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Abstract

In this paper, we establish some new delay Gronwall–Bellman integral inequalities
with power, which can be used as a convenient tool to study the qualitative
properties of solutions to differential and integral equations. We also give some
examples to illustrate the application of our results to obtain the estimation for the
solution of the integral and differential equations.
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1 Introduction

The “eld of di�erential equations has developed a perfect structure. Since the 20th cen-

tury, inequality theory has been an active research “eld, a series of basic theories of in-

equalities have been also established [1…4]. Since for most di�erential equations it is di�-

cult to “nd the exact form of expression, people turn to studying the qualitative nature of

the solutions of di�erential equations, for example, the existence, uniqueness, asymptotic

property, boundedness and vibration of solutions of di�erential equations and di�erence

equations; inequalities have become important tools to study the qualitative properties

of di�erential equations. In recent decades, related studies on integral inequalities have

produced many results (see [5…26] and the references therein). In 1919, Gronwall [1] es-

tablished the following important integral inequality for a continuous functionu:

u(t) � c +
∫ t

a
f (� )u(� ) d� .

In 1943, Bellman [2] obtained the estimation of the unknown functionu for some con-

stant c � 0,

u(t) � c exp
(∫ t

a
f (� ) d�

)
.
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In 1975, Pachpatte [3] studied the following integral inequality:

u(t) � a(t) + g(t)
∫ t

0
f (� )u(� ) d� ,

whereu, f , andg are real-valued nonnegative continuous functions de“ned onI = [0,� ),
anda(t) is a positive, monotonic, nondecreasing continuous function de“ned onI.

In 1999, Owaidy et al. [5] discussed the following inequality:

u(t) � u0 +
∫ t

0
f (� )

(
up(� ) +

∫ �

0
g(� )u(� ) d�

)
d� , t � [0,� ),

whereu, f and g are real-valued nonnegative continuous functions de“ned onI = [0,� ).
In recent years, the time-delay dynamic equation has attracted much interest, Lipovan

et al. [6] assumeu, f ,g � C([t0,T),R+), and� � C1([t0,T), (t0,T)) are nondecreasing with
� (t) � t on [t0,T), andw � C(R+,R+) are nondecreasing withw(u) > 0 for u > 0, then they
studied the following retarded integral inequality in 2000:

u(t) � a +
∫ t

t0
f (� )w

(
u(� )

)
d� +

∫ � (t)

� (t0)
g(� )w

(
u(� )

)
d� .

In 2005, Agarwal et al. [7] discussed the followingn-term delay integral inequality:

u(t) � a(t) +
n∑

i=1

∫ bi(t)

bi(t0)
gi(t, � )wi(t, � ) d� ,

whereu is a continuous and nonnegative function on [t0,t1) .
In 2011, Abdeldaim et al. [8] studied the following Gronwall…Bellman type inequality

with power:

u(t) � u0 +
∫ t

0
f (� )u(� )

[
u(� ) +

∫ �

0
g(� )u(� ) d�

]p

d� ,

whereu, f andh are nonnegative real-valued continuous functions de“ned on [0,� ), and
u0 andp are positive constants.

In 2019, Li et al. [9] made the following improvement on the basis of the above inequality:

u(t) � a(t) +
∫ � (t)

0
f (� )u(� )

[
u2(� ) +

∫ �

0
g(� )u(� ) d�

]p

d� ,

where u,a, f � C(R+,R+), a(t) � 1, and � is a continuous, di�erentiable and increasing
function on [t0, � ) with � (t) � t, � (t0) = t0.

In this paper, inspired by the above work, we mainly establish the following nonlinear
Gronwall…Bellman inequalities:

uq(t) � a(t) +
∫ � (t)

t0
f (� )

[
u� (� ) +

∫ �

t0
h(� )u� (� ) d�

]p

d� , (1)

u(t) � u0 +
∫ � (t)

t0
g(� )ur(� )

[
um(� ) +

∫ �

t0
h(� )um(� ) d�

]p

d� , u0 > 0, (2)
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�
(
u(t)

)
� a(t) +

∫ t

t0
g1(t, � )h1

(
u(� )

)
d� +

∫ t

t0
g2(t, � )h2

(
u(� )

)
d�

+
∫ t

t0
g3(t, � )h3

(
u(� )

)
d�

+
∫ t

t0
g(t, � )

(∫ �

t0
f (� , 	 )h4

(
u(	 )

)
d	

)
d� , t0 � 0. (3)

The structure of this paper is as follows: In Sect.2, we illustrates some basic lemmas,

which will be used in later sections. In Sect.3, we give some new nonlinear Gronwall…

Bellman inequalities. In Sect.4, we give two examples to illustrate the application of the

obtained results in the qualitative research of di�erential equation solutions. In Sect.5,

we conclude our results.

2 Preliminaries
First, we explain some symbols will to be used:R denotes the set of real numbers and

R+ = [0,� ), andC(M,S) denotes the class of all continuous functions on the setM with

range in the setS.

Here are some very useful lemmas.

Lemma 2.1 ([11]) Assume a � 0, p � q � 0 and p �= 0, we have

a
q
p �

q
p

K
q…p

p a +
p …q

p
K

q
p , K > 0. (4)

We can get the following exceptional cases.
Let K = 1, we have

a
q
p �

q
p

a +
p …q

p
, a � 0,p � q > 0. (5)

Let K = 1, p = 1, we have

aq � qa + (1 …q), a � 0, 0 <q � 1. (6)

Lemma 2.2 Let u,g, � � C(R+,R+), � �(t) � 0 and � (t) � t, � (t0) = t0, r � (0, 1], u0 > 0. If
u(t) satisfies the inequality

u(t) � u0 +
∫ � (t)

t0
g(� )ur(� ) d� , (7)

then

u(t) � exp
(

r
∫ � (t)

t0
g(� ) d�

)[
u0 +

∫ � (t)

t0
(1 …r)g(� ) exp

(
…r

∫ �

t0
g(� ) d�

)
d�

]
. (8)

Proof We assume that

v(t) = u0 +
∫ t

t0
g(� )ur(� ) d� ,
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then

v
(
� (t)

)
= u0 +

∫ � (t)

t0
g(� )ur(� ) d� , (9)

and u(t) � v(� (t)) � v(t), v(� (t0)) = u0. Di�erentiating with respect to t of (9) and using

(6), we get

� �(t)v�(� (t)
)

= � �(t)g
(
� (t)

)
ur(� (t)

)

� � �(t)g
(
� (t)

)
vr(� (t)

)

� � �(t)g
(
� (t)

)[
rv

(
� (t)

)
+ (1 …r)

]
,

then

� �(t)v�(� (t)
)

…r� �(t)g
(
� (t)

)
v
(
� (t)

)
� (1 …r)� �(t)g

(
� (t)

)
.

