suppose that x /∈FS(Z, U), since db(Zx, Ux) > 0,

�
(
sdb(Zx, Ux)

) ≤ �
(
sαdb(Zx, Ux)

) ≤ �
(
R2(u, u)

)
< �

(
R2(u, u)

)
,

or, keeping in mind (β2)

sdb(Zx, Ux) < R2(x, x) = c1db(x, x) + c2db(x, Zx) + c3db(x, Ux)
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+ c4
db(x, Ux)db(x, Zx)

1 + db(x, x)
+ c5

db(x, Ux)[1 + db(x, Zx)]
1 + db(x, x)

= (c3 + c5)db(x, Ux) ≤ s(c3 + c5)
[
db(x, Zx) + db(Zx, Ux)

]

= s(c3 + c5)db(Zx, Ux) ≤ sdb(Zx, Ux),

which is a contradiction. Therefore, db(Zx, Ux) = 0 which implies by (db1 ) that x = Zx = Ux.
That is, FS(Z, U) 
= ∅.

As a last step, we claim that x is the unique fixed point of the mappings Z and U. Indeed,
if we suppose that there exists another point υ ∈FS(Z, U) such that x 
= υ , by (13) we have

�
(
db(x,υ)

) ≤ �
(
sαdb(x,υ)

) ≤ �
(
R2(x,υ)

)
< �

(
R2(x,υ)

)

= �
(
c1db(x,υ)

)
.

Since the function � is supposed to be nondecreasing, it follows that

db(x,υ) < c1db(x,υ) ≤ db(x,υ),

which is a contradiction. Therefore, the set FS(Z, U) has exactly one element. �

Corollary 14 Let (S, db, s) be a complete db-ms, � ,� ∈ �, a number α ∈ [1,∞), and a
mapping Z : S → S such that, for every v, w ∈ S with db(Zv, Uw) > 0, the following inequality

�
(
sαdb(Zv, Uw)

) ≤ �
(
R2(v, w)

)
(19)

holds, where for c1, c2, c3, c4, c5 nonnegative real numbers,

R2(v, w) = c1db(v, w) + c2db(v, Zv) + c3db(w, Zw) + c4
db(w, Zw)db(v, Zv)

1 + db(v, w)

+ c5
db(w, Zw)(1 + db(v, Zv))

1 + db(v, w)
for all v, w ∈ S.

Assume that:
(β1) c1 + c2 + c3 + c4 + c5 < sα , c1 > 0, and c3 + c5 ≤ 1;
(β2) � is nondecreasing.

Then FS(Z) 
= ∅. Moreover, if c1 ≤ 1, then the set FS(Z) has exactly one element.

Proof Let Z = U in Theorem 13. �

Example 15 Let the set U = {m, n, p, q} and the function db : S × S → [0,∞) be defined by

db(v, w) m n p q

m 0 2 5 7
n 2 6 8 5
p 5 8 0 1
q 7 5 1 0

Obviously, db is a db-metric, with s = 2. Let Z, U : S → S be two mappings, where Zm =
Zp = Zq = p, Zn = q and Um = Un = q, Up = Uq = p. We have, in this case,
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v m n p q

Zv p q p p
Uv q q p p

db(v, Zv) 5 5 0 1
db(v, Uv) 7 5 0 1

v m n p q

db(Zv, Uw) Zv p q p p

w Uw

m q 1 0 1 1
n q 1 0 1 1
p p 0 1 0 0
q p 0 1 0 0

Letting the functions � ,� ∈ �, �(θ ) = θ , �(θ ) = 3
4θ and the numbers α = 2, c1 = 1,

c2 = 1, c3 = c4 = c5 = 1
4 , we can easily see that assumptions (β1) and (β2) in Theorem 13 are

satisfied. We show that (13) is satisfied for any pair (v, w) ∈ L , where

L =
{

(m, n), (n, p), (n, q), (p, m), (p, n), (q, m), (q, n)
}

(the other cases are excluded by the hypotheses of Theorem 13).
• (v, w) = (m, n)

sαdb(Zv, Uw)

= 22db(Zm, Un)

= 4 ≤ 154
16

=
3
4

(
c1db(m, n) + c2db(m, Zm)

+ c3db(n, Un) + c4
db(n, Un)db(m, Zm)

1 + db(m, n)
+ c5

db(n, Un)(1 + db(m, Zm))
1 + db(m, n)

)

• (v, w) = (n, p)

22db(Zn, Up)

= 4 ≤ 39
4

=
3
4

(8 + 5)

=
3
4

(
c1db(n, p) + c2db(n, Zn)

+ c3db(p, Up) + c4
db(p, Up)db(n, Zn)

1 + db(n, p)
+ c5

db(p, Up)(1 + db(n, Zn))
1 + db(n, p)

)
.

