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1 Introduction
The integral equations of Urysohn–Stieltjes (U-S) type have been studied by some authors;
see, for example, [3, 5, 11–15], and [16–22], and reference therein.

The quadratic Chandrasekhar integral equation

x(t) = a(t) + x(t)
∫ 1

0

t
t + s

b1(s)x(s) ds, t ∈ I = [0, 1]

has been studied in some papers; see, for example, [1, 4, 7–10], and [24] and references
therein.

Our aim is to study the existence of solutions x ∈ C[0, 1] of the U-S nonlinear functional
integral inclusion

x(t) – a(t) ∈
∫ 1

0
F
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s), t ∈ I = [0, 1]. (1.1)
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As applications, we will prove the existence of solutions x ∈ C[0, 1] of the nonlinear Chan-
drasekhar functional integral inclusion

x(t) – a(t) ∈
∫ 1

0

t
t + s

F
(

b1(s)x(s),
∫ 1

0

s
s + θ

b2(s)x(θ ) dθ

)
ds, t ∈ I = [0, 1],

and the Chandrasekhar quadratic integral equation

x(t) = a(t) +
∫ 1

0

t
t + s

b1(s)x(s) ·
(∫ 1

0

s
s + θ

b2(s)x(θ ) dθ

)
ds, t ∈ I = [0, 1].

The paper is organized as follows. In Sect. 2, we establish the existence and uniqueness
results for single-valued nonlinear U-S equations. We also prove the continuous depen-
dence of the unique solution on the gi (i = 1, 2). As an application, we discuss some partic-
ular cases by presenting the existence of solutions of nonlinear Chandrasekhar quadratic
functional integral equations. In Sect. 3, we add conditions to our problem in order to
obtain a new existence result with an application. Our results are generalized in Sect. 4,
where we discuss the existence of solutions for set-valued equation (1.1) with continu-
ous dependence on the set SF and demonstrate a particular case of inclusion by present-
ing the existence of solutions for set-valued Chandrasekhar nonlinear functional integral
equations.

2 Single-valued problem
Here we consider the nonlinear single-valued functional integral equation of U-S type

x(t) = a(t) +
∫ 1

0
f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s), t ∈ [0, 1]. (2.1)

2.1 Existence of solutions I
Consider the U-S functional integral equation (2.1) under the following assumptions:

(i) a : [0, 1] → [0, 1] is a continuous function, with a = supt∈[0,1] |a(t)|.
(ii) a) f : [0, 1] × [0, 1] × R × R → R is a continuous function, and there exist two

continuous functions m1, k1 : [0, 1] × [0, 1] → R such that

∣∣f (t, s, x, y)
∣∣ ≤ m1(t, s) + k1(t, s)

(|x| + |y|).

b) h : [0, 1] × [0, 1] × R → R is a continuous function, and there exist two
continuous functions m2, k2 : [0, 1] × [0, 1] → R such that

∣∣h(t, s, x)
∣∣ ≤ m2(t, s) + k2(t, s)|x|.

c) k = sup{ki(t, s) : t, s ∈ [0, 1]}, and m = sup{mi(t, s) : t, s ∈ [0, 1], i = 1, 2}.
(iii) gi : [0, 1] × R → R, i = 1, 2, are continuous functions with

μ = max
{
sup

∣∣gi(t, 1)
∣∣ + sup

∣∣gi(t, 0)
∣∣, on [0, 1]

}
.

(iv) For all t1, t2 ∈ I , t1 < t2, the functions s → gi(t2, s) – gi(t1, s) are nondecreasing on
[0, 1].
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(v) gi(0, s) = 0 for s ∈ [0, 1].
(vi) kμ + k2μ2 < 1.

Let E be a Banach space with the norm ‖ · ‖E , and let I = [0, 1]. Denote by C = C(I, E) the
space of all continuous functions on I taking values in the space E. This space becomes a
Banach space with supnorm

‖x‖C = sup
t∈I

∥∥x(t)
∥∥

E .

Remark 2.1 (see [11]) Note that the function s → g(t, s) is nondecreasing on the interval
[0, 1]. Indeed, for s1, s2 ∈ [0, 1] with s1 < s2, from assumptions (iv) and (v) we obtain

g(t, s2) – g(t, s1) =
[
g(t, s2) – g(0, s2)

]
–

[
g(t, s1) – g(0, s1)

] ≥ 0.

Lemma 2.2 ([11]) Assume that a function g satisfies assumption (v). Then for arbitrary
s1, s2 ∈ I with s1 < s2, the function t → g(t, s2) – g(t, s1) is nondecreasing on I .

Indeed, take t1, t2 ∈ [0, 1] such that t1 < t2. Then by assumption (vi) we get

[
g(t2, s2)–g(t2, s1)

]
–

[
g(t1, s2)–g(t1, s1)

]
=

[
g(t2, s2)–g(t1, s2)

]
–

[
g(t2, s1)–g(t1, s1)

] ≥ 0.