Multiplying by exp(…r
∫ � (t)

t0
g(� ) d� ) on both sides of the above inequality, we can get

[
v
(
� (t)

)
exp

(
…r

∫ � (t)

t0
g(� ) d�

)]�

� (1 …r)� �(t)g
(
� (t)

)
exp

(
…r

∫ � (t)

t0
g(� ) d�

)
.

Next, integratingt from t0 to t for the above inequality, we get

v
(
� (t)

)
exp

(
…r

∫ � (t)

t0
g(� ) d�

)
…v

(
� (t0)

)

�
∫ t

t0
(1 …r)� �(� )g

(
� (� )

)
exp

(
…r

∫ � (� )

t0
g(� ) d�

)
d�

�
∫ � (t)

t0
(1 …r)g(� ) exp

(
…r

∫ �

t0
g(� ) d�

)
d� .

Sincev(� (t0)) = u0, we can get the estimation

u(t) � v
(
� (t)

)

� exp
(

r
∫ � (t)

t0
g(� ) d�

)[
u0 +

∫ � (t)

t0
(1 …r)g(� ) exp

(
…r

∫ �

t0
g(� ) d�

)
d�

]
.

This completes the proof. �

3 Main result and proof
In this section, we establish and prove a new class of nonlinear Gronwall…Bellman type

delay integral inequalities with power.

Theorem 3.1 We assume u,a, f ,h � C(R+,R+), and let � (t) � C[t0, � ), � �(t) � 0 and
� (t) � t, � (t0) = t0. q � � > 0, q � � > 0, p � (0, 1] and q � p. If u satisfies the inequal-
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ity (1), then we can get

u(t) �
[

a(t) + B(t)exp
(∫ � (t)

t0

p�
q

f (� ) d�

+
∫ � (t)

t0

p�
q

f (� )
(∫ �

t0
h(� ) d�

)
d�

)] 1
q
, � t � R+, (10)

where

B(t) =
∫ � (t)

t0
f (� )

(
(1 …p) +

p�
q

a(� ) +
qp …p�

q

)
d�

+
∫ � (t)

t0
f (� )

[∫ �

t0
h(� )

(
p�
q

a(� ) +
qp …p�

q

)
d�

]
d� .

Proof Using (6), we have

[
u� (s) +

∫ s

t0
h(� )u� (� ) d�

]p

� p
[

u� (s) +
∫ s

t0
h(� )u� (� ) d�

]
+ (1 …p). (11)

Plugging (11) into (1), we can get

uq(t) � a(t) +
∫ � (t)

t0
f (� )

[
p
(

u� (� ) +
∫ �

t0
h(� )u� (� ) d�

)
+ (1 …p)

]
d� . (12)

Now, we de“nev(t) by

v(t) =
∫ � (t)

t0
f (� )

[
p
(

u� (� ) +
∫ �

t0
h(� )u� (� ) d�

)
+ (1 …p)

]
d� , (13)

then v(t) is a nondecreasing function, using (12) and (13), we obtain

u(t) �
[
a(t) + v(t)

] 1
q .

Using (5), from the above inequality we get

u� (t) �
(
a(t) + v(t)

) �
q �

�
q

(
a(t) + v(t)

)
+

(
1 …

�
q

)
(14)

and

u� (t) �
(
a(t) + v(t)

) �
q �

�
q

(
a(t) + v(t)

)
+

(
1 …

�
q

)
. (15)

Plugging (14) and (15) into (13), we can obtain

v(t) �
∫ � (t)

t0
f (� )

[
p
(

�
q

(
a(� ) + v(� )

)
+

(
1 …

�
q

)

+
∫ �

t0
h(� )

(
�
q

(
a(� ) + v(� )

)
+

(
1 …

�
q

))
d�

)
+ (1 …p)

]
d�
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�
∫ � (t)

t0
f (� )

(
(1 …p) +

p�
q

a(� ) +
qp …p�

q

)
d�

+
∫ � (t)

t0
f (� )

[∫ �

t0
h(� )

(
p�
q

a(� ) +
qp …p�

q

)
d�

]
d�

+
∫ � (t)

t0

p�
q

f (� )v(� ) d� +
∫ � (t)

t0

p�
q

f (� )
(∫ �

t0
h(� )v(� ) d�

)
d�

� B(t) +
∫ � (t)

t0

p�
q

f (� )v(� ) d� +
∫ � (t)

t0

p�
q

f (� )
(∫ �

t0
h(� )v(� ) d�

)
d�

� B(T) +
∫ � (t)

t0

p�
q

f (� )v(� ) d� +
∫ � (t)

t0

p�
q

f (� )
(∫ �

t0
h(� )v(� ) d�

)
d� ,

wheret � [t0,T ], T � R+, and

B(t) =
∫ � (t)

t0
f (� )

(
(1 …p) +

p�
q

a(� ) +
qp …p�

q

)
d�

+
∫ � (t)

t0
f (� )

[∫ �

t0
h(� )

(
p�
q

a(� ) +
qp …p�

q

)
d�

]
d� .

Let

y(t) = B(T) +
∫ � (t)

t0

p�
q

f (� )v(� ) d� +
∫ � (t)

t0

p�
q

f (� )
(∫ �

t0
h(� )v(� ) d�

)
d� .

Then we can gety(t) is a nondecreasing and positive function, andv(t) � y(t), y(t0) = B(T).
Di�erentiating y(t) with respect tot and using� (t) � t, we have

y�(t) =
p�
q

� �(t)f
(
� (t)

)
v
(
� (t)

)
+

p�
q

� �(t)f
(
� (t)

)∫ � (t)

t0
h(� )v(� ) d�

� v(t)
(

p�
q

� �(t)f
(
� (t)

)
+

p�
q

� �(t)f
(
� (t)

)∫ � (t)

t0
h(� ) d�

)

� y(t)
(

p�
q

� �(t)f
(
� (t)

)
+

p�
q

� �(t)f
(
� (t)

)∫ � (t)

t0
h(� ) d�

)
.

