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Abstract

For nonlinear third-order three-point boundary value problems (BVPs), we develop
two algorithms to find solutions, which automatically satisfy the specified three-point
boundary conditions. We construct a boundary shape function (BSF), which is
designed to automatically satisfy the boundary conditions and can be employed to
develop new algorithms by assigning two different roles of free function in the BSF. In
the first algorithm, we let the free functions be complete functions and the BSFs be
the new bases of the solution, which not only satisfy the boundary conditions
automatically, but also can be used to find solution by a collocation technique. In the
second algorithm, we let the BSF be the solution of the BVP and the free function be
another new variable, such that we can transform the BVP to a corresponding initial
value problem for the new variable, whose initial conditions are given arbitrarily and
terminal values are determined by iterations; hence, we can quickly find very accurate
solution of nonlinear third-order three-point BVP through a few iterations. Numerical
examples confirm the performance of the new algorithms.

Keywords: Third-order nonlinear boundary value problems; Three-point boundary
conditions; Boundary shape functions methods

1 Introduction

Boundary value problems (BVPs) have a lot of applications, like engineering technique,
control theory and optimization, the boundary layer of fluid mechanics, aero-elasticity,
sandwich beam analysis and beam deflection theory, electromagnetic waves, theory of thin
film and incompressible flows. While for the conditions for the existence and uniqueness
of solutions of third-order BVPs one may refer to [1-3], for the existence and uniqueness
of third-order three-point BVPs one can read [4-6].

Some researchers studied and solved third-order BVPs with different boundary condi-
tions, for instance, using finite difference method [7, 8], quintic splines [9], quartic splines
[10], non-polynomial spline [11], quartic B-splines [12], Haar wavelets method [13], ex-
ponential trial functions method [14], method of fundamental solution [15, 16], and the
backward substitution method [17]. With the advent of computers, it has gained impor-
tance to develop more accurate and efficient numerical methods to solve higher-order
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BVPs. There are plenty of the related studies in the second-order and third-order BVPs
that have appeared in the literature, see [18-21].

For the third-order three-point nonlinear BVP, it is difficult to exactly satisfy the bound-
ary conditions, unless one designs the algorithm to exactly satisfy all the boundary con-
ditions. In the paper we propose new numerical methods for solving the nonlinear third-
order three-point BVPs, designing the algorithms to automatically satisfy the three-point
boundary conditions, which are based on a novel concept of boundary shape function.

We arrange the paper as follows. In Sect. 2, we introduce third-order three-point nonlin-
ear BVP with separated boundary conditions and general non-separated boundary con-
ditions. In Sect. 3, we construct a boundary shape function and prove that it can auto-
matically satisfy the specified three-point boundary conditions, where an arbitrary free
function is existent in the boundary shape function. In Sect. 4, we develop the first nu-
merical algorithm based on the collocation technique and the trial functions, which are
generated from the boundary shape functions by asking the bases of solution to satisfy
the three-point boundary conditions automatically. The shooting method is introduced
in Sect. 5, where two examples are given to compare the numerical results computed by
the boundary shape function method (BSFM) in Sect. 4 to that obtained by the shoot-
ing method. Taking advantage of the new concept of boundary shape function, it is easy
to develop the second iterative algorithm to solve the third-order nonlinear BVPs with
three-point boundary conditions in Sect. 6, where two numerical examples are tested. In
Sect. 7, we extend the idea of boundary shape function to the nonlinear third-order BVP
with general non-separated three-point boundary conditions. Finally, some conclusions

are drawn in Sect. 8.

2 Third-order nonlinear boundary value problem

Let us consider a third-order nonlinear ordinary differential equation (ODE)

¥ (x) = F(x,y(x),y/(x),y”(x)), O<x<¥, (1)

with separated three-point boundary conditions

c11(0) + ¢12/(0) + ¢13y”(0) = by, 2)
e y(a) + ¢y (a) + c23y" (@) = b, (3)
c319(€) + €30y (£) + ¢33y (£) = b3, (4)

where 0 < a < £ and by, by, and b3 are constants, which may be zeros.

The general non-separated three-point boundary conditions:

L1[¥(0),5(0),5"(0), y(@), ¥ (a),y" (@), y(£),y (£),y"(£)] = b1, (5)
Ly [J’(O),y’(0)»)’”(0),)’(&1),}/(61),)’”(ﬂ),y(z)»y(ﬂ),y"(ﬂ)] = by, (6)
L3[(0),5'(0),5"(0),9(@), (@),y" (@), y(£),y (€),y"(£)] = b3 (7)

will be considered later, where Ly, £, and L3 are linear operators.
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3 The boundary shape function

The boundary shape function (BSF) is such a function that it satisfies the prescribed
boundary conditions automatically. Apparently, the exact solution of the considered BVP
is one member of the BSE, since it must satisfy the boundary conditions. In general, the
numerical method used to approximate the exact solution cannot guarantee to automat-
ically satisfy the boundary conditions exactly. We are going to devise a powerful method
to solve Egs. (1)—(4) based on the boundary shape functions. The idea of boundary shape
function was used to solve the BVP with multipoint boundary conditions [22] and the sin-
gularly perturbed BVP with Robin boundary conditions [23]. The present problem with
third-order nonlinear ODE (1), which is endowed with three-point boundary conditions
(2)—(4) or the general non-separated three-point boundary conditions (5)—(7), is more
difficult to be solved than the second-order BVPs in [22, 23]. We pursue this issue by the
newly constructed BSF, which is a novel method for solving Eqs. (1)—(4), not yet reported
in the literature.