For the existence of at least one solution of the U-S nonlinear functional integral equa-
tion (2.1), we have the following theorem.

Theorem 2.3 Let the assumptions (i)–(vi) be satisfied. Then the functional integral equa-
tion (2.1) has at least one solution x ∈ C[0, 1].

Proof Define the operator A by

Ax(t) = a(t) +
∫ 1

0
f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s), t ∈ I, (2.2)

and define let the set

Qr =
{

x ∈ R : |x| ≤ r
} ⊆ C[0, 1],

where

r =
a + mμ + kmμ2

1 – [kμ + k2μ2]
.

It is clear that Qr is a nonempty, bounded, closed, and convex set.
Let x ∈ Qr . Then

∣∣Ax(t)
∣∣ =

∣∣∣∣a(t) +
∫ 1

0
f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

∣∣∣∣

≤ ∣∣a(t)
∣∣ +

∫ 1

0

∣∣∣∣f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)∣∣∣∣dsg1(t, s)
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≤ a +
∫ 1

0

(
m1(t, s) + k1(t, s)

(∣∣x(t)
∣∣ +

∫ 1

0

∣∣h(
s, θ , x(θ )

)∣∣dθ g2(s, θ )
))

dsg1(t, s)

≤ a +
∫ 1

0

(
m1(t, s) + k1(t, s)

(∣∣x(t)
∣∣

+
∫ 1

0

(
m2(s, θ ) + k2(s, θ )

∣∣x(θ )
∣∣dθ g2(s, θ )

))
dsg1(t, s)

)

≤ a +
∫ 1

0
(m1(t, s) + k1(t, s)

(∣∣x(t)
∣∣ + (m + kr)μ

)
dsg1(t, s)

≤ a +
(
m + k

(
r + (m + kr)μ

))
μ ≤ r.

This proves that the operator A : Qr → Qr and the class {Ax} is uniformly bounded on Qr .
Then, for x ∈ Qr and y(s) =

∫ 1
0 h(s, θ , x(θ )) dθ g2(s, θ ), define the set

θ (δ) = sup
{∣∣f (t2, s, x, y) – f (t1, s, x, y)

∣∣ : t1, t2, s ∈ [0, 1], t1 < t2, (2.3)

|t2 – t1| < δ, |x| ≤ r, |y| ≤ r
}

.

Then from the uniform continuity of the function f : [0, 1] × [0, 1] × Qr × Qr → R and
assumption (ii) we deduce that θ (δ) → 0 as δ → 0, independently of x ∈ Qr .

Now let t2, t1 ∈ [0, 1], |t2 – t1| < δ. Then we have

∣∣Ax(t2) – Ax(t1)
∣∣

=
∣∣∣∣a(t2) +

∫ 1

0
f
(

t2, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t2, s)

– a(t1) –
∫ 1

0
f
(

t1, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t1, s)

∣∣∣∣
≤ ∣∣a(t2) – a(t1)

∣∣ +
∣∣∣∣
∫ 1

0
f
(

t2, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t2, s)

–
∫ 1

0
f
(

t1, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t1, s)

∣∣∣∣
≤ ∣∣a(t2) – a(t1)

∣∣

+
∣∣∣∣
∫ 1

0
f
(
t2, s, x(s), y(s)

)
dsg1(t2, s) –

∫ 1

0
f
(
t1, s, x(s), y(s)

)
dsg1(t2, s)

+
∫ 1

0
f
(
t1, s, x(s), y(s)

)
dsg1(t2, s) –

∫ 1

0
f
(
t1, s, x(s), y(s)

)
dsg1(t1, s)

∣∣∣∣
≤ ∣∣a(t2) – a(t1)

∣∣ +
∫ 1

0

∣∣(f (t2, s, x(s), y(s)
)

– f
(
t1, s, x(s), y(s)

)∣∣dsg1(t2, s)

+
∫ 1

0

∣∣f (t1, s, x(s), y(s)
)∣∣ds

[
g1(t2, s) – g1(t1, s)

]

≤ ∣∣a(t2) – a(t1)
∣∣ +

∫ 1

0
θ (δ) dsg1(t2, s)

+
∫ 1

0

(
m1(t, s) + k1(t, s)

(|x| + |y|))ds
[
g1(t2, s) – g1(t1, s)

]
.

This inequality means that the class of functions {Ax} is equicontinuous.
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Therefore by the Arzelà–Ascoli theorem [25] A is compact.
Let {xn} ⊂ Qr , xn → x. Then

Axn(t)

= a(t) +
∫ 1

0
f
(

t, s, xn(s),
∫ 1

0
h
(
s, θ , xn(θ )

)
dθ g2(s, θ )

)
dsg1(t, s),

lim
n→∞ Axn(t)

= lim
n→∞

(
a(t) +

∫ 1

0
f
(

t, s, xn(s),
∫ 1

0
h
(
s, θ , xn(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

)
,

and from assumption (ii) (see [23]) we get

lim
n→∞ Axn(t)

= a(t) +
∫ 1

0
lim

n→∞ f
(

t, s, xn(s),
∫ 1

0
h
(
s, θ , xn(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

= a(t) +
∫ 1

0
f
(

t, s, lim
n→∞ xn(s),

∫ 1

0
h
(

s, θ , lim
n→∞ xn(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

= a(t) +
∫ 1

0
f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

= Ax(t).