From the above inequality we get

y�(t)
y(t)

�
p�
q

� �(t)f
(
� (t)

)
+

p�
q

� �(t)f
(
� (t)

)∫ � (t)

t0
h(� ) d� .

Integrating both side of the above inequality fromt0 to t, then we can obtain the estimation
for y(t):

y(t) � B(T)exp
(∫ � (t)

t0

p�
q

f (s) ds +
∫ � (t)

t0

p�
q

f (s)
(∫ s

t0
h(� ) d�

)
ds

)
,

by v(t) � y(t) andu(t) � [a(t) + v(t)]
1
q , we can obtain

u(t) �
[

a(t) + B(T)exp
(∫ � (t)

t0

p�
q

f (s) ds +
∫ � (t)

t0

p�
q

f (s)
(∫ s

t0
h(� ) d�

)
ds

)] 1
q
.
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Thus

u(T) �
[

a(T) + B(T)exp
(∫ � (t)

t0

p�
q

f (s) ds +
∫ � (t)

t0

p�
q

f (s)
(∫ s

t0
h(� ) d�

)
ds

)] 1
q
.

Because of the arbitrariness ofT , we can obtain

u(t) �
[

a(t) + B(t)exp
(∫ � (t)

t0

p�
q

f (s) ds +
∫ � (t)

t0

p�
q

f (s)
(∫ s

t0
h(� ) d�

)
ds

)] 1
q
.

The proof is complete. �

Remark 1 If q = 1, Theorem3.1reduces to Theorem 2.1 in [9]. If q = p, a(t) = x0, � (t) = t,
p = � = 1, � = q, Theorem3.1reduces to Theorem 2.3 in [10]. If q = 1, a(t) = x0, � (t) = t,
p = � = 1, � = 2 …p, � = q, Theorem3.1reduces to Theorem 2.5 in [10]. If q = 1, a(t) = x0,

� (t) = t, � = p, � = 2p … 1, Theorem3.1reduces to Theorem 2.8 in [10].

Theorem 3.2 We assume u,g,h � C(R+,R+), � (t) � [t0, � ), � �(t) � 0, � (t) � t, � (t0) = t0,

r � (0, 1],p > 1,m > 1.If u satisfies the inequality (2), then

u(t) � exp
(

r
∫ � (t)

t0
g(� )� (� ) d�

)

×
[

u0 +
∫ � (t)

t0
(1 …r)g(� )� (� ) exp

(
…r

∫ �

t0
g(� )� (� ) d�

)
d�

]
, (16)

where

� (t) =
[


 (t)
1 + (1 …r …mp)

∫ t
t0

g(� )
 (� ) d�

] mp
mp+r…1

,


 (t) = ur+mp…1
0 exp

(
r + mp … 1

m

∫ t

t0
h(� ) d�

)
,

1 + (1 …r …mp)
∫ � (t)

t0
g(� )
 (� ) d� > 0.

Proof First, we denote

J(t) = u0 +
∫ t

t0
g(� )ur(� )

[
um(� ) +

∫ �

t0
h(� )um(� ) d�

]p

d� ,

and J(t) is a nondecreasing and nonnegative continuous function, then

J
(
� (t)

)
= u0 +

∫ � (t)

t0
g(� )ur(� )

[
um(� ) +

∫ �

t0
h(� )um(� ) d�

]p

d� , (17)
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andu(t) � J(� (t)) � J(t), J(� (t0)) = J(t0) = u0. Di�erentiating with respect to t of the above

equation, we get

� �(t)
dJ(� (t))

d�
= � �(t)g

(
� (t)

)
ur(� (t)

)[
um(

� (t)
)

+
∫ � (t)

t0
h(� )um(� ) d�

]p

� � �(t)g
(
� (t)

)
Jr(� (t)

)[
Jm(

� (t)
)

+
∫ � (t)

t0
h(� )Jm(� ) d�

]p

= � �(t)g
(
� (t)

)
Jr(� (t)

)
Y p(� (t)

)
,

which means

dJ(� (t))
d�

� g
(
� (t)

)
Jr(� (t)

)
Y p(� (t)

)
, (18)

where Y (t) = Jm(t) +
∫ t

t0
h(� )Jm(� ) d� , then Y (� (t)) = Jm(� (t)) +

∫ � (t)
t0

h(� )Jm(� ) d� , hence

Y (� (t0)) = Jm(� (t0)) = Jm(t0) = u0
m, we can conclude that

J
(
� (t)

)
� Y

1
m
(
� (t)

)
.

Di�erentiating with respect to t of Y (� (t)), we get

� �(t)
dY (� (t))

d�
= m� �(t)Jm…1(� (t)

)dJ(� (t))
d�

+ � �(t)h
(
� (t)

)
Jm(

� (t)
)

� m� �(t)Jm…1(� (t)
)[

g
(
� (t)

)
Jr(� (t)

)
Y p(� (t)

)]
+ � �(t)h

(
� (t)

)
Jm(

� (t)
)

� m� �(t)Y
m…1

m
(
� (t)

)[
g
(
� (t)

)
Y

r+mp
m

(
� (t)

)]
+ � �(t)h

(
� (t)

)
Y

(
� (t)

)
,

then

dY (� (t))
d�

� mg
(
� (t)

)
Y

r+mp+m…1
m

(
� (t)

)
+ h

(
� (t)

)
Y

(
� (t)

)
,

from the above inequality, we can get

Y
1…r…mp…m

m
(
� (t)

)dY (� (t))
d�

…h
(
� (t)

)
Y

1…r…mp
m

(
� (t)

)
� mg

(
� (t)

)
. (19)

Denote

� (t) = Y
1…r…mp

m (t),

then � (� (t)) = Y
1…r…mp

m (� (t)), d� (� (t))
dt = 1…r…mp

m Y
1…m…r…mp

m (� (t))� �(t) dY (� (t))
d� , and � (� (t0)) =

Y
1…r…mp

m (� (t0)) = u1…r…mp
0 , from 1 …r …mp < 0 and (19), we have

d� (� (t))
dt

…
1 …r …mp

m
� �(t)�

(
� (t)

)
h
(
� (t)

)
� (1 …r …mp)� �(t)g

(
� (t)

)
,
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Multiplying by exp( r+mp…1
m

∫ � (t)
t0

h(� ) d� ) on both sides of the above inequality, we get

[
�

(
� (t)

)
exp

(
r + mp … 1

m

∫ � (t)

t0
h(� ) d�

)]�

� (1 …r …mp)� �(t)g
(
� (t)

)
exp

(
r + mp … 1

m

∫ � (t)

t0
h(� ) d�

)
.

