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Abstract
This paper deals with the finite time stability and control for a class of uncertain
variable fractional order nonlinear systems. The variable fractional Lyapunov direct
method is developed to provide the basis for the stability proof of the system
considered. The sliding mode control method is applied for robust control of
uncertain variable fractional order systems; furthermore, the chattering phenomenon
is avoided. And the finite time stability of the systems under control law is proved
based on the proposed stability criterion. Finally, numerical simulations are proposed
and the efficiency of the controller is verified.
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1 Introduction
In recent years, fractional calculus (FC) has been used to describe the natural behav-
ior in many research fields [1–9]. And the fractional order differential models can bet-
ter describe some complex dynamic phenomena in many practical engineering prob-
lems [10–16]. Thus, the theory of FC has been developed rapidly. For example, a defi-
nition of variable fractional order operator (VFO) was proposed in order to describe the
complex phenomena of the mechanical modeling [17]. FC has a vast of applications in
areas of physics and engineering, and it has been applied to chaos control of the frac-
tional order(FO) dynamical systems [18]. And it has become a hot spot in research for
the theory analysis and application of control in FO dynamical systems [19–21], and
there exist many control methods to deal with the control problem of the chaotic sys-
tems, such as adaptive control, backstepping method, feedback control method, and H∞
approach [22–25]. Monje et al. [22] detailed fractional order systems and controls by
use of fractional calculus in the description and modeling of systems and in a range of
control design and practical applications. Aguilar et al. [25] investigated the chaos con-
trol for a class of variable-order fractional chaotic systems using robust control strategy.
Moreover, sliding mode control (SMC) [26–28], which has the advantage of better tran-
sient performance, easy realization, rapid response, and insensitivity to external distur-
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bances and so on, is frequently employed, see [29–37]. Pisano et al. [29] applied the slid-
ing mode control approaches to stabilize a class of linear uncertain fractional order dy-
namics and presented two sliding mode control schemes. Jakovljevic et al. [30] dealt with
applications of sliding mode based fractional control techniques to address tracking and
stabilization control tasks for some classes of nonlinear uncertain fractional order sys-
tems.

Aghababa [38] introduced a suitable robust SMC law to realize control in a given finite
time for integer-order nonautonomous chaotic systems. By use of the SMC approach, a
feedback control has been designed to guarantee asymptotical stability of the chaotic sys-
tems in [39]. Combined with a global SMC, Saleh et al. [40] presented a novel adaptive
stabilization technique for disturbed chaotic flow. Motivated by the research in SMC of
the constant FO chaotic system, many researchers have exploited the VFO operators to
investigate the dynamical and control problems [17, 41–44]. However, from the mathe-
matical analysis point, it has not been resolved for the problem of the theory to prove the
stability of the controller. To the authors’ knowledge, due to the complexity of VFO sys-
tems, the results are rare on this topic. In addition, many studies have been devoted to the
simulation of the fraction order system in recent years, and a large number of methods
have emerged and the theories have gradually improved [45–50].

In the present paper, the finite time control is discussed for VFO chaotic systems in
the presence of uncertainties and external disturbances. The Lyapunov direct method is
extended to the VFO form, and a finite time stability theorem is proposed. Based on the
stable results, a VFO sliding mode manifold is designed. And in order to guarantee the
finite time reach of the system state trajectories to the above sliding mode manifold, a
SMC law is designed in the VFO form. In this paper, our main contribution is to realize
the stabilization of variable fractional order uncertain systems in finite time by the SMC
approach. Moreover, the theoretical proof is given by use of the variable fractional order
Lyapunov theorem. Lastly, simulation results are proposed to display the effectiveness and
usefulness of the theoretical analysis.

The organization of this article is presented as follows. The basic definitions of VFO
calculus and the basic description of the system are given in Sect. 2. Section 3 is devoted
to obtaining the stability of VFO differential system in a finite time and provide the design
strategy of the VFOSMC. Section 4 provides the numerical simulations for the viability of
the theoretical results.

2 Preliminaries
The following definitions of VFO operators are adopted in this article.

Definition 2.1 ([51]) When the order q(t) depends on time t, there is an obvious way for
accounting for the variation:

Iq(t)
t x(t) =

1
�(q(t))

∫ t

t0

(t – s)q(t)–1x(s) ds, 0 < q(t) < 1, (1)

provided the integration is defined on t ∈ [t0, T], and �(·) is the gamma function.
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Definition 2.2 ([51]) The definition of VFO derivatives is as follows:

CDq(t)
t x(t) =

1
�(1 – q(t))

∫ t

t0

(t – s)–q(t)x′(s) ds, 0 < q(t) < 1, (2)

provided the integration is defined on t ∈ [t0, T], and �(·) is the gamma function.