This proves that Axn(t) → Ax(t) and A is continuous.
Now (see [23]) A has at least one fixed point x ∈ Qr , and (2.1) has at least one solution

x ∈ Qr ⊂ C[0, 1]. �

2.2 Uniqueness of the solution
To prove the existence of a unique solution of U-S functional integral equation (2.1), let
us replace condition (ii) by

(ii)∗ a) the function f : I × I × R × R → R is continuous and satisfies the Lipschitz
condition

∣∣f (t, s, x1, y1) – f (t, s, x2, y2)
∣∣ ≤ k1

(|x1 – x2| + |y1 – y2|
)
.

b) h : I × I × R → R is continuous and satisfies the Lipschitz condition

∣∣h(t, s, x) – h(t, s, y)
∣∣ ≤ k2|x – y|.

By condition (ii)∗ we have

∣∣f (t, s, x(s), y(s)
)∣∣ –

∣∣f (t, s, 0, 0)
∣∣ ≤ ∣∣f (t, s, x(s), y(s)

)
– f (t, s, 0, 0)

∣∣ ≤ k1
(|x| + |y|).

Then

∣∣f (t, s, x(s), y(s)
)∣∣ ≤ k1

(|x| + |y|) +
∣∣f1(t, s, 0, 0)

∣∣,
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and

∣∣f (t, s, x(s), y(s)
)∣∣ ≤ k1

(|x| + |y|) + m1,

where m1 = supt×s∈I×I |f (t, s, 0, 0)|, and

∣∣h(
t, s, x(s)

)∣∣ –
∣∣h(t, s, 0)

∣∣ ≤ ∣∣h(
t, s, x(s)

)
– h(t, s, 0)

∣∣ ≤ k2|x|.

Then

∣∣h(
t, s, x(s)

)∣∣ ≤ k2|x| +
∣∣f2(t, s, 0)

∣∣,

and

∣∣h(
t, s, x(s)

)∣∣ ≤ k2|x| + m2,

where m2 = supt×s∈I×I |h(t, s, 0)|, m = max{m1, m2}, and k = max{k1, k2}.

Theorem 2.4 Let conditions (i), (ii)∗, (iii), and (iv)–(v) be satisfied with μk + k2μ2 ≤ 1.
Then the functional integral equation (2.1) has unique solution x ∈ C[0, 1].

Proof Let x1, x2 be solutions of the integral equation (2.1). Then

∣∣x1(t) – x2(t)
∣∣

=
∣∣∣∣a(t) +

∫ 1

0
f
(

t, s, x1(s),
∫ 1

0
h
(
s, θ , x1(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

– a(t) +
∫ 1

0
f
(

t, s, x2(s),
∫ 1

0
h
(
s, θ , x2(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

∣∣∣∣

≤
∫ 1

0

∣∣∣∣f
(

t, s, x1(s),
∫ 1

0
h
(
s, θ , x1(θ )

)
dθ g2(s, θ )

)

– f
(

t, s, x2(s),
∫ 1

0
h
(
s, θ , x2(θ )

)
dθ g2(s, θ )

)∣∣∣∣dsg1(t, s)

≤
∫ 1

0
k1

(∣∣x1(s) – x2(s)
∣∣ +

∫ 1

0

∣∣(h
(
s, θ , x1(θ )

)
– h

(
s, θ , x2(θ )

))∣∣dθ g2(s, θ )
)

dsg1(t, s)

≤
∫ 1

0
k1

(∣∣x1(s) – x2(s)
∣∣ +

∫ 1

0
k2

(∣∣x1(θ ) – x2(θ )
∣∣)dθ g2(s, θ )

)
dsg1(t, s)

≤
∫ 1

0
k1

(∣∣x1(s) – x2(s)
∣∣ + k2‖x1 – x2‖μ

)
dsg1(t, s)

≤ k‖x1 – x2‖μ + k2‖x1 – x2‖μ2.

Hence we have

‖x1 – x2‖ ≤ (
μk + k2μ2)‖x1 – x2‖
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and

(
1 –

(
μ + k2μ2))‖x1 – x2‖ ≤ 0,

which implies

x1(t) = x2(t). �

2.2.1 Continuous dependence of solution on functions gi(t, s)
Here we show that the solution of U-S functional integral equation (2.1) continuously de-
pends on the functions gi.

Definition 2.5 The solutions of functional integral equation (2.1) continuously depends
on the functions gi(t, s), i = 1, 2, if for every ε > 0, there exists δ > 0 such that

∣∣gi(t, s) – g∗
i (t, s)

∣∣ ≤ δ ⇒ ∥∥x – x∗∥∥ ≤ ε.