We seek the polynomial type shape functions si(x), k = 1,2, 3, satisfying

1151(0) + €128, (0) + ¢1357(0) = 1,
€2151(a) + €228} (@) + ¢35 (@) = 0, (8)

c3151(£) + ¢3281(£) + c338{(€) = 0,

€1152(0) + ¢1255(0) + ¢1355(0) = 0,
2152(a) + €228 (a) + ca385(a) = 1, %)

3152(€) + c3285(£) + c3385(€) = 0,

¢1153(0) + €1285(0) + c1355(0) = 0,

2183(a) + c2285(a) + ca385(a) = 0, (10)

Cg]Sg(Z) + ngSé(E) + ngsg(f) =1.

Depending on the values of the coefficient matrix c;;, i,j = 1,2, 3, there are many solutions
of si(x), k = 1,2,3. However, we prefer the lower orders shape functions and do not go
into the details to the derivations of s(x), k = 1,2, 3. For each example, we will list sg(x),
k =1,2,3, explicitly.

Theorem 1 For any free function f(x) € C2[0,£), if si(x), k = 1,2,3, satisfy Egs. (8)—(10),
then the boundary shape function B(x), given by
B(x) = f(x) + s1(¥)[b1 — c11/(0) — c15f"(0) — c13f" (0) ]
+52(x%)[b2 — ca1f (@) — coof '(a) — coaf " (a)]
+53(%) [ b3 — ca1f (€) — caof '(£) — czaf " (0)], (11)

is existent and satisfies the separated boundary conditions:

c11B(0) + ¢12B'(0) + ¢13B"(0) = by, (12)
c1B(a) + cB'(a) + c33B"(a) = by, (13)

Cng(E) + ngB/(E) + ngB”(E) = bg. (14)

Page 3 of 23
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Proof The existence of B(x) is guaranteed by the existence of si(x), k = 1,2,3, and the
existence of a free function f(x) € C2[0, £]. We prove Eq. (12) at first. Inserting x = 0 into
Eq. (11), we have

B(0) =£(0) +51(0)[ b1 — €11/ (0) — c12f"(0) — c13f"(0)]
+52(0)[ b2 — ca1f () — caof '(a) — casf " (a)]
+53(0)[ b3 — c31f () — c3af ' (£) — czaf” (0) ] (15)

Taking the differential of Eq. (11) and then inserting x = 0 leads to

B'(0) = f'(0) +51(0)[b1 — €11/ (0) — c12f"(0) — c13/”(0) ]
+55(0)[b2 — carf (@) — coof '(a) — coaf " (a)]
+55(0)[ b3 — c31f (€) — caof '(£) — czaf " (£)]. (16)

Similarly, taking twice differentials of Eq. (11) and then inserting x = 0 yields

B"(0) = f"(0) +57(0)[ b1 — c11£(0) — c15f"(0) = c1af " (0) ]
+55(0)[ b2 — ca1f (@) — coof '(a) — coaf " (@)]
+53(0)[ b3 — c31f (€) — caaf ' (€) — czaf " (0)]. (17)

From Egs. (15)—(17) it follows that

c11B(0) + ¢12B/(0) + ¢13B"(0)

= c1f(0) + ens1 (0)[ b1 — 11 (0) - c1af'(0) — c13f"(0)]
+ e19:(0)[by — €1f (@) — exof (@) — c2af ()]
+ ¢1153(0)[ b3 — ca1f () = caof (€)= caaf"(0)]
+ €1af (0) + €128, (0)[b1 — €11£(0) = c12f'(0) — c13f”(0)]
+ €1255(0)[by — €21 (@) — exof (a) — c2af ()]
+ €1255(0)[ b3 — 31 (0) — csaf () — csaf " (0)]
+ c13f"(0) + c1357(0)[b1 — c11f(0) — c1/"(0) — 13" (0) ]
+ 1385 (0)[ b2 — €21 (a) — exof (@) — coaf " (a) ]
+ ¢1383(0)[ b3 — c31f (€) — caof ' (€) — c3af " (0)]

= enf(0) + c1af (0) + c13f”(0)
+ [e1151(0) + €127 (0) + €357 (0)] [61 = €12/(0) = c1of'(0) — c13(0)]
+ [€1152(0) + €1285(0) + €138, (0)] [ b2 — e21f (@) — exaf '(a) — caaf ()]
+[1153(0) + c1255(0) + c1355(0) | [b3 — €31/ (£) — c3of'(£) — caaf " (0) ]. (18)



Lin et al. Advances in Difference Equations (2021) 2021:146 Page 5 of 23

With the aids of the first equations in Egs. (8)—(10), Eq. (18) is reduced to

c11B(0) + ¢12B'(0) + ¢13B"(0) = c11£(0) + c12f (0) + c13f”(0)
+ b1~ c11f(0) = c1of'(0) — c1af"(0) = b1 (19)

Thus, Eq. (12) was proven. The proofs of Eqs. (13) and (14) can be done similarly. d

In Theorem 1, there exists a free function f(x), which will be very useful for the de-
velopment of the novel algorithms to solve the nonlinear third-order three-point BVPs.
We have to stress that the shape functions s;(x), s2(x), s3(x) are not unique; however, the

lower-order shape functions are preferred.

4 First numerical algorithm
Based on the concept of boundary shape functions, we can develop a new algorithm of
the boundary shape function method (BSFM) to solve Eq. (1) under three-point boundary
conditions (2)—(4).