When q(t) is a constant, Definitions 2.1 and 2.1 are reduced to the Caputo constant
fractional order operators.

The n-dimensional uncertain VFO nonlinear dynamical system is described by the fol-
lowing equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C
t0 Dq(t)

t x1(t) = f1(t, X) + �f1(t, X) + d1(t) + u1(t),
C
t0 Dq(t)

t x2(t) = f2(t, X) + �f2(t, X) + d2(t) + u2(t),

. . .
C
t0 Dq(t)

t xn(t) = fn(t, X) + �fn(t, X) + dn(t) + un(t),

(3)

where 0 < q1 ≤ q(t) ≤ q2 < 1, q1, q2 are finite constant. X(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is
the states vector, fi(t, X) ∈ R, i = 1, 2, . . . , n, denotes a nonlinear function of X and t, ui(t) ∈
R, i = 1, 2, . . . , n, is the control input. di(t) ∈ R represents an unknown model uncertainty,
and �fi(t, X) ∈ R represents the external disturbances of the system for i = 1, 2, . . . , n, which
is required to satisfy the following assumptions.

Assumption 1 Suppose that the unknown model uncertainty �fi(t, X) for i = 1, 2, . . . , n is
differentiable and satisfies

∣∣Dq(t)�fi(t, X)
∣∣ ≤ M�f

i ,

where M�f
i > 0 is a constant which is known for i = 1, 2, . . . , n.

Assumption 2 Suppose that the external disturbance di(t) is differentiable for i =
1, 2, . . . , n,

∣∣Dq(t)di(t)
∣∣ ≤ Md

i ,

where Md
i > 0 is a constant which is known for i = 1, 2, . . . , n.

Remark 1 From the applied points of view, the uncertain terms and external disturbances
are always bounded, a designed control input always has a finite magnitude. Thus, the
above assumption is realistic and not restricting.

3 Main results
3.1 Stability analysis of the VFO system
This part is to derive some criteria of stability for the VFO differential systems.
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Definition 3.1 The constant x0 is an equilibrium point of the VFO system

⎧⎨
⎩

C
t0 Dq(t)

t x(t) = f (t, x(t)), t ∈ (t0, T],

x(t0) = x0,
(4)

where 0 < q1 ≤ q(t, x(t)) ≤ q2 < 1 if f (t, x0) = 0.

The following theorem is an extended Lyapunov direct method into a VFO form, which
provides the basis of the asymptotic stability analysis for the VFO system.

Theorem 3.2 Suppose that x = 0 is an equilibrium point of VFO system (4) and D ⊂ Rn is a
domain containing the origin. If there exists a continuously differential function V (t, x(t)) :
[0,∞) × D → R such that, for arbitrary positive constants α1, α2, α3, a, b, the following
inequality holds:

⎧⎨
⎩

α1‖x‖a ≤ V (t, x(t)) ≤ α2‖x‖ab,

Dq(t)V (t, x(t)) ≤ –α3‖x‖ab,
(5)

where x ∈ D, 0 < q1 ≤ q(t) ≤ q2 < 1, t ∈ [0,∞).
Then the equilibrium point of system (4) is asymptotically stable.

Proof Divide the interval [0,∞) into the subintervals [tk , tk+1], k = 1, 2, . . . , n, . . . , which
requires limk→∞ tk = ∞. Denote χk = tk+1 – tk with infk χk > 0 and 0 < supk χk < 1 for k =
1, 2, . . . , n, . . . , then the following inequality is obtained:

χ
–q(t)
k ≤

⎧⎨
⎩

( 1
χk

)q2 , 0 < χk < 1,

( 1
χk

)q1 , 1 ≤ χk ,
(6)

with χ̂k = max{( 1
χk

)q2 , ( 1
χk

)q1}. According to the property of �(t) on (0, 1], we have �(1 –
q1) ≤ �(1 – q(t)) ≤ �(1 – q2), which gives that, for t ∈ [tk , tk+1), k = 1, . . . , n, . . . , together
with Definition 2.1 and Definition 2.2

C
tk

Dq(t)
t V

(
t, x(t)

)
=

∫ t

tk

(t – s)–q(t)

�(1 – q(t))
V ′(s, x(s)