Theorem 2.6 Let the assumptions of Theorem 2.4 be satisfied. Then the solution of (2.1)
depends continuously on functions gi(t, s), i = 1, 2.

Proof Let δ > 0 be such that |gi(t, s) – g∗
i (t, s)| ≤ δ for all t ≥ 0. Then

∣∣x(t) – x∗(t)
∣∣

=
∣∣∣∣a(t) +

∫ 1

0
f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

– a(t) +
∫ 1

0
f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g∗

2 (s, θ )
)

dsg∗
1 (t, s)

∣∣∣∣

≤
∣∣∣∣
∫ 1

0
f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

–
∫ 1

0
f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

+
∫ 1

0
f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)
dsg1(t, s))

–
∫ 1

0
f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g∗

2 (s, θ )
)

dsg∗
1 (t, s)

∣∣∣∣

≤
∫ 1

0

∣∣∣∣f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)

– f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)∣∣dsg1(t, s)

+
∣∣ ∫ 1

0
f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)

– f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g∗

2 (s, θ )
)

dsg∗
1 (t, s)

∣∣∣∣

≤
∫ 1

0
k1

(∣∣x(s) – x∗(s)
∣∣
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+
∫ 1

0

∣∣h(
s, θ , x(θ )

)
– h

(
s, θ , x∗(θ )

)∣∣dθ g2(s, θ )
)

dsg1(t, s)

+
∣∣∣∣
∫ 1

0
f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)
dsg1(t, s))

–
∫ 1

0
f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g∗

2 (s, θ )
)

dsg1(t, s))

+
∫ 1

0
f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g∗

2 (s, θ )
)

dsg1(t, s))

–
∫ 1

0
f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g∗

2 (s, θ )
)

dsg∗
1 (t, s))

∣∣∣∣

≤
∫ 1

0
k
(∣∣x(s) – x∗(s)

∣∣ +
∫ 1

0
k
∣∣x(θ ) – x∗(θ )

∣∣dθ g2(s, θ )
)

dsg1(t, s)

+
∫ 1

0

∣∣∣∣f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)

– f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g∗

2 (s, θ )
)∣∣∣∣dsg1(t, s))

+
∫ 1

0

∣∣∣∣f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g∗

2 (s, θ )
)∣∣∣∣

[
dsg1(t, s) – dsg∗

1 (t, s)
]

≤
∫ 1

0
k
(∣∣x(s) – x∗(s)

∣∣ +
∫ 1

0
k
∣∣x(θ ) – x∗(θ )

∣∣dθ g2(s, θ )
)

dsg1(t, s)

+
∫ 1

0
k
(∣∣∣∣

∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ ) –

∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g∗

2 (s, θ )
∣∣∣∣
)

dsg1(t, s))

+
∫ 1

0

∣∣∣∣f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g∗

2 (s, θ )
)∣∣∣∣

[
dsg1(t, s) – dsg∗

1 (t, s)
]

≤
∫ 1

0
k
(∣∣x(s) – x∗(s)

∣∣ +
∫ 1

0
k
∣∣x(θ ) – x∗(θ )

∣∣dθ g2(s, θ )
)

dsg1(t, s)

+
∫ 1

0
k
(∫ 1

0

∣∣h(
s, θ , x∗(θ )

)∣∣[dθ g2(s, θ ) – dθ g∗
2 (s, θ )

])
dsg1(t, s))

+
∫ 1

0

[
m + k

(∣∣x∗(s)
∣∣ +

∫ 1

0

∣∣h(
s, θ , x∗(θ )

)∣∣dθ g∗
2 (s, θ )

)][
dsg1(t, s) – dsg∗

1 (t, s)
]

≤
∫ 1

0
k
(∣∣x(s) – x∗(s)

∣∣ +
∫ 1

0
k
∣∣x(θ ) – x∗(θ )

∣∣dθ g2(s, θ )
)

dsg1(t, s)

+
∫ 1

0
k
(∫ 1

0

[
m + k

∣∣x∗(θ )
∣∣][dθ g2(s, θ ) – dθ g∗

2 (s, θ )
])

dsg1(t, s)

+
∫ 1

0

[
m + k

(∣∣x∗(s)
∣∣ +

∫ 1

0

[
m + k

∣∣x∗(θ )
∣∣]dθ g∗

2 (s, θ )
)][

dsg1(t, s) – dsg∗
1 (t, s)

]

≤ kμ
∥∥x – x∗∥∥ + k2μ2∥∥x – x∗∥∥ + k[m + kr]μ

[
g2(s, 1) – g∗

2 (s, 1)
]

+
[
m + k[r + m + kr]

]
μ

[
g1(t, 1) – g∗

1 (t, 1)
]
.