For Eq. (1), we first choose some suitable basis functions ¢;(x),j € N, which are linearly
independent and complete. Then we have the following result.

Theorem 2 For any function ¢;(x) € C3[0,£],

Ej(x) = ¢j(x) + 51(x)[ b1 — c116(0) — c12¢;(0) — 613¢;/(0)]
+52(%)[b2 — en¢j(@) — cx9(a) - e3¢ (a)]
+53(%) [ b3 — c3195(€) — c3200/(£) — c339] (€) ] (20)

satisfies
c11E;(0) + c12E/(0) + c13E] (0) = by,
enEj(a) + enkj(a) + cE]'(a) = by, (21)

CglEj(Z) + ngE;(E) + ngE;/(z) = bg.

Proof It is a direct extension of Theorem 1 to the basis function f(x) = ¢;(x) and the new
basis B(x) = Ej(x). O

Now we describe a simple method to solve y(x) in Egs. (1)—(4). We assume that the
solution y(x) can be expanded by a set of trial functions E;(x):
y@) =Y aiE(x), (22)

j-1

where a; are unknown coefficients to be determined, and

Y a=1 (23)
j=1



Lin et al. Advances in Difference Equations (2021) 2021:146 Page 6 of 23

guarantees that y(x), expressed by Eq. (22), automatically satisfies three-point boundary
conditions (2)—(4). Due to this reason, we only need to consider Eq. (1) being satisfied by
y(x) in Eq. (22).

Let a := {a;} whose dimension is m. The algorithm of the boundary shape function
method (BSFM) for solving y(x) in Eqgs. (1)—(4) is summarized as follows.

(i) Derive s;(x), s2(x), s3(x), give m, n,, the initial guess of ay and the convergence
criterion €, and then compute x; = il/(n. + 1),i=1,...,n,.
(ii) For k=0,1,2,..., we repeat the following steps: Solving the following algebraic

equations system to obtain a:

m m m m
Z aGE (x;) = F(% Z a;Ej(x;), Z ACHE Z ﬂjE]/‘/(xi)) , i=1,...,m,
j=1 =1 =1 =1
m
Z 61/ =1.
j=1

Then we have ag,;. If ax,; converges according to a given stopping criterion ry := ||ag,; —
a| < €, then stop; otherwise, go to step (ii). When a := {g;} is found, y(x) is obtained from
Eq. (22).

5 Shooting method

The shooting method is well known and well established to solve BVPs [24]. We briefly
sketch the shooting method to solve Egs. (1)—(4), which requires to adjust any two
unknown initial values missed in Eq. (2) such that the resulting integrated values of
¥(a),y'(a),y"(a)] and [y(£),y'(£),y'(£)] after integrating Eq. (1) from x = 0 to x = 4 and to
x = £ can match the boundary conditions at x = a in Eq. (3) and at x = £ in Eq. (4).

For the purpose of demonstration, we assume that ¢;; # 0 in Eq. (2) and let

a :=9(0), B:=%"(0) (24)

denote two unknown initial values. Then, by Eq. (2), we can derive another unknown initial

value

by —cna - c13B

C12

y(0)=y,:= (25)

Then we apply the fictitious time integration method (FTIM) developed by Liu and
Atluri [25] to find o and B to match other two boundary conditions in Egs. (3) and (4),

which is obtained by the following iterations:

VAt

Qs = O — Ry (ks Br)s (26)
1+ 4%
VAt

Bre1 = B — Ro(otks Bre)» (27)

1+
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where t; = kAt is a fictitious time and At is a time increment, and R; and R, denote the
residuals in terms of boundary conditions (3) and (4):

Ry := cory(a) + ey’ (@) + ca3)(a) — by,
(28)

Ry := c319(€) + 32y (€) + 33y (£) — b3,

where R; and R, are implicit functions of & and S.

The iterative algorithm, by using the shooting method to solve y(x) of Eqs. (1)—(4), is
given as follows. (i) Give A¢t, v, the initial guesses of ¢y and Sy and the convergence cri-
terion &9, and Ax = ¢/N. (ii) Repeat k =0,1,2,..., integrating Eq. (1) by the fourth-order
Runge—Kutta method (RK4) with y(0) = ok, ¥'(0) = ¥5, ¥"(0) = Bx and with N; = £/a steps

from x = 0 to x = @ and with N steps from x = 0 to x = £. Taking

Oyl = Ok —

1+

VAL ( )
Ri(ak, Br),  Br+1 =Pk —
1 P ket = P = 7

VAL
RZ(akr ﬂk);
k

if a1 and Bi,1 converge according to a given stopping criterion

1= (a1 — )2 + (Bra1 — )2 < 0,
then terminate the iteration; otherwise, go to (ii) for the next iteration.
Example 1 We first consider the following three-point BVP [26]:

y"(x) —agy' () +bp=0, O<x<l,
(29)
¥'(0) =0, ¥(1/2) =0, ¥y (1) =0,

whose exact solution is

b 1
y(x) = —g [sinh %o _ sinh(agx) + ag (x - —) + tanh %o (cosh(aox) —cosh @) ] (30)
a; 2 2 2 2

For this problem, we take the following trial functions:
i(x—1/2) _ .
¢i(x):%) l=—m1,...,—1,1,...,M1,

$o(x) = 0.