Integrating both sides of the above inequality fromt0 to t, we can get

�
(
� (t)

)
exp

(
r + mp … 1

m

∫ � (t)

t0
h(� ) d�

)
…�

(
� (t0)

)

� (1 …r …mp)
∫ t

t0
� �(� )g

(
� (� )

)
exp

(
r + mp … 1

m

∫ � (� )

t0
h(� ) d�

)
d�

= (1 …r …mp)
∫ � (t)

t0
g(� ) exp

(
r + mp … 1

m

∫ �

t0
h(� ) d�

)
d� .

Since� (� (t0)) = Y
1…r…mp

m (� (t0)) = u1…r…mp
0 , we get

�
(
� (t)

)
�

u1…r…mp
0 +(1 …r …mp)

∫ � (t)
t0

g(� ) exp( r+mp…1
m

∫ �
t0

h(� ) d� ) d�

exp( r+mp…1
m

∫ � (t)
t0

h(� ) d� )
,

which means

�
(
� (t)

)
�

1 + (1 …r …mp)ur+mp…1
0

∫ � (t)
t0

g(� ) exp( r+mp…1
m

∫ �
t0

h(� ) d� ) d�

ur+mp…1
0 exp( r+mp…1

m
∫ � (t)

t0
h(� ) d� )

.

Let 
 (t) = ur+mp…1
0 exp( r+mp…1

m
∫ t

t0
h(� ) d� ), using� (� (t)) = Y

1…r…mp
m (� (t)), we can get

Y p(� (t)
)

�
[


 (� (t))
1 + (1 …r …mp)

∫ � (t)
t0

g(� )
 (� ) d�

] mp
mp+r…1

,

where 1 + (1 …r …mp)
∫ � (t)

t0
g(� )
 (� ) d� > 0.

By the de“nition of � (t), plugging the above inequality into (18), we can get

dJ(� (t))
d�

� g
(
� (t)

)
�
(
� (t)

)
Jr(� (t)

)
.

Integrating both sides of the above inequality fromt to t0, we get

J
(
� (t)

)
� u0 +

∫ � (t)

t0
g(� )� (� )Jr(� ) d� .
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Therefore, from Lemma2.2we can get

u(t) � J
(
� (t)

)

� exp
(

r
∫ � (t)

t0
g(� )� (� ) d�

)

×
[

u0 +
∫ � (t)

t0
(1 …r)g(� )� (� ) exp

(
…r

∫ �

t0
g(� )� (� ) d�

)
d�

]
.

The proof is completed. �

Remark 2 If u0 = x0, � (t) = t, andr = m = 1, Theorem3.2reduces to Theorem 3.2 in [8].

In the following, we discuss the inequality (3). First we assume that the following con-
ditions are satis“ed;

(C1) � (u) is a positive continuous and strictly increasing function on [0,� ).
(C2) hj(u), (j = 1,2,3,4) are positive, continuous and increasing functions on [0,� ), and

hj+1(t)
hj(t)

, (j = 1,2,3) are nondecreasing functions. Moreover, let

yj(t) =
hj(t)
h1(t)

, j = 1,2,3,4, (20)

thus yj(t) are nondecreasing functions, y1(t) = 1 and

yj+1(t)
yj(t)

=
hj+1(t)
hj(t)

, j = 1,2,3, (21)

then yj+1(t)
yj(t)

are nondecreasing, positive and continuous functions.
(C3) We define the following functions:

Hj(u) =
∫ u

1

d�
hj(� …1(� ))

, j = 1,2,3,4. (22)

Then Hj are positive continuous and strictly increasing functions on [0,� ). We
assume that H…1

j define the inverse function of Hj, which are also continuous non-
decreasing functions.

(C4) a(t) is a continuous function on [t0, � ), a(t) � 0, a(t0) �= 0, and gj(t, � ) (j = 1,2,3)
and f (t, � ) are continuous functions on [t0, � ) × [t0, � ).

(C5) We assume that g(t, � ), f (t, � ) are nondecreasing and continuous functions on
[t0, � ) × [t0, � ), and

g4(t, � ) =
∫ t

�
g(t, 	 )f (	 , � ) d	 , t, � � [t0, � ).

(C6) a(t) +
∑4

j=1 gj(t, � )hj(u(� )) > 0.

Theorem 3.3 Suppose the conditions (C1)–(C6) are satisfied,u is a positive and continuous
function on t � t0 � 0, if u satisfies (3), we can get the following estimation for u:

u(t) � � …1(H…1
4

(
A5(t)

))
, t � [t0, � ),
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where

A1(t) = a(t),

A2(t) = H1
(
a(t)

)
+

∫ t

t0
g1(t, � ) d� , (23)

Aj+1(t) = Hj
(
H…1

j…1

(
Aj(t)

))
+

∫ t

t0
gj(t, � ) d� , j = 2,3,4.

Proof Sinceg(t, � ), f (t, � ), h4(u(t)) are nondecreasing and continuous functions, by (C5),

we can get

∫ t

t0
g(t, � )

(∫ �

t0
f (� , 	 )h4

(
u(	 )

)
d	

)
d�

=
∫ t

t0
h4

(
u(	 )

)∫ t

	
g(t, � )f (� , 	 ) d� d	

=
∫ t

t0
h4

(
u(� )

)∫ t

�
g(t, 	 )f (	 , � ) d	 d�

=
∫ t

t0
g4(t, � )h4

(
u(� )

)
d� ,

where the “rst equality is obtained by swapping the order of double integral, the second

equality is obtained by	 = � , the third equality is a simpli“cation of the above equation

obtained by (C5). Plugging (24) into (3), we can write (3) as

�
(
u(t)

)
� a(t) +

4∑
j=1

∫ t

t0
gj(t, � )hj

(
u(� )

)
d� .