The other cases are discussed similarly.
Thus FS(Z, U) = {p}.

Theorem 16 Let (S, db, s) be a complete db-ms, the functions � ,� ∈ �, a number α ∈
[1,∞), c1 > 0, c2 ≥ 0, and two mappings Z, U : S → S such that, for every distinct v, w ∈ S
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with db(Zv, Uw) > 0, the following inequality

�
(
sαdb(Zv, Uw)

) ≤ �
(
R3(v, w)

)
(20)

holds, where

R3(v, w) = c1db(v, w) + c2
db(v, Zv)db(v, Uw) + db(w, Uw)db(w, Zv)

1 + 4 max{db(v, Zv), db(w, Uw)} . (21)

Assume that:
(β1) c1 + sc2 < sα ;
(β2) � is nondecreasing.

Then the set FS(Z, U) has exactly one element.

Proof Let us take in (20), v = v2n and w = v2n+1, where the sequence {vn} is defined as in
Theorem 11. We have

�
(
sαdb(Zv2n, Uv2n+1)

) ≤ �
(
R3(v2n, v2n+1)

)
< �

(
R3(v2n, v2n+1)

)
,

with

R3(v2n, v2n+1)

= c1db(v2n, v2n+1) + c2
db(v2n, Zv2n)db(v2n, Uv2n+1) + db(v2n+1, Uv2n+1)db(v2n+1, Zv2n)

1 + 4 max{db(v2n, Zv2n), db(v2n+1, Uv2n+1)}
= c1db(v2n, v2n+1) + c2

db(v2n, v2n+1)db(v2n, v2n+2) + db(v2n+1, v2n+2)db(v2n+1, v2n+1)
1 + 4 max{db(v2n, v2n+1), db(v2n+1, v2n+2)}

= c1db(v2n, v2n+1)

+c2
sdb(v2n, v2n+1)(db(v2n, v2n+1) + db(v2n+1, v2n+2)) + 2sdb(v2n+1, v2n+2)db(v2n, v2n+1)

1 + 4 max{db(v2n, v2n+1), db(v2n+1, v2n+2)}
= c1db(v2n, v2n+1)

+ sc2db(v2n, v2n+1)
db(v2n, v2n+1) + 3db(v2n+1, v2n+2)

1 + 4 max{db(v2n, v2n+1), db(v2n+1, v2n+2)}
≤ (c1 + sc2)db(v2n, v2n+1).

Furthermore, taking (β2) and the above relation into account, we get

sαdb(v2n+1, v2n+2) = sαdb(Zv2n, Uv2n+1) < R3(v2n, v2n+1) ≤ (c1 + sc2)db(v2n, v2n+1),

which implies

db(v2n+1, v2n+2) <
c1 + sc2

sα
db(v2n, v2n+1). (22)

Similarly, taking v = v2n, respectively w = v2n–1, we obtain

db(v2n+1, v2n) <
c1 + sc2

sα
db(v2n, v2n–1). (23)
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Now, choosing C = c1+sc2
sα < 1 (by assumption (β1)), we have db(vn, vn+1) < Cdb(vn–1, vn) for

any n ∈N. Therefore, Lemma 10 leads us to the conclusion that {vn} is a Cauchy sequence.
Thus, since the space is complete, there exists x ∈ S such that

lim
n,p→∞ db(vn, vp) = 0 = lim

n→∞ db(vn, x). (24)

Supposing that Zx 
= x, we have

db(Zx, x) ≤ s
[
db(Zx, v2n) + db(v2n, x)

]
= s

[
db(Zx, Uv2n–1) + db(v2n, x)

]
. (25)

Moreover, without loss of generality, we can assume that db(vn, x) > 0 for any n ∈ N, and
then from (20) we get