(31)

Through some operations, we can obtain s1(x) = x — 11x2/4 + 3x3/2, s5(x) = 6x — 4«
and s3(x) = x3/2 — x2/4. Under the following parameters aq = 2, by = =3, m1 = 5 (m = 11),
n. =100, and € = 1078 the algorithm converges after 153 steps as shown in Fig. 1(a). From
Fig. 1(b) we can find that the numerical solution y(x) is very close to the exact one with the
maximum error (ME) being 2.23 x 107!, The comparison of the errors in absolute values
between the BSFM and other methods shows that the accuracy is much better than that
computed in [27, 28] with about three orders, and than that computed by Li and Wu [29]
with about five orders. In Table 1, we list the numerical solutions and the absolute errors
at different positions, where 1.31E(—11) means that the absolute error is 1.31 x 10711, etc.
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(a)

107 \ \ \ \
0 40 80 120 160
Number of steps

(b)

107

- = 10"

1072

Error

(x)
i

10™

10M™

— — —— Numerical
-0.06 — Exact
- — - Error

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1 For Example 1 of a three-point BVP solved by the BSFM, (a) showing convergence behavior and (b)
comparing numerical and exact solutions and showing numerical error

Table 1 For Example 1, showing the numerical solutions and the absolute errors obtained by the
BSFM at different points

X 0 0.1 0.3 05 07 0.8 09 1

y(x) 0.08940 0.08417 0.05018 0 0.05018 0.07028 0.08417 0.08940
Error  131E(-11) 1.24E(-11)  2.06E(-11) 0 2.15E(-11) 1.31E(-11) 1.05E(-11) 1.33E(-11)

If we adjust the parameters to ag = 5, by = 1 as those employed by Pandey [8], the algo-
rithm BSEFM converges after 55 steps and the ME is 2.6 x 1071, which is also much better
than that computed in [8].

By using the shooting method presented above, we take a¢ = 2, by = -3, At =0.01, v = 50,
N =100, R, = y(1/2), R, = ¥'(1), and the initial guesses « = 0 and 8 = 0, which is conver-
gence with 43 iterations under &y = 107! and the maximum error is 1.51 x 1072, It can be
seen that the convergence speed of the shooting method is faster than that of the BSFM;
however, the accuracy of the BSFM with ME = 2.23 x 107! is much better than that of the

shooting method with about nine orders as shown in Fig. 2(a).
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(a)
1E-001
1E-002
1E-003
1E-004
1E-005
1E-006 Shooting method
5 1E007 —— - BSFM
& 1E-008
[ 1E-009
1E-010
1E-011 -7 T //“\\—/-**
1E-012 N
1E-013 \’/
1E-014 |
18015 7 | I | |
0.0 0.2 0.4 0.6 0.8 1.0
X
(b)
1E-004
1E-005
1E-006
1E-007
Shooting method
1E-008 -
— BSFM
g 1E-009
1E-010
S
1E-011
1E-012 _ R
P _ -
16013 o/~ \\/ \\
1E-014
1E-015
\ \ \ \ \ \
0.0 0.2 0.4 0.6 0.8 1.0
X
Figure 2 Comparing the numerical errors obtained by the shooting method and the BSFM for (a) Example 1
and (b) Example 2

Example 2 Then we consider the following three-point BVP [28, 30]:

/2

e
y" (%) + Ty"(x) —2esin/xy(x) = h(x), O<x<1,

y(0)=0,  »(1/2)=0,

J’(l) =0,

3
h(x) =6+ €2 (Bx - 5) —xe*(1 - 3w+ 2x%) sin V/x,

whose exact solution is

y(x) = x(x — 1)(x— %)

(33)

(32)

Page 9 of 23
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We apply the BSEM to solve this problem with the following trial functions:
d’j(x):xj) j:L"-1m1 (34')

and the solution is expressed by

m

y@) =Y aiE(x), (35)

j=1

where E;(x) were given by Eq. (20).

We can obtain s;(x) = 1 — 3x + 242, s5(x) = 4x — 442, and s3(x) = 2x% — x. Under the fol-
lowing parameters m = 4, n, = 50, and € = 10710, the algorithm converges after two steps
as shown in Fig. 3(a). From Fig. 3(b) we can find that the numerical solution y(x) is very
close to the exact one with ME being 7.69 x 10713, The accuracy is much better than that
computed in [28, 30] with about six orders.

By using the shooting method, we take Az = 0.01, v = 300, N = 100, R; = y(1/2), Ry = (1),
and the initial guesses o = 0 and 8 = 0, which is convergence with 80 iterations under

o @

10

10'

10°

10"

~ 107

10°

10

10°

10°

107

-8
107 \ \ \ \ \ \

-

2 2 2 3
Number of steps

w

(b)

0.06 — 107

10

10"

(x)
T TT \HH‘
Error

10"

10™

-0.06 I I I i 1078
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 3 For Example 2 of a three-point BVP solved by the BSFM, (a) showing convergence behavior and

(b) comparing numerical and exact solutions and showing numerical error

Page 10 of 23
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&0 = 1071 and the maximum error is 5.17 x 107°. It can be seen that both the convergence
speed of the BSFM is faster than that of the shooting method and the accuracy of the BSFM
with ME = 7.69 x 10713 is much better than that of the shooting method with about eight

orders as shown in Fig. 2(b).