For any “xed T � [t0, � ) and for t � [t0,T ], from the above inequality, we have

�
(
u(t)

)
� a(t) +

4∑
j=1

∫ t

t0
gj(T , � )hj

(
u(� )

)
d� . (24)

We assume that

z1(t) = a(t) +
4∑

j=1

∫ t

t0
gj(T , � )hj

(
u(� )

)
d� , (25)

thus z1(t) is a nondecreasing and nonnegative continuous function, and we have� (u(t)) �

z1(t), u(t) � � …1(z1(t)), z1(t0) = a(t0), z1(t) � a(t). We can take the derivative with respect

to t in (25), then

z�
1(t) = a�(t) +

4∑
j=1

gj(T ,t)hj
(
u(t)

)
.
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Multiplying both sides of the above inequality by 1
h1(� …1(z1(t))) , meanwhile using (20), we

have

z�
1(t)

h1(� …1(z1(t)))
=

a�(t) +
∑4

j=1 hj(u(t))gj(T ,t)
h1(� …1(z1(t)))

�
a�(t) +

∑4
j=1 hj(� …1(z1(t)))gj(T ,t)
h1(� …1(z1(t)))

=
a�(t)

h1(� …1(z1(t)))
+ g1(T ,t) +

∑4
j=2 hj(� …1(z1(t)))gj(T ,t)

h1(� …1(z1(t)))

�
a�(t)

h1(� …1(a(t)))
+ g1(T ,t) +

3∑
j=1

gj+1(T ,t)yj+1
(
� …1(z1(t)

))
,

integrating both sides of the above inequality fromt0 to t, and using the de“nition of (22),

we obtain

H1
(
z1(t)

)
…H1

(
z1(t0)

)
� H1

(
a(t)

)
…H1

(
a(t0)

)
+

∫ t

t0
g1(T , � ) d�

+
3∑

j=1

∫ t

t0
gj+1(T , � )yj+1

(
� …1(z1(� )

))
d� ,

which means

H1
(
z1(t)

)
� H1

(
a(t)

)
+

∫ t

t0
g1(T , � ) d� +

3∑
j=1

∫ t

t0
gj+1(T , � )yj+1

(
� …1(z1(� )

))
d� . (26)

We assume that

� 1(t) = H1
(
z1(t)

)
(27)

and

A2(t) = H1
(
A1(t)

)
+

∫ t

t0
g1(T , � ) d� , (28)

from (27) and (28), (26) can be written as

� 1(t) � A2(t) +
3∑

j=1

∫ t

t0
gj+1(T , � )yj+1

(
� …1(z1(� )

))
d�

= A2(t) +
3∑

j=1

∫ t

t0
gj+1(T , � )yj+1

(
� …1(H…1

1

(
� 1(� )

)))
d� .

Then we assume that

z2(t) = A2(t) +
3∑

j=1

∫ t

t0
gj+1(T , � )yj+1

(
� …1(H…1

1

(
� 1(� )

)))
d� , (29)
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thus z2(t) is a nondecreasing and continuous function, and� 1(t) � z2(t), z2(t0) = A2(t0),
A2(t) � z2(t).

We de“ne a function as

Yj+1(u) =
∫ u

0

yj(� …1(H…1
j (� )))

yj+1(� …1(H…1
j (� )))

d� , j = 1,2,3, (30)

then, by (21) and (30), we can obtain

Yj+1(u) =
∫ u

0

yj(� …1(H…1
j (� )))

yj+1(� …1(H…1
j (� )))

d�

=
∫ u

0

hj(� …1(H…1
j (� )))

hj+1(� …1(H…1
j (� )))

d�

=
∫ H…1

j (u)

H…1
j (0)

hj(� …1(t))
hj+1(� …1(t))

(
Hj(t)

)� dt

=
∫ H…1

j (u)

1

1
hj+1(� …1(t))

dt

= Hj+1
(
H…1

j (u)
)
, j = 1,2,3,

from (22), we haveHj(1) = 0, H…1
j (0) = 1, (Hj(t))� = 1

hj(� …1(t)) . Taking the derivative with

respect tot in (29), then multiplying both sides of it by 1
y2(� …1(H…1

1 (z2(t)))) , by y1(t) = 1, we
have

z2
�(t)

y2(� …1(H…1
1 (z2(t))))

=
A2

�(t) +
∑3

j=1 gj+1(T ,t)yj+1(� …1(H…1
1 (� 1(t))))

y2(� …1(H…1
1 (z2(t))))

�
A2

�(t) +
∑3

j=1 gj+1(T ,t)yj+1(� …1(H…1
1 (z2(t))))

y2(� …1(H…1
1 (z2(t))))

=
A2

�(t)
y2(� …1(H…1

1 (z2(t))))
+ g2(T ,t)

+
3∑

j=2

gj+1(T ,t)yj+1(� …1(H…1
1 (z2(t))))

y2(� …1(H…1
1 (z2(t))))

.

Again, integrating both sides of (31) from t0 to t, and by the de“nition in (30) and (20), we
can obtain

Y2
(
z2(t)

)
…Y2

(
z2(t0)

)
�

∫ t

t0

A2
�(� )

y2(� …1(H…1
1 (z2(� ))))

d� +
∫ t

t0
g2(T , � ) d�

+
3∑

j=2

∫ t

t0

gj+1(T , � )yj+1(� …1(H…1
1 (z2(� ))))

y2(� …1(H…1
1 (z2(� ))))

d�

�
∫ t

t0

A2
�(� )

y2(� …1(H…1
1 (A2(� ))))

d� +
∫ t

t0
g2(T , � ) d�

+
3∑

j=2

∫ t

t0

gj+1(T , � )yj+1(� …1(H…1
1 (z2(� ))))

y2(� …1(H…1
1 (z2(� ))))

d�
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� Y2
(
A2(t)

)
…Y2

(
A2(t0)

)
+

∫ t

t0
g2(T , � ) d�

+
3∑

j=2

∫ t

t0

gj+1(T , � )yj+1(� …1(H…1
1 (z2(� ))))

y2(� …1(H…1
1 (z2(� ))))

d� ,

usingz2(t0) = A2(t0), we have

Y2
(
z2(t)

)
� Y2

(
A2(t)

)
+

∫ t

t0
g2(T , � ) d� +

3∑
j=2

∫ t

t0

gj+1(T , � )yj+1(� …1(H…1
1 (z2(� ))))

y2(� …1(H…1
1 (z2(� ))))

d� .