Taking the supremum over t ∈ I , we get

∥∥x – x∗∥∥ ≤ kμ
∥∥x – x∗∥∥ + k2μ2∥∥x – x∗∥∥ + [km + kr]μδ +

[
m + k[r + kr + m]

]
μδ.
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Then

∥∥x – x∗∥∥ ≤ (2km + 2kr + k2r + m)μδ

1 – (kμ + k2μ2)
= ε.

Now we get that the solution of (2.1) continuously depends on the functions gi, i = 1, 2. �

3 Existence of solutions II
Now we replace assumptions (ii) a), (vi) by

(ii∗) a∗) f : [0, 1] × [0, 1] × R × R → R is a function, and there exist two continuous
functions m1, k1 : [0, 1] × [0, 1] → R such that

∣∣f (t, s, x, y)
∣∣ ≤ m1(t, s) + k1(t, s)|x| · |y|.

(vi∗) There exists a positive root l of the algebraic equation

μ2k2l2 +
(
kμ2m – 1

)
l + (a + mμ) = 0.

Theorem 3.1 Let the assumptions of Theorem 2.3 be satisfied with (ii) a) and (vi) replaced
by (ii∗) a∗) and (vi∗), respectively. Then equation (2.1) has at least one solution x ∈ C[0, 1].

Proof Define the operator A∗ by

A∗x(t) = a(t) +
∫ 1

0
f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s), t ∈ [0, 1],

and define the set

Ql =
{

x ∈ R : |x| ≤ l
} ⊆ C

(
[0, 1]

)
,

where l is a positive root of the algebraic equation

μ2k2l2 +
(
kμ2m – 1

)
l + (a + mμ) = 0.

It is clear that Ql is a nonempty, bounded, closed, and convex set.
Now let x ∈ Ql . Then

∣∣A∗x(t)
∣∣

=
∣∣∣∣a(t) +

∫ 1

0
f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

∣∣∣∣

≤ a +
∫ 1

0

∣∣∣∣f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)∣∣∣∣dsg1(t, s)

≤ a +
∫ 1

0

(
m1(t, s) + k1(t, s)

(∣∣x(t)
∣∣ ·

∣∣∣∣
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

))∣∣∣∣dsg1(t, s)

≤ a +
∫ 1

0
(m1(t, s) + k1(t, s)(

∣∣x(t)
∣∣ ·

∫ 1

0

(
m2(s, θ ) + k2(s, θ )

∣∣x(θ )
∣∣dθ g2(s, θ )

)
dsg1(t, s)
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≤ a +
∫ 1

0
(m1(t, s) + k1(t, s)

(∣∣x(t)
∣∣ · (m + kl)μ

)
dsg1(t, s)

≤ a +
(
m + k

(
l · (m + kl)μ

))
μ ≤ l.

This proves that A∗ : Ql → Ql and the class {A∗x} is uniformly bounded on Ql .
Now for x ∈ Qr and y(s) =

∫ 1
0 h(s, θ , x(θ )) dθ g2(s, θ ), define the set

θ (δ) = sup
{∣∣f (t2, s, x, y) – f (t1, s, x, y)

∣∣ : t1, t2, s ∈ [0, 1], t1 < t2,

|t2 – t1| < δ, |x| ≤ l, |y| ≤ l
}

.

Then from the uniform continuity of the function f : [0, 1] × [0, 1] × Ql × Ql → R and
assumption (ii∗) we deduce that θ (δ) → 0 as δ → 0, independently of x ∈ Ql .

Now let t2, t1 ∈ [0, 1] be such that |t2 – t1| < δ. Then we have

∣∣A∗x(t2) – A∗x(t1)
∣∣

=
∣∣∣∣a(t2) +

∫ 1

0
f
(

t2, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t2, s)

– a(t1) –
∫ 1

0
f
(

t1, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t1, s)

∣∣∣∣

≤ ∣∣a(t2) – a(t1)
∣∣ +

∣∣∣∣
∫ 1

0
f
(

t2, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t2, s)

–
∫ 1

0
f
(

t1, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t1, s)

∣∣∣∣
≤ ∣∣a(t2) – a(t1)

∣∣

+
∣∣∣∣
∫ 1

0
f
(
t2, s, x(s), y(s)

)
dsg1(t2, s) –

∫ 1

0
f
(
t1, s, x(s), y(s)

)
dsg1(t2, s)

+
∫ 1

0
f
(
t1, s, x(s), y(s)

)
dsg1(t2, s) –

∫ 1

0
f
(
t1, s, x(s), y(s)

)
dsg1(t1, s)

∣∣∣∣

≤ ∣∣a(t2) – a(t1)
∣∣ +

∫ 1

0

∣∣(f
(
t2, s, x(s), y(s)

)
– f

(
t1, s, x(s), y(s)

))∣∣dsg1(t2, s)

+
∫ 1

0

∣∣f (t1, s, x(s), y(s)
)∣∣ds

[
g1(t2, s) – g1(t1, s)

]

≤ ∣∣a(t2) – a(t1)
∣∣

+
∫ 1

0
θ (δ) dsg1(t2, s) +

∫ 1

0

(
m1(t, s) + k1(t, s)

(|x| · |y|))ds
[
g1(t2, s) – g1(t1, s)

]
.