6 Second numerical algorithm

On the other hand, based on the concept of boundary shape function, we can develop
another iterative algorithm to solve Egs. (1)—(4). According to Theorem 1, B(x) given in
Eq. (11) satisfies the three-point boundary conditions in Egs. (2)—(4). Thus, when we con-

sider the variable transformation from y(x) to a new variable u(x),

y(x) = u(x) + 51(x)[ b1 — c114(0) — €121/ (0) — c134"(0)]
+52(x) [ b2 — corul@) — e (@) — o3’ (a) ]

+ 53(x) [ b3 — ca1u(€) — csau/ (£) — 331" (0)], (36)

for any function u(x) € C3[0, £], the above y(x) automatically satisfies boundary conditions
(2)-(4).
Inserting Eq. (36) for y(x) into Eq. (1), we generate a new third-order ODE for u(x):

" (x) = H(x, u(x), u (x), u (x); z), (37)

which can be viewed as an initial value problem (IVP), whose initial values are given
arbitrarily, say, #(0) = #/(0) = #”(0) = 0. However, there are a number of unknown pa-
rameters u(a), u'(a), u’(a), u(t), u'(£), u’(£) to be determined, which are collected as
z:= (u(a), u/(a), u" (a), u(£),u' (£), u” (£)]T.

Letting

ui(x) := ulx), Uy (%) := u/ (%), us(x) := u’ (x), (38)
from Eq. (37) it follows that

Uy (x) = us(x),
uy(x) = uz(x), (39)

uy(x) = H (%, u(x), 2 (%), u3(x); 2),

which are subjected to the given initial conditions u;(0), #,(0), and #3(0). Unfortunately,
z := [u1(a), us(a), us(a), uy (€), us (L), us(€)]T is an unknown vector. If z is available, we can
apply the RK4 to integrate the ODEs in Eq. (39) and then y(x) is obtained from Eq. (36).
The iterative algorithm BSFM for solving y(x) of Egs. (1)—(4) is summarized as follows.
(i) Derive s1(x), s2(x), s3(x), give u1(0), u#2(0), u3(0), an initial guess of zy, and the

convergence criterion €, and then compute Ax = £/N with N given.



Lin et al. Advances in Difference Equations (2021) 2021:146 Page 12 of 23

(ii) For k=0,1,2,..., we repeat the following iterations: Applying the RK4 to integrate
the following ODEs with N; = a/Ax steps to x = a, and N steps to x = £:

uy (%) = up(x),
uy(x) = uz(x),

() = H (x, 11 (x), 12 (%), 143 (0); 2.
Taking
Zrar = [11(@), (@), u3(@), w1 (€), 1 (0), u3(0)]

if zx,1 converges according to a given stopping criterion ry := ||zg1 — Zk|| < €, then stop;
otherwise, go to step (ii). When u(x) = u; (x) is solved, y(x) is obtained from Eq. (36).

Example 3 We recast Example 2 to a nonlinear one:

ex/2
y" (%) + Ty”(x) —2¢"sin/xy(x) +y'(x)* = h(x), O<x<]1,

y(O)ZO! y(1/2)=0, J’(1)=0: (40)

3
h(x) =6+ ex/2<3x— 5) —xe*(1 - 3x + 2x%) sin/x + (6x - 3)°,

whose exact solution is given by Eq. (33).

We apply the above iterative algorithm BSFM to solve this problem with s; (x) =1 - 3x +
242, $5(x) = 4x — 4x2, and s3(x) = 2x* — x. Under the following parameters u;(0) = u,(0) =
u3(0) = 0,20 = (0,0)T, N = 500, and € = 10719, the algorithm converges after 1148 iterations
as shown in Fig. 4(a). From Fig. 4(b) we can find that the numerical solution y(x) is very
close to the exact one with ME being 7.42 x 107!!. Although the nonlinear three-point
BVP is considered here, the accuracy is much better than that computed in [28, 30] with
about four orders. In Table 2, we list the numerical solutions and the absolute errors at
different positions.

By using the shooting method, we take At = 0.01, v = 200, N = 100, R; = y(1/2), Ry = y(1),
and the initial guesses « = 0 and B = 0, which is convergence with 71 iterations under
&0 = 1071% and the maximum error is 1.8 x 1072. It can be seen that both the convergence
speed of the BSFM is faster than that of the shooting method and the accuracy of the BSFM
with ME = 7.42 x 107! is much better than that of the shooting method with about nine
orders as shown in Fig. 5(a).

Example 4 We consider the following nonlinear three-point BVP:

Y (%) +y (%) = (%) = h(x), O<x<1, )
41
¥(0) =0, Y (1/2) —y"(1/2) = w2e'?, y(1) =0,

whose exact solution is given by y(x) = €* sin(rx) such that /(x) can be computed by in-
serting y(x) = ¢* sin(wx) into Eq. (41).
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Figure 4 For Example 3 of a nonlinear three-point BVP solved by the BSFM, (a) showing convergence
behavior and (b) comparing numerical and exact solutions and showing numerical error

Table 2 For Example 3, showing the numerical solutions and the absolute errors obtained by the

BSFM at different points

X 0 0.1 03 0.5 0.7 0.8 09 1
yx) 0 0.036 0.042 0 -0.042 -0.048 -0.036 0
Error 0 1.50E(-11) 145E(-12) 0 423E(-11) 533E(-11) 6.39E(-11) 0

We apply the BSEM to solve this problem with s (x) = 1—x/2—x%/2, s5(x) = x/2-x%/2 and
$3(x) = x/2 + x%/2. Under the following parameters u;(0) = u>(0) = u3(0) = 0, zo = (0,0,0),
N =200, and € = 107'? the algorithm converges after 31 iterations as shown in Fig. 6(a).
From Fig. 6(b) we can find that the numerical solution y(x) is very close to the exact one
with ME being 6.24 x 107!°. Although the nonlinear three-point BVP is considered here,
the accuracy is very good. In Table 3, we list the numerical solutions and the absolute
errors at different positions.