From (31), the above inequality can be written as

H2
(
H…1

1

(
z2(t)

))
� H2

(
H…1

1

(
A2(t)

))
+

∫ t

t0
g2(T , � ) d�

+
3∑

j=2

∫ t

t0

gj+1(T , � )yj+1(� …1(H…1
1 (z2(� ))))

y2(� …1(H…1
1 (z2(� ))))

d� .

Let

� 2(t) = H2
(
H…1

1

(
z2(t)

))
(31)

and

A3(t) = H2
(
H…1

1

(
A2(t)

))
+

∫ t

t0
g2(T , � ) d� , (32)

thus H…1
1 (z2(t)) = H…1

2 (� 2(t)), and by (31) and (32), the inequality (31) can be written as

� 2(t) � A3(t) +
3∑

j=2

∫ t

t0

gj+1(T , � )yj+1(� …1(H…1
1 (z2(� ))))

y2(� …1(H…1
1 (z2(� ))))

d�

= A3(t) +
3∑

j=2

∫ t

t0

gj+1(T , � )yj+1(� …1(H…1
2 (� 2(� ))))

y2(� …1(H…1
2 (� 2(� ))))

d� .

Again, we assume that

z3(t) = A3(t) +
3∑

j=2

∫ t

t0

gj+1(T , � )yj+1(� …1(H…1
2 (� 2(� ))))

y2(� …1(H…1
2 (� 2(� ))))

d� , (33)

we can see thatz3(t) is a nondecreasing function on [t0,t], and � 2(t) � z3(t), z3(t) � A3(t),
z3(t0) = A3(t0). Di�erentiating z3(t) with respect tot, we can obtain

z3
�(t) = A3

�(t) +
3∑

j=2

gj+1(T ,t)yj+1(� …1(H…1
2 (� 2(t))))

y2(� …1(H…1
2 (� 2(t))))

� A3
�(t) +

3∑
j=2

gj+1(T ,t)yj+1(� …1(H…1
2 (z3(t))))

y2(� …1(H…1
2 (z3(t))))

,
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multiplying by y2(� …1(H…1
2 (z3(t))))

y3(� …1(H…1
2 (z3(t)))) , then integrating both sides fromt0 to t, and using (C2), we

can obtain

∫ t

t0

y2(� …1(H…1
2 (z3(� ))))

y3(� …1(H…1
2 (z3(� ))))

z3
�(� ) d� �

∫ t

t0

y2(� …1(H…1
2 (z3(� ))))

y3(� …1(H…1
2 (z3(� ))))

A3
�(� ) d� +

∫ t

t0
g3(T , � ) d�

+
∫ t

t0

g4(T , � )y4(� …1(H…1
2 (z3(� ))))

y3(� …1(H…1
2 (z3(� ))))

d� ,

then

Y3
(
z3(t)

)
…Y3

(
z3(t0)

)
�

∫ t

t0

y2(� …1(H…1
2 (A3(� ))))

y3(� …1(H…1
2 (A3(� ))))

A3
�(� ) d� +

∫ t

t0
g3(T , � ) d�

+
∫ t

t0

g4(T , � )y4(� …1(H…1
2 (z3(� ))))

y3(� …1(H…1
2 (z3(� ))))

d�

� Y3
(
A3(t)

)
…Y3

(
A3(t0)

)
+

∫ t

t0
g3(T , � ) d�

+
∫ t

t0

g4(T , � )y4(� …1(H…1
2 (z3(� ))))

y3(� …1(H…1
2 (z3(� ))))

d� ,

by z3(t0) = A3(t0), we can obtain

Y3
(
z3(t)

)
� Y3

(
A3(t)

)
+

∫ t

t0
g3(T , � ) d� +

∫ t

t0

g4(T , � )y4(� …1(H…1
2 (z3(� ))))

y3(� …1(H…1
2 (z3(� ))))

d� .

Using (31), we can obtain

H3
(
H…1

2

(
z3(t)

))
� H3

(
H…1

2

(
A3(t)

))
+

∫ t

t0
g3(T , � ) d�

+
∫ t

t0

g4(T , � )y4(� …1(H…1
2 (z3(� ))))

y3(� …1(H…1
2 (z3(� ))))

d� . (34)

Again, let

� 3(t) = H3
(
H…1

2

(
z3(t)

))
, (35)

A4(t) = H3
(
H…1

2

(
A3(t)

))
+

∫ t

t0
g3(T , � ) d� , (36)

thus H…1
2 (z3(t)) = H…1

3 (� 3(t)), using (35) and (36), the inequality (34) can be written as

� 3(t) � A4(t) +
∫ t

t0

g4(T , � )y4(� …1(H…1
2 (z3(� ))))

y3(� …1(H…1
2 (z3(� ))))

d�

= A4(t) +
∫ t

t0

g4(T , � )y4(� …1(H…1
3 (� 3(� ))))

y3(� …1(H…1
3 (� 3(� )))))

d� .

We assume that

z4(t) = A4(t) +
∫ t

t0

g4(T , � )y4(� …1(H…1
3 (� 3(� ))))

y3(� …1(H…1
3 (� 3(� )))))

d� , (37)
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then we see thatz4(t) is a nondecreasing function on [t0,t], and� 3(t) � z4(t), z4(t) � A4(t),
z4(t0) = A4(t0).

Di�erentiating ( 37) with respect tot, we can obtain

z4
�(t) = A4

�(t) +
g4(T ,t)y4(� …1(H…1

3 (� 3(t))))
y3(� …1(H…1

3 (� 3(t)))))
� A4

�(t) +
g4(T ,t)y4(� …1(H…1

3 (z4(t))))
y3(� …1(H…1

3 (z4(t)))))
.