This inequality means that the class of functions {A∗x} is equicontinuous. Therefore A∗ is
compact by the Arzelà–Ascoli theorem [25].

Let {xn} ⊂ Ql , xn → x. Then

A∗xn(t) = a(t) +
∫ 1

0
f
(

t, s, xn(s),
∫ 1

0
h
(
s, θ , xn(θ )

)
dθ g2(s, θ )

)
dsg1(t, s),
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lim
n→∞ A∗xn(t) = lim

n→∞

(
a(t)

+
∫ 1

0
f
(

t, s, xn(s),
∫ 1

0
h
(
s, θ , xn(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

)
,

and by assumption (ii∗) (see [23]) we get

lim
n→∞ A∗xn(t)

= a(t) +
∫ 1

0
lim

n→∞ f
(

t, s, xn(s),
∫ 1

0
h
(
s, θ , xn(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

= a(t) +
∫ 1

0
f
(

t, s, lim
n→∞ xn(s),

∫ 1

0
h
(

s, θ , lim
n→∞ xn(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

= a(t) +
∫ 1

0
f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s) = A∗x(t).

This proves that A∗xn(t) → A∗x(t) and A∗ is continuous. So (see [23]) A∗ has at least one
fixed point x ∈ Qr , and (2.1) has at least one solution x ∈ Ql ⊂ C([0, 1]). �

3.1 Application
Let in equation (2.1), h(t, s, x(s)) = b2(t)x(s),

g1(t, s) =

⎧⎨
⎩

t ln t+s
t for t ∈ (0, 1], s ∈ I,

0 for t = 0, s ∈ I,

and

g2(s, θ ) =

⎧⎨
⎩

s ln s+θ
s for s ∈ (0, 1], θ ∈ I,

0 for s = 0, θ ∈ I.

Then g1, g2 satisfy our assumptions (iii)–(v), and we obtain the nonlinear Chandrasekhar
functional integral equation

x(t) = a(t) +
∫ 1

0

t
t + s

f
(

t, s, x(s),
∫ 1

0

s
s + θ

b2(s)x(θ ) dθ

)
ds. (3.1)

Let, in equation (3.1), f (t, s, x(s), y(s)) = b1(s)x(s) · y(s), where

y(s) =
∫ 1

0

s
s + θ

b2(s)x(θ ) dθ .

Then we obtain the Chandrasekhar quadratic functional integral equation of the form

x(t) = a(t) +
∫ 1

0

t
t + s

b1(s)x(s) ·
(∫ 1

0

s
s + θ

b2(s)x(θ ) dθ

)
ds. (3.2)

Now, under the assumptions of Theorem 3.1, the Chandrasekhar quadratic functional in-
tegral equation (3.2) has at least one solution x ∈ C[0, 1].



El-Sayed et al. Advances in Difference Equations        (2021) 2021:137 Page 12 of 17

3.2 Example
Consider the following Chandrasekhar quadratic functional integral equation:

x(t) =
e–t

9 + et +
∫ 1

0

t
t + s

· 2 cos(s)x(s)
7e2s(1 + cos2(s))

·
(∫ 1

0

s
s + θ

· sin(s)
4(1 + sin2(s))

x(θ ) dθ

)
ds. (3.3)

First, note that equation (3.3) is a particular case of equation (3.2) if we put

a(t) =
e–t

9 + et ,

h
(
t, s, x(s)

)
=

sin(t)
4(1 + sin2(t))

x(s),

f
(
t, s, x(s), y(s)

)
=

2 cos(s)x(s)
7e2s(1 + cos2(s))

· y(s),

y(s) =
∫ 1

0

s
s + θ

sin(s)
4(1 + sin2(s))

x(θ ) dθ ,

b1(s) = 2 cos(s)
7e2s(1+cos2(s)) , b2(s) = sin(s)

4(1+sin2(s)) , with k1 = 2
7 and k2 = 1

4 .
Thus conditions (i), (ii∗) and (iii) are satisfied with a = 1

10 , k = 1
4 , and m = 0. By all facts

established above, we deduce that condition (vi∗) of the form

μ2k2l2 +
(
kμ2m – 1

)
l + (a + mμ) = 0

has a positive solution l. For example, if l ≈ 0.1 or l ≈ 33, then assumption (vi∗) will be
satisfied if we choose one of this values.

As all the conditions of Theorem 3.1 are satisfied, equation (3.3) has at least one solution
x ∈ C[0, 1].

4 Set-valued problem
Consider the U-S nonlinear functional integral inclusion (1.1),

x(t) ∈ a(t) +
∫ 1

0
F
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s), t ∈ I,

under the following assumptions:
(i) a : [0, 1] → [0, 1] is a continuous function.