By using the shooting method, we take A¢ = 0.01, v = 90, N = 100, Ry = y(1/2)-y"(1/2) -
m2e'2, Ry = y(1), and the initial guesses a = 0 and 8 = 0, which is convergence with 85
iterations under &y = 1071° and the maximum error is 1.72 x 1073. It can be seen that both
the convergence speed of the BSFM is faster than that of the shooting method and the
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Figure 5 Comparing the numerical errors obtained by the shooting method and the BSFM for (a) Example 3
and (b) Example 4

accuracy of the BSFM with ME = 6.24 x 1071° is much better than that of the shooting
method with about seven orders as shown in Fig. 5(b).

7 Non-separated three-point BVP
In this section we extend Theorem 1 to the non-separated three-point boundary condi-
tions. The following example is used to demonstrate the new idea.

Example 5 We first consider the following non-separated three-point BVP [28] as a
demonstrative case to introduce the concept of boundary shape function for the non-
separated three-point boundary conditions:

Y () +xy"(x) =3x —6x* -6, O<x<], (42)

HO=0,  YO=0,  YO-y1)=7, (43)

Page 14 of 23
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Figure 6 For Example 4 of a nonlinear three-point BVP solved by the BSFM, (a) showing convergence
behavior and (b) comparing numerical and exact solutions and showing numerical error

Table 3 For Example 4, showing the numerical solutions and the absolute errors obtained by the

BSFM at different points

X 0 0.1 03 05 0.7 0.8 09 1
y(x) 0 0.3415 1.0921 1.6487 1.6292 1.3081 0.7601 0
Error 0 1.07E(-10) 4.70E(-10) 6.02E(-10) 1.32E(-10) 1.58E(-10) 2.60E(-10) 0
whose exact solution is
3, .3
y(x) = —a* — x>, (44)

2

We can apply the algorithm BSFM in Sect. 4 to solve this problem, where we can

find

4
s1(x)=1+a% - §x3, So(x) = «,

8
s3(x) = 2% — §x3.

(45)

Page 15 of 23
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Now, letting

am:@m—aM@@—»m¢@+mmE—#um+@m} (a6)

we can prove the following result.
Lemma 1 For any free function ¢;(x) € C'o,1], if se(x), k = 1,2,3, satisfy

51(0) =1, 5,(0) =0, 51(1/2) -57(1) =0,
$2(0) =0, 55(0) =1, 55(1/2) —55(1) = 0, 47)

s3(0) =0, 53(0) =0, $3(1/2) —s5(1) =1,
then the function E;(x), given by Eq. (46), satisfies
! / "/ 3
E0)=0, Ej(O) =0, E(1/2) - E(1) = R (48)

Proof The lower-order solutions of s¢(x), k = 1,2,3, for Eq. (47) are given in Eq. (45). In-
serting x = 0 into Eq. (46), we have

/ 3 / /
5@=@@—h@@@—&@@mwgm{1ﬂmum+@m}
which, due to Eq. (47), reduces to
E;(0) = ¢;(0) - ¢;(0) = 0.
Taking the differential of Eq. (46) and inserting x = 0, we have
3
@@:@@—am@@—gwﬁ@+gmh¢¢um+¢u@
which, due to Eq. (47), reduces to
E/(0) = 9/(0) - ¢](0) = 0.
Taking the differential of Eq. (46) and inserting x = 1/2 and x = 1, we have
! / / / ’ / 3 / /
Ei(1/2) = ¢;(1/2) - 51(1/2)¢;(0) — 5,(1/2)¢;(0) + 55(1/2) |:1 - ¢;(1/2) + ¢j(1)],
3
qm:%m—ﬁm@m—gmﬁwngu{z—@mm+¢m}
Subtracting the first equation by the second equation leads to

Ej(1/2) - E/(1) = ¢/(1/2) - ¢](1) = [51(1/2) - 5,(1)];(0) — [55,(1/2) - 5(1)]/(0)

+[s5(1/2) = s5(1)] [Z - ¢/(1/2) + ¢;(1)],
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which, due to Eq. (47), reduces to

3 3
E(1/2) - E(1) = ¢/(1/2) - $)(1) + S - ¢/(1/2) + $)(D) = 7.

Thus, we end the proof of Eq. (48). d

Now we apply the BSFM in Sect. 4 to solve Example 5 with the following trial functions:
dx)=¥, j=1,...,m, (49)

and the solution is expressed by

m

@ =Y ), (50)

j=1

where Ej(x) were given by Eq. (46). The above y(x) automatically satisfies the boundary
conditions in Eq. (43), due to Eq. (48) and Z;Zl a; = 1.

Under the following parameters m = 4, . = 100, and € = 10719, the algorithm converges
after eight steps as shown in Fig. 7(a). From Fig. 7(b) we can find that the numerical solu-
tion y(x) is very close to the exact one with ME being 1.67 x 1071. The accuracy is much
better than that computed in [28] with about four orders. In Table 4, we list the numerical
solutions and the absolute errors at different positions.

Inspired by Lemma 1, we can prove the following result for Eq. (1), which is subjected
to the non-separated three-point boundary conditions (5)—(7).