Now, multiplying both sides of it by
y3(� …1(H…1

3 (z4(t))))
y4(� …1(H…1

3 (z4(t)))) , then integrating both sides of it from

t0 to t, and using (C2), we can obtain

∫ t

t0

y3(� …1(H…1
3 (z4(� ))))

y4(� …1(H…1
3 (z4(� ))))

z4
�(� ) d� �

∫ t

t0

y3(� …1(H…1
3 (z4(� ))))

y4(� …1(H…1
3 (z4(� ))))

A4
�(� ) d� +

∫ t

t0
g4(T , � ) d�

thus

Y4
(
z4(t)

)
…Y4

(
z4(t0)

)
�

∫ t

t0

y3(� …1(H…1
3 (A4(� ))))

y4(� …1(H…1
3 (A4(� ))))

A4
�(� ) d� +

∫ t

t0
g4(T , � ) d�

� Y4
(
A4(t)

)
…Y4

(
A4(t0)

)
+

∫ t

t0
g4(T , � ) d� ,

by z4(t0) = A4(t0), we can obtain

Y4
(
z4(t)

)
� Y4

(
A4(t)

)
+

∫ t

t0
g4(T , � ) d� .

Using the de“nition of (31), we can get

H4
(
H…1

3

(
z4(t)

))
� H4

(
H…1

3

(
A4(t)

))
+

∫ t

t0
g4(T , � ) d� ,

thus

z4(t) � H3

[
H…1

4

(
H4

(
H…1

3

(
A4(t)

))
+

∫ t

t0
g4(T , � ) d�

)]
. (38)

Using (27), (31), (33), (35) and (38), we can obtain

z1(t) = H…1
1

(
� 1(t)

)
� H…1

1

(
z2(t)

)
= H…1

2

(
� 2(t)

)
� H…1

2

(
z3(t)

)
= H…1

3

(
� 3(t)

)

� H…1
3

(
z4(t)

)
� H…1

4

(
H4

(
H…1

3

(
A4(t)

))
+

∫ t

t0
g4(T , � ) d�

)
,

then we have

u(t) � � …1(z1(t)
)

� � …1
[

H…1
4

(
H4

(
H…1

3

(
A4(t)

))
+

∫ t

t0
g4(T , � ) d�

)]

� � …1(H…1
4

(
A5(t)

))
, t � [t0,T ],
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whereA5(t) = H4(H…1
3 (A4(t))) +

∫ t
t0

g4(T , � ) d� , because ofT being arbitrary, we can obtain

u(t) � � …1(z1(t)
)

� � …1
[

H…1
4

(
H4

(
H…1

3

(
A4(t)

))
+

∫ t

t0
g4(t, � ) d�

)]

� � …1(H…1
4

(
A5(t)

))
, t � [t0,T ].

The proof is complete. �

Remark 3 If h3 	 0, we can see that Theorem3.3 reduces to Theorem 2.3 in [9]. If

� (u(t)) = xp(t), a(t) = x0, g1(t, � ) = f (s), h1(u(t)) = xp(t), g2(t, � ) = h(s), h2(u(t)) = xq(t), and

g(t, � ) = g3(t, � ) = 0, Theorem3.3reduces to Theorem 3.1 in [8]. If h1(u(t)) = � (u(s))w(u(s)),
h2(u(t)) = � (u(s)), andg(t, � ) = g3(t, � ) = 0, Theorem3.3reduces to Theorem 1 in [12].

4 Applications of the result
In this section, we apply the results of the previous section to study the boundedness of

solutions of di�erential equations and integral equations.

1. First, let us consider the Volterra type retarded integral equation

 4(t) = b(t) +
∫ � (t)

t0
g(� )

[
 2(� ) +

∫ �

t0
w(� ) 2(� ) d�

] 1
3

d� , (39)

which often occurs in physical and mechanical applications.

Example 4.1 We assume (t),b(t),g(t),w(t) � C(R+,R+), and let� (t) � C[t0, � ), � �(t) � 0

and � (t) � t, � (t0) = t0. We can obtain the estimate for (t) as follows:

∣∣ (t)
∣∣ �

[∣∣b(t)
∣∣ + B(t)exp

(∫ � (t)

t0

1
6

∣∣g(� )
∣∣d� +

∫ � (t)

t0

1
6

∣∣g(� )
∣∣
(∫ s

t0

∣∣w(� )
∣∣d�

)
d�

)] 1
4

,

where

B(t) =
∫ � (t)

t0

∣∣g(� )
∣∣
(

2
3

+
1
6

∣∣b(� )
∣∣ +

1
6

)
d�

+
∫ � (t)

t0

∣∣g(� )
∣∣
[∫ �

t0

∣∣w(� )
∣∣
(

1
6

∣∣b(� )
∣∣ +

1
6

)
d�

]
d� .

Proof By (39), we have

∣∣ (t)
∣∣4 �

∣∣b(t)
∣∣ +

∫ � (t)

t0

∣∣g(� )
∣∣
[∣∣ (� )

∣∣2 +
∫ �

t0

∣∣w(� )
∣∣∣∣ (� )

∣∣2 d�
] 1

3

d� , (40)

taking | (t)| = u(t), (40) can be written as

u4(t) �
∣∣b(t)

∣∣ +
∫ � (t)

t0

∣∣g(� )
∣∣
[

u2(t) +
∫ �

t0

∣∣w(� )
∣∣u2(� ) d�

] 1
3

d� . (41)
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Here, we can conclude that (41) satis“es the conditions of Theorem3.1 with q = 4, � =
� = 2, p = 1

3, a(t) = |b(t)|, h(t) = |w(t)|, f (t) = |g(t)|, using Theorem3.1, our conclusion
obviously holds. �

2. Next, we consider the following integral equation:

 (t) =  0 +
∫ � (t)

t0
f (� )

1
5 (� )

[
 3(� ) +

∫ �

t0
w(� ) 3(� ) d�

]4

d� . (42)

Example 4.2 We assume (t), f (t),w(t) � C(R+,R+),  �(t) � 0 , � (t) � [t0, � ), � �(t) � 0,
� (t) � t, � (t0) = t0, then we can get

∣∣ (t)
∣∣ � exp

(
1
5

∫ � (t)

t0

∣∣f (� )
∣∣� (� ) d�

)

×
[
 0 +

∫ � (t)

t0

(
4
5

)∣∣f (� )
∣∣� (� ) exp

(
…

1
5

∫ �

t0

∣∣f (� )
∣∣� (� ) d�

)
d�

]
, (43)

where

� (t) =
[


 (t)
1…(64

5 )
∫ t

t0
|f (� )|
 (� ) d�

] 15
14

,


 (t) = 
56
5

0 exp
(

56
15

∫ t

t0

∣∣w(� )
∣∣d�

)
.