(ii)∗∗∗ (a) F : [0, 1] × [0, 1] × R × R → P(R), is a Lipschitzian set-valued map with a
nonempty compact convex subset of 2R, with a Lipschitz constant k1 > 0:

∥∥F(t, s, x1, y1) – F(t, s, x2, y2)
∥∥ ≤ k1

(|x1 – x2| + |y1 – y2|
)
.

Remark. From this assumption and Theorem 1 from [2, Sect. 9, Chap. 1] on
the existence of Lipschitzian selection we deduce that the set of Lipschitz
selections of F is not empty and there exists f ∈ F such that

∣∣f (t, s, x1, y1) – f (t, s, x2, y2)
∣∣ ≤ k1

(|x1 – x2| + |y1 – y2|
)
.
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(b) h : [0, 1] × [0, 1] × R → R is a continuous function such that

∣∣h(t, s, x)
∣∣ ≤ m2(t, s) + k2(t, s)|x|.

(c) k = sup(t,s)∈[0,1]×[0,1] ki(t, s) and m = sup(t,s)∈[0,1]×[0,1] mi(t, s).
(iii) gi : [0, 1] × R → R, i = 1, 2, are continuous with

μ = max
{
sup

∣∣gi
(
t,ϕ(t)

)∣∣ + sup
∣∣gi(t, 0)

∣∣ on [0, 1]
}

.

(iv) For all t1, t2 ∈ [0, 1], t1 < t2, the functions s → gi(t2, s) – gi(t1, s) are nondecreasing
on [0, 1].

(v) gi(0, s) = 0 for any s ∈ [0, 1].
(vi) kμ + k2μ2 < 1.

4.1 Existence of solution
Theorem 4.1 Let assumptions (i)–(ii)∗∗∗, and (iv)–(vi) be satisfied. Then (1.1) has at least
one solution x ∈ C[0, 1].

Proof By assumption (ii)∗∗∗-(a) it is clear that the set of Lipschitz selection of F is
nonempty. So, the solution of the single-valued (2.1) where f ∈ SF is a solution to (1.1).

Note that the Lipschitz selection f : [0, 1] × [0, 1] × R × R → R satisfies

∣∣f (t, s, x1, y1) – f (t, s, x2, y2)
∣∣ ≤ k1

(|x1 – x2| + |y1 – y2|
)
.

From this condition with m1 = sup(t,s)∈I×I |f (t, s, 0, 0)| we have

∣∣f (t, s, x(s), y(s)
)∣∣ –

∣∣f (t, s, 0, 0)
∣∣ ≤ ∣∣f (t, s, x(s), y(s)

)
– f (t, s, 0, 0)

∣∣ ≤ k1
(|x| + |y|).

Then

∣∣f (t, s, x(s), y(s)
)∣∣ ≤ k1

(|x| + |y|) +
∣∣f (t, s, 0, 0)

∣∣,
and

∣∣f (t, s, x(s), y(s)
)∣∣ ≤ k1

(|x| + |y|) + m1,

that is, assumption (ii) of Theorem 2.3 is satisfied. So, all conditions of Theorem 2.3 hold.
Note that if x ∈ C(I, R) is a solution of (2.1), then x is a solution to (1.1). �

4.1.1 Continuous dependence on the set of selection SF

Here we study the continuous dependence on the set SF of all selections of the set-valued
function F .

Definition 4.2 The solution of (1.1) continuously depends on the set SF if for all ε > 0,
there exists δ > 0 such that if

∣∣f (t, s, x, y) – f ∗(t, s, x, y)
∣∣ < δ, f , f ∗ ∈ SF , t ∈ [0, 1],

then ‖x – x∗‖ < ε.
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Now we have the following theorem.

Theorem 4.3 Let the assumptions of Theorem 4.1 be satisfied with

∣∣h(t, s, x) – h(t, s, y)
∣∣ ≤ k2|x – y|.

Then the solution of (1.1) continuously depends on the set SF of all Lipschitzian selections
of F .

Proof For two solutions x(t) and x∗(t) of (1.1) corresponding to two selections f , f ∗ ∈ SF ,
we have

∣∣x(t) – x∗(t)
∣∣

=
∣∣∣∣a(t) +

∫ 1

0
f
(

t, s, x(s),
∫ 1

0
f
(
s, θ , x(θ )

)
dθ g2(s, θ )

)
dsg1(t, s)

– a(t) +
∫ 1

0
f ∗

(
t, s, x∗(s),

∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)
) dsg1(t, s)

∣∣∣∣

≤
∫ 1

0

∣∣∣∣f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)

– f ∗
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)
)
∣∣∣∣dsg1(t, s)

≤
∫ 1

0

∣∣∣∣f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)

– f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)∣∣∣∣dsg1(t, s)

+
∫ 1

0

∣∣∣∣f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)

– f ∗
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)∣∣∣∣dsg1(t, s)

≤
∫ 1

0

∣∣∣∣f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)

– f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)∣∣∣∣dsg1(t, s) + δ

∫ 1

0
dsg1(t, s)