Theorem 3 For any free function f(x) € C2[0,£€], if si(x), k = 1,2,3, satisfy

L1[51(0),51(0),57(0),51(a),s1(a), s7 (@), s1(£),s1(£),s7(£)] = 1,
£2 [sl (O)¢ 5,1 (0)7 5/1/ (O): $1 (ﬂ): s/l ("Z): 5/1/ (ﬂ), 51(£)¢ 5/1 (Z): 5/1/(6)] =0, (51)
L3[51(0),51(0),57(0),51(a),s1(a), s7(a), s1(£),51(£),s](£)] = O,

L1[52(0),55(0),55(0), s2(a), s5 (@), 55 (a), s2(£), 55(£), s5(£)] = 0,
L5[52(0),55(0),55(0), 52(a), sh (), s5(a), s2(£), s5(€),s5(0)] = 1, (52)
£3 [S2 (O)¢ 5,2 (0)7 S/z/ (O): SZ(“): 5/2(“): 5/2/ (ﬂ), 52(£)¢ 5/2 (Z): S/Q/(E)] =0,

L1[53(0),55(0), 55(0), s3(a), s5(a), 53 (), s3(£), s5(£), s3(£)] = 0,
L[s3(0),55(0), 55(0), s3(a), s5(a), s5(a), s3(£), s5(£), s3(£)] = 0, (53)
L3[s3(0),55(0), 55(0), s3(a), s5(a), s5 (@), s3(£), s5(£),s5(£)] = 1,

then the boundary shape function B(x), given by

B(x) = f(x) + s10) {b1 = L1[f(0),£'(0).f"(0).f (@), f"(@).f" (@), £ (€).f (£).f"(€)]}
+52(0){b2 = La[£(0),£/(0).f"(0).f (a).f (@), £ " (@), £ (O).f (0).f ()]}
+53(0) {b3 = L3[f(0),£'(0).f"(0).f (a).f (@),f" (@), £ (O).f (0).f" ()]}, (54)
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Figure 7 For Example 5 of a non-separated three-point BVP solved by the BSFM, (a) showing convergence
behavior and (b) comparing numerical and exact solutions and showing numerical error

Table 4 For Example 5, showing the numerical solutions and the absolute errors obtained by the
BSFM at different points

X 0 01 0.3 0.5 0.7 0.8 0.9 1
y(x) 0 0014 0.108 0.250 0.392 0.448 0489 0.500
Error 0 1.81E(-13) 161E(-12)  442E(-12) 8.51E(-12) 1.10E(-11) 140E(-11) 1.67E(-11)

satisfies the non-separated three-point boundary conditions:

L1[B(0), B'(0),B"(0),B(a), B'(a), B"(a),B(),B'(£),B"(¢)] = by, (55)
L5[B(0),B'(0),B"(0), B(a), B (a), B"(a), B(£), B'(£), B"(£)] = by, (56)
L3[B(0),B(0),B"(0), B(a), B'(a), B"(a), B(¢), B'(£), B"(¢)] = bs. (57)

Proof Applying the linear operator £; to Eq. (54) and using the linear property, we have

£1[B(0), B'(0), B"(0), B(a), B'(a), B"(a), B(£), B'(¢), B"(¢)]
= L1[£(0).1'(0).f"(0).f (@).f (@).f"(@).f (£).f (©).f"(0)]

Page 18 of 23
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+ L1[51(0),51(0),57(0), 51(a), 51 (a), s} (a), 51 (), 5, (£), 57 (0)]

x (b1~ L1[£(0),£/(0).£7(0).£ (@)1 (@).f (@), (0).£'(£).f"(©)]}
+ L1[5:(0),55(0),85(0), 52(a), 55(@), 55 (@), 52(€), 55(£), 55 (£) ]

x {2 = L2[f(0),1/(0).£7(0).f (@).f (@)1 " (@), (©).£ (£).f"(©)]}
+£1[53(0), 53(0), 53(0), 53(a), 53(a), 53 (@), 53(£), 53(€), 55(6)]

x {bs = L3[£(0),1'(0),f"(0).f (a).f (a).f"(@),f (£),f (€).f"(€)]},
which with the help from Egs. (51)—(53) becomes

L1[B(0),B'(0),B"(0), B(a), B'(a), B"(a), B(¢£), B'(¢), B"(0)]
= L1[f(0).£(0),£"(0).f (a).f (a).f"(a).f(O).f (0).f"(0)]
+ bl - »Cl [f(O),f/(0),f"(O),f(a),f’(a),f”(a),f(ﬁ),f/(ﬁ),f”(Z)]
=b.

This ends the proof of Eq. (55). The proofs of Egs. (56) and (57) can be done simi-
larly. g

The above theorem is crucial for treating very complex non-separated three-point
boundary conditions of third-order nonlinear BVP and for guaranteeing that the bound-
ary conditions are satisfied exactly. Now we apply the iterative algorithm BSFM in
Sect. 6 to the following problem, which has transformed the BVP to the corresponding
IVP.

Example 6 We consider the following quadratic nonlinear non-separated three-point
BVP:

y"(x) + 9" (%) +y*(x) = h(x), O<x<1, o)
58
y(112) - y(0) =€, y(1/2)-y'(1/2) +50) =%, y(0) +y(1) =7,

whose exact solution is given by y(x) = ¢*sin(7x) such that /x(x) can be computed by in-
serting y(x) = ¢* sin(rx) into Eq. (58).

We apply the iterative algorithm BSFM in Sect. 6 to solve this problem with s;(x) = -4 +
8x/3 — 4x2/3, sp(x) = x/3 —x2/2, and s3(x) = 1 —x/3 + 2x2/3. For this problem, there are four
unknown parameters z = [x(1/2), u/(1/2), u”(1/2), u(1)]7.