�
(
sα(Zx, Uv2n–1)

) ≤ �
(
R3(x, v2n–1)

)
< �

(
R3(x, v2n–1)

)

or, by (β2),

db(Zx, Uv2n–1)

≤ sαdb(Zx, Uv2n–1) < R3(x, v2n–1))

= c1db(x, v2n–1) + +c2
db(x, Zx)db(x, Uv2n–1) + db(v2n–1, Uv2n–1)db(v2n–1, Zx)

1 + 4 max{db(x, Zx), db(v2n–1, Uv2n–1)}
= c1db(x, v2n–1) + c2

db(x, Zx)db(x, v2n) + db(v2n–1, v2n)db(v2n–1, Zx)
1 + 4 max{db(x, Zx), db(v2n–1, v2n)} .

Returning in (25), we have

db(Zx, x) < s
[

c1db(x, v2n–1) + c2
db(x, Zx)db(x, v2n) + db(v2n–1, v2n)db(v2n–1, Zx)

1 + 4 max{db(x, Zx), db(v2n–1, v2n)}

+ db(v2n, x)
]

.

Letting n → ∞ and keeping in mind (24), we get

db(Zx, x) < 0,

which is a contradiction. Thus, db(Zx, x) = 0 and from (db1 ) we have x = Zx.
Analogously, we have

�
(
sαdb(Zv2n, Ux)

) ≤ �
(
R3(v2n, x)

)
< �

(
R3(v2n, x)

)
,

or, by (β2),

db(Zv2n, Ux) < R3(v2n, x)

= c1db(x, v2n) + c2
db(v2n, v2n+1)db(v2n, Ux) + db(x, Ux)db(x, v2n+1)

1 + 4 max{db(x, Ux), db(v2n, v2n+1)} .
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On the other hand, supposing that db(x, Ux) > 0, we have

0 < db(x, Ux) ≤ s
[
db(x, v2n+1) + db(v2n+1, Ux)

]
= s

[
db(x, v2n+1) + db(Zv2n, Ux)

]
.

Combining the above inequalities and taking limit as n → ∞, we obtain 0 < db(x, Ux) < 0,
which is a contradiction. Therefore, db(x, Ux) = 0, and then x = Ux. Thus, x is a common
fixed point for Z and U, that is, FS(Z, U) 
= ∅ and it remains to show that the set FS(Z, U)
is in fact reduced to a single point. On the contrary, let υ ∈FS(Z, U) with υ 
= x. Replaced
in (20), we have

�
(
sαdb(Zx, Uυ)

) ≤ �
(
R3(x,υ)

)
< �

(
R3(x,υ)

)

and, due to (β2),

sαdb(x,υ) = sαdb(Zx, Uυ)) < (R3(x,υ)

= c1db(x,υ) + c2db
db(x, Zx)db(x, Uυ) + db(υ, Uυ)db(υ, Zx)

1 + 4 max{db(x, Zx), db(υ, Uυ)}
= c1db(x,υ),

which is a contradiction. Therefore, it follows that x = υ and the set FS(Z, U) has exactly
one element. �

Example 17 Let S = {2, 4, 5, 7} and two self-mappings U, Z be defined on S by

v 2 4 5 7

Zv 5 5 5 4
Uw 4 5 5 5

Let db be the db-metric on S (with s = 2) given by

db(v, w) =

⎧
⎨

⎩
3 if v = w = 4,

|v – w|2 otherwise.

Considering the functions � ,� ∈ � as in Example (15) and letting α = 2, c1 = 2, c2 = 3
4 , we

have the following cases:
• (v, w) = (4, 2)

4db(Z4, U2) = 4db(5, 4) = 4 < 6 ≤ 3
4

(
8 +

3
4

· 39
17

)

=
3
4

[
2 · 4 +

3
4

· 1 · 3 + 4 · 9
1 + 4 · 4

]
=

3
4

R3(4, 2);

• (v, w) = (5, 2)

4db(Z5, U2) = 4db(5, 4) = 4 <
27
2

=
3
4

· 2db(5, 2) ≤ 3
4

R3(5, 2);
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• (v, w) = (7, 2)

4db(Z7, U2) = 4db(4, 4) = 4 · 3 = 12 <
75
2

=
3
4

· 2db(7, 2) ≤ 3
4

R3(7, 2);

• (v, w) = (7, 4)

4db(Z7, U4) = 4db(4, 5) = 4 < 6 =
3
4

· 2db(7, 4) ≤ 3
4

R3(7, 4);

• (v, w) = (7, 5)

4db(Z7, U5) = 4db(4, 5) = 4 <
27
2

=
3
4

· 2db(7, 5) ≤ 3
4

R3(7, 4).