≤
∫ 1

0

∣∣∣∣f
(

t, s, x(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)

– f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)∣∣∣∣dsg1(t, s)

+
∫ 1

0

∣∣∣∣f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x(θ )

)
dθ g2(s, θ )

)

– f
(

t, s, x∗(s),
∫ 1

0
h
(
s, θ , x∗(θ )

)
dθ g2(s, θ )

)∣∣∣∣dsg1(t, s) + δ

∫ 1

0
dsg1(t, s)

≤
∫ 1

0
k1

(∣∣x(s) – x∗(s)
∣∣ +

∫ 1

0

∣∣h(
s, θ , x(θ )

)
– h

(
s, θ , x∗(θ )

)∣∣dθ g2(s, θ )
)

dsg1(t, s)
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+ δ

∫ 1

0
dsg1(t, s)

≤
∫ 1

0
k1

(∣∣x(s) – x∗(s)
∣∣ +

∫ 1

0
k2

∣∣x(θ ) – x∗(θ )
∣∣dθ g2(s, θ )

)
dsg1(t, s)

+ δ

∫ 1

0
dsg1(t, s).

Now, taking the supremum over t ∈ I , we get

∥∥x – x∗∥∥ ≤ kμ
∥∥x – x∗∥∥ + k2μ2∥∥x – x∗∥∥ + δμ.

Hence

∥∥x – x∗∥∥ ≤ δμ

1 – (kμ + k2μ2)
= ε.

Thus from last inequality we get

∥∥x – x∗∥∥ ≤ ε.

This proves the continuous dependence of the solution on the set SF . �

4.2 Set-valued Chandrasekhar nonlinear quadratic functional integral inclusion
Now, as an application of the nonlinear set-valued functional integral equations of U-S
type (1.1), we have the following. Let the functions gi be defined by

g1(t, s) =

⎧⎨
⎩

t ln t+s
t for t ∈ (0, 1], s ∈ I,

0 for t = 0, s ∈ I,

and

g2(s, θ ) =

⎧⎨
⎩

s ln s+θ
s for s ∈ (0, 1], θ ∈ I,

0 for s = 0, θ ∈ I.

Let, in (1.1), h(t, s, x(s)) = b2(s)x(s) and F(t, s, x(s), y(s)) = F(b1(s)x(s), y(s)), where

y(s) =
∫ s

0

s
s + θ

b2(s)x(θ ) dθ .

Further, since the functions gi satisfy assumptions (iii)–(v) (see [6]), we obtain the nonlin-
ear Chandrasekhar functional integral inclusion

x(t) ∈ a(t) +
∫ 1

0

t
t + s

F
(

b1(s)x(s),
∫ 1

0

s
s + θ

b2(s)x(θ ) dθ

)
ds, t ∈ [0, 1]. (4.1)

Now we can state the following existence result for (4.1).

Theorem 4.4 Under the assumptions of Theorem 4.1, inclusion (4.1) has at least one con-
tinuous solution x ∈ C[0, 1].



El-Sayed et al. Advances in Difference Equations        (2021) 2021:137 Page 16 of 17

4.3 Example
Consider the following nonlinear Chandrasekhar functional integral inclusion:

x(t) ∈ te–4t +
∫ 1

0

t
t + s

√
πe–2tx(s)
π + et

∫ 1

0

s
s + θ

√
s

es+1 x(θ ) dθ ds, t ∈ [0, 1]. (4.2)

Note that this inclusion is a particular case of inclusion (4.1) if we choose F : [0, 1] ×R →
2R

+ in (4.2) as follows:

F
(
b1(s)x(s), y(s)

)
=

[
0,

s
s2 + 1

x(s)
∫ 1

0

s
s + θ

√
s

es+1 x(θ ) dθ ds
]

.

Further, note that now the terms involved in (4.1) have the form

a(t) = te–4t , y(s) =
∫ s

0

s
s + θ

1
s2 + 1

x(θ ) dθ , h
(
t, s, x(s)

)
=

√
s

es+1 x(θ ),

with b1(s) = 1
s2+1 and b2(s) =

√
s

es+1 .
Let f : [0, 1] × R → R be a continuous map. Note that if f ∈ SF , then we have

∣∣f (b1(s)x1(s), y1(s)
)

– f
(
b1(s)x2(s), y2(s)

)∣∣ ≤
√

π

e2(π + 1)
|x1 – x2|

and

∣∣h(
t, s, x1(t)

)
– h

(
t, s, x2(t)

)∣∣ ≤ 1
e2 |x1 – x2|.

Thus conditions (i) and (ii)∗ are satisfied with a = e, k1 =
√

π

e2(π+1) , and k2 = 1
e2 .

Moreover, we have

kμ + k2μ2
≈ 0.102607 < 1.

This shows that assumption (vii) is satisfied. So, as all the conditions of Theorem 4.4 are
satisfied, inclusion (4.2) has at least one solution x ∈ C[0, 1].
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