Under the following parameters u;(0) = u5(0) = u3(0) = 0, zo = (0,0,0,0)T, N = 100, and
€ = 10719 the algorithm converges after 56 iterations as shown in Fig. 8(a). From Fig. 8(b)
we can find that the numerical solution y(x) is very close to the exact one with ME be-
ing 1.4 x 1078. Although the non-separated three-point nonlinear BVP is difficult to be
treated by the numerical method, the accuracy of the problem we considered is very
good. In Table 5, we list the numerical solutions and the absolute errors at different posi-

tions.
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Figure 8 For Example 6 of a non-separated three-point quadratic nonlinear BVP solved by the iterative
algorithm BSFM, (a) showing convergence behavior and (b) comparing numerical and exact solutions and
showing numerical error

Table 5 For Example 6, showing the numerical solutions and the absolute errors obtained by the

BSFM at different points
X 0 0.1 03 0.5 0.7 038 0.9 1
y(x) 444 %107 0342 1.092 1.649 1.629 1.308 0.760 134 x 107/

Error 4.44E(-7) 715E(-9)  7.76E(-9)  1.03E(-8)  1.29E(-8) 1.37E(-8) 140E(-8)  1.34E(-8)

Example 7 We consider the following cubic nonlinear non-separated three-point BVP:

Y (%) —xy(x) + ' (x)? + 93 (%) = h(x), O<x<1,
el/2
(0)+y"(0) +y(1/2) +y(1) = — -, (59)

1/2
y(0) -y (0) + y(1/2) = % YO +y(1)=1—¢,

whose exact solution is given by y(x) = e*(x — x2) such that 4(x) can be computed by in-

serting y(x) = &*(x — x2) into Eq. (59).
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We apply the BSFM to solve this problem with s;(x) = 9/34 — 4x/17 + 4x%/17, s3(x) =
4/17 + 4x/17 — 4x2/17, and s3(x) = —11/34 + 23x/34 — 3x2/17. For this problem there are
four unknown parameters z = [(1/2), u/(1/2), u(1),2'(1)]*.

Under the following parameters u;(0) = u#,(0) = u3(0) = 0, zo = (0,0,0,0), N = 100, and
€ = 10719, the algorithm converges after 21 iterations as shown in Fig. 9(a). From Fig. 9(b)
we can find that the numerical solution y(x) is very close to the exact one with ME be-
ing 8.91 x 107?. Although the non-separated three-point nonlinear BVP is difficult to be
treated by the numerical method, the accuracy of the problem we considered is very good.

In Table 6, we list the numerical solutions and the absolute errors at different positions.

(a)

1x10'
10°
1x10"
1x10”
1x10°
1x10™
= 1x10°
1x10°
1x107
1x10°®
1x10°
1x10™
-1
107 \ \ \ \ \ \

0 4 8 12 16 20 24
Number of iterations

05 —

0.4 —| — -

¥(x)
Error

0.2 —
——— Numerical

— Exact —
— - Error
0.1 —

0.0 I I I I 10°
0.0 0.2 0.4 0.6 0.8 1.0
X
Figure 9 For Example 7 of a non-separated three-point cubic nonlinear BVP solved by the iterative algorithm

BSFM, (a) showing convergence behavior and (b) comparing numerical and exact solutions and showing
numerical error

Table 6 For Example 7, showing the numerical solutions and the absolute errors obtained by the
BSFM at different points

X 0 0.1 03 0.5 0.7 08 0.9 1
y(x) —545x 108 0995 0.283 0412 0423 0.356 0221 891 x 107°
Error  5.45E(-8) 760E(-9) 665E(-9) 6.27E(-9) 6.69E(-9)  7.24E(-9)  7.98E(-9)  891E(-9)
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For Examples 6 and 7, we find that although the shooting method in Sect. 5 is modified,
it cannot be applied to solve them, because there exist three unknown initial values y(0),
¥'(0), and y”(0) to be determined. In contrast, the presented BSFM can provide very accu-
rate solutions of Examples 6 and 7. Although in the BSFM we also transformed the BVP to
the corresponding IVP, the major difference is that the initial values are given with known
values, say u(0) = #'(0) = #”(0) = 0, and we adjust the unknown terminal values at x = a
and x = ¢ through the integrations of the new ODEs. The process in the BSFM is much
more stable than that in the shooting method with unknown initial values y(0), (0), and
y"(0).

8 Conclusions

The paper is witnessed to derive the boundary shape functions to exactly satisfy the
given separated three-point boundary conditions and general non-separated three-point
boundary conditions of the third-order nonlinear BVP. According to the new idea of
boundary shape functions, we have developed two novel numerical algorithms used in
the solutions of the third-order three-point nonlinear BVPs. The main contributions are
the introduction of a new concept of boundary shape functions and then deriving the
new bases and a new variable transformation, which automatically satisfy all the bound-
ary conditions specified. In the first algorithm, since the bases have already satisfied the
three-point boundary conditions, we only need to collocate points inside the domain to
satisfy the governing equation, which is easily performed by solving the resulting alge-
braic equations system to determine the expansion coefficients. On the other hand, in the
second algorithm we have transformed the nonlinear third-order three-point BVP to the
initial value problem of a new nonlinear ODE, which is convergent very fast, to find solu-
tion. Numerical examples confirmed and showed that the two novel algorithms based on
the boundary shape functions are highly accurate and stable.
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