Proof Using (42), we have

∣∣ (t)
∣∣ �  0 +

∫ � (t)

t0

∣∣f (� )
∣∣∣∣ (� )

∣∣ 1
5

[∣∣ (� )
∣∣3 +

∫ �

t0

∣∣w(� )
∣∣∣∣ (� )

∣∣3 d�
]4

d� ,

let | (t)| = u(t), the above inequality is written as

u(t) �  0 +
∫ � (t)

t0

∣∣f (� )
∣∣u 1

5 (� )
[

u3(� ) +
∫ �

t0

∣∣w(� )
∣∣u3(� ) d�

]4

d� . (44)

Here, we can conclude that (44) satis“es the conditions of Theorem3.2with m = m = 3,
p = 4,r = 1

5, u0 =  0, h(t) = |w(t)|, g(t) = |f (t)|, using Theorem3.2, our conclusion obviously
holds. �

3. We consider the following differential system:

⎧⎨
⎩

s�(t) = G(t,s), t � [0,� ),

s(0) = a0,
(45)

where G(t,s) is a continuous function on [0,� ) × (…� ,…e



e] � [e



e, +� ), a0 > 0.
We assume that G(t,s) satisfies the following inequality:

∣∣G(t,s)
∣∣ � t2 5

√
|s| +

|s|
3

…
|s| ln |s|

2
+

e|s|

4
. (46)
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Example 4.3 LetG(t,s) satisfy the condition of inequality (46), all solutions of di�erential

system (45) satisfy the following estimates:

∣∣s(t)∣∣ � …ln
(

exp
(

…
((

a
4
5
0 +

4t3

15

) 5
4

e
t
3

)e…t
2 )

+
t
4

)
, � t � [0,� ). (47)

Proof Integrating the di�erential system (45) from 0 to t, we can get

s(t) = a0 +
∫ t

0
G

(
� ,s(� )

)
d� , (48)

by (46), we can obtain

∣∣s(t)∣∣ � a0 +
∫ t

0
� 2 5

√∣∣s(� )
∣∣d� +

∫ t

0

|s(� )|
3

d� …
∫ t

0

|s(� )| ln |s(� )|
2

d� +
∫ t

0

e|s|

4
d� ,

taking |s(t)| = u(t), the above inequality can be written as

u(t) � a0 +
∫ t

0
� 2 5

√
u(� ) d� +

∫ t

0

u(� )
3

d� …
∫ t

0

u(� ) ln(u(� ))
2

d� +
∫ t

0

e|s|

4
d� , (49)

we can see that Eq. (49) satis“es (24) : a(t) = a0, g1(t, � ) = t2, g2(t, � ) = 1
3, g3(t, � ) = …1

2,

g4(t, � ) = 1
4, h1(u) = 5



|u|, h2(u) = |u|, h3(u) = |u| ln |u|, h4(u) = e|s| , h2(t)

h1(t) = |u|
5
 |u|

= |u|
4
5 , h3(t)

h2(t) =

ln |u|, h4(t)
h3(t) = e|s|

|u| ln |u| , then we can see that
hj+1(t)
hj(t)

, (j = 1,2,3) is a nondecreasing function for

u > 0. then we can obtain

H1(u) =
∫ u

u0

d�
5



�
=

5
4

(
u

4
5 …u

4
5
0

)
, H…1

1 (u) =
(

4
5

u + u
4
5
0

) 5
4

,

H2(u) =
∫ u

u1

d�
�

= ln
u
u1

, H…1
2 (u) = u1eu,

H3(u) =
∫ u

e

d�
� ln �

= ln
(
ln(u)

)
, H…1

3 (u) = eeu
,

H4(u) =
∫ u

1

d�
e�

= …
(
e…u …e…1), H…1

4 (u) = …ln
(
e…1…u

)
.

Using Eq. (23) of Theorem3.3, we have

A1(t) = a0,

A2(t) = H1
(
A1(t)

)
+

∫ t

0
� 2 d�

=
5
4

(
a

4
5
0 …u

4
5
0

)
+

t3

3
,

A3(t) = H2
(
H…1

1

(
A2(t)

))
+

∫ t

0

1
3

d�

= H2

[(
a

4
5
0 +

4t3

15

) 5
4
]

+
t
3
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= ln
(a

4
5
0 + 4t3

15 )
5
4

u1
+

t
3

,

A4(t) = H…1
3

(
H2

(
A3(t)

))
…

∫ t

0

1
2

d�

= H3

[
u1 exp

(
ln

(a
4
5
0 + 4t3

15 )
5
4

u1
+

t
3

)]
…

t
2

= H3

[(
a

4
5
0 +

4t3

15

) 5
4

e
t
3

]
…

t
2

= ln
[
ln

((
a

4
5
0 +

4t3

15

) 5
4

e
t
3

)]
…

t
2

,

A5 = H4
[
H…1

3

(
A4(t)

)]
+

∫ t

0

1
4

d�

= H4

[((
a

4
5
0 +

4t3

15

) 5
4

e
t
3

)e…t
2 ]

+
t
4

= e…1…exp
(

…
((

a
4
5
0 +

4t3

15

) 5
4

e
t
3

)e…t
2 )

+
t
4

,

then

u(t) � H…1
4

(
A5(t)

)

= …ln
(

exp
(

…
((

a
4
5
0 +

4t3

15

) 5
4

e
t
3

)e…t
2 )

+
t
4

)
,

which means thatu(t) is bounded, fort � [0,� ). The proof is completed. �

5 Conclusion
In this paper, we “rst give a new lemma about the nonlinear Gronwall…Bellman delay in-

tegral inequality, then we establish some new delay Gronwall…Bellman integral inequali-

ties with power. And the inequalities obtained in this paper are further generalizations of

some results obtained by Li et al. [9]. The results of this paper contribute to the study of

the qualitative properties of solutions of di�erential and integral equations. By the method

of Theorem3.3in this paper, we can further generalize Eq. (3) to

�
(
u(t)

)
� a(t) +

n∑
j=1

∫ t

t0
gj(t, � )hj

(
u(� )

)
d�

+
∫ t

t0
g(t, � )

(∫ �

t0
f (� , 	 )hn+1

(
u(	 )

)
d	

)
d� ,

then we can get similar results for the estimations onu(t).
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