The other cases are excluded by the hypothesis of Theorem 16. Therefore, FS(Z, U) = {5}.

Corollary 18 Let (S, db, s) be a complete db-ms, � ,� ∈ �, a number α ∈ [1,∞), c1 > 0, c2 ≥
0, and a mapping Z : S → S such that, for every distinct v, w ∈ S with db(Zv, Zw) > 0, the
following inequality

�
(
sαdb(Zv, Zw)

) ≤ �
(
R3(v, w)

)
(26)

holds, where

R3(v, w) = c1db(v, w) + c2
db(v, Zv)db(v, Zw) + db(w, Zw)db(w, Zv)

1 + 4 max{db(v, Zv), db(w, Zw)} . (27)

Assume that:
(β1) c1 + sc2 < sα ;
(β2) � is nondecreasing.

Then the set FS(Z) has exactly one element.

Proof Let Z = U in Theorem 16. �

3 Consequences
Taking particular functions � and �, we obtain as consequences some known results. For
example, let �(θ ) = β(θ )�(θ ) for all θ > 0 and β : [0,∞) → [0, 1

s ).

Corollary 19 Let (S, db, s) be a complete db-ms, a number α ∈ [1,∞), and two continu-
ous mappings Z, U : S → S such that, for every distinct v, w ∈ S with db(Zv, Uw) > 0, the
following inequality

�
(
sαdb(Zv, Uw)

) ≤ β
(
R1(v, w)

)
�

(
R1(v, w)

)
(28)

holds. Assume that:
(β1) c1 + c2 + c3 + c4 < sα and c1 > 0;
(β3) � : (0,∞) → (0,∞) is nondecreasing;
(β4) β : (0,∞) → (0, 1

s ) satisfies lim supθ→θ0 β(θ ) < 1
s for any θ0 > 0.
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Then FS(Z, U) 
= ∅. Moreover, if c1 + 2c2 + 2c3 + 4c4 ≤ sα , then the set FS(Z, U) has exactly
one element.

Corollary 20 Let (S, db, s) be a complete db-ms, a number α ∈ [1,∞), and two mappings
Z, U : S → S such that, for every distinct v, w ∈ S with db(Zv, Uw) > 0, the following inequal-
ity

�
(
sαdb(Zv, Uw)

) ≤ �
(
R2(v, w)

)
(29)

holds. Assume that:
(β1) c1 + c2 + c3 + c4 + c5 < sα , c1 > 0, c2 ≤ 1, and c3 + c5 ≤ 1;
(β3) � : (0,∞) → (0,∞) is nondecreasing;
(β4) β : (0,∞) → (0, 1

s ) satisfies lim supθ→θ0 β(θ ) < 1
s for any θ0 > 0.

Then FS(Z, U) 
= ∅. Moreover, if c1 ≤ 1, then the set FS(Z, U) has exactly one element.

Corollary 21 Let (S, db, s) be a complete db-ms, a number α ∈ [1,∞), and two mappings
Z, U : S → S such that, for every distinct v, w ∈ S with db(Zv, Uw) > 0, the following inequal-
ity

�
(
sαdb(Zv, Uw)

) ≤ �
(
R3(v, w)

)
(30)

holds. Assume that:
(β1) c1 + sc2 < sα , c1 > 0;
(β3) � : (0,∞) → (0,∞) is nondecreasing;
(β4) β : (0,∞) → (0, 1

s ) satisfies lim supθ→θ0 β(θ ) < 1
s for any θ0 > 0.

Then the set FS(Z, U) has exactly one element.

Considering �(θ ) = κ�(θ ) or �(θ ) = κ · θ for all θ > 0 in Theorems 11, 13 or 16, other
consequences can be listed. On the other hand, many other corollaries can be deduced
considering Z = U or letting s = 1.
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