)
ds (7)

≥ 1
�(1 – q1)

∫ t

tk

(t – s)–q(t)V ′(s, x(s)
)

ds

≥ χ̂k

�(1 – q1)

∫ t

tk

(
t – s
χk

)–q2

V ′(s, x(s)
)

ds

=
1

Hk

C
tk

Dq2
t V

(
t, x(t)

)
,

where Hk = �(1–q1)
χ

q2
k χ̂k�(1–q2)

> 0. Thus, we obtain

C
tk

Dq2
t V

(
t, x(t)

) ≤ Hk
C
tk

Dq(t)
t V

(
t, x(t)

)
, t ∈ [tk , tk+1), k = 1, . . . , n,
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then we get

C
0 Dq2

t V
(
t, x(t)

) ≤ HC
0 Dq(t)

t V
(
t, x(t)

)
for t ∈ [0,∞), (8)

where H = Hi for t ∈ [ti, ti+1). From inequalities (5) and (8), it is obtained that

C
0 Dq2

t V
(
t, x(t)

) ≤ HC
0 Dq(t)

t V
(
t, x(t)

)
(9)

≤ –Hα3α
–1
2 V

(
t, x(t)

)
.

Then a nonnegative function G(t) exists such that

C
0 Dq2

t V
(
t, x(t)

)
+ G(t) = –α3α

–1
2 HV

(
t, x(t)

)
. (10)

Applying the Laplace transform to (10) with V (0) = V (0, x(0)), we derive that

sq2 V (s) – V (0)sq2–1 + G(s) = –α3α
–1
2 HV (s),

where V (s) = L{V (t, x(t))} and G(s) = L{D(t)}. After some manipulations, it is obtained that

V (s) =
V (0)sq2–1 – G(s)

sq2 + Hα3α
–1
2

.

By the inverse Laplace transform, one can get

V (t) = V (0)Eq2

(
–α3α

–1
2 Htq2

)
–

∫ t

0
(t – s)q2–1Eq2,q2

[
–Hα3α

–1
2 (t – s)q2

]
G(s) ds

≤ V (0)Eq2

(
–α3α

–1
2 Htq2

)
.

In terms of inequality (5), it implies that

‖x‖ ≤ [
V (0)α–1

1 Eq2

(
–Hα3α

–1
2 tq2

)] 1
a .

Thus, the proof is completed. �

The coming definition and theorems are concerned with finite time stability of the sys-
tems.

Definition 3.3 Assume that D is some open connected set, W (Y , t) is a function of vari-
ables Y , t. Then a function Y (t), t0 ≤ t < T , T > t0 is called a solution of the differential
inequality

C
t0 DqY (t) ≤ W

(
Y (t), t

)
(11)

on [t0, T) if Y (t), and its fractional order derivative satisfies inequality (11) on [t0, T).



Jiang et al. Advances in Difference Equations        (2021) 2021:127 Page 6 of 16

Theorem 3.4 Suppose that W (X, t) is continuous on D ∈ R2, which is an open connected
set, and X(t) is a solution of the following initial value problem:

C
t0 DqX(t) = λX(t), X(t0) = x0,

on [t0, T], where λ is a known constant. If Y (t) is a solution of inequality (11) on [t0, T] with
Y (t0) ≤ X(t0), then Y (t) ≤ X(t) for t0 ≤ t ≤ T .

Proof Set P(t) = Y (t) – X(t), taking the FO derivative on time yields

C
t0 DqP(t) = C

t0 Dq(Y (t) – X(t)
)

= C
t0 DqY (t) – C

t0 DqX(t)

≤ λY (t) – λX(t)

= λP(t),

which combined with Y (t0) ≤ X(t0) gives P(t0) ≤ 0. The following is to validate the in-
equality holds:

P(t) ≤ 0, ∀t ∈ [t0, T). (12)

By the contradiction method, if there exist t1, t2 ∈ (t0, T), t1 < t2 satisfying

⎧⎪⎪⎨
⎪⎪⎩

P(t) < 0, t ∈ (t0, t1),

P(t) > 0, t ∈ (t1, t2],

P(t1) = 0, t = t1.

Suppose that λ > 0, applying the fractional operator Iq to the following inequality:

C
t0 DqP(t) ≤ λP(t),

then it is obtained that

P(t1) – P(t0) ≤ 1
�(q)

∫ t1

t0

(t1 – s)q–1λP(s) ds.

Since P(t) < 0 for t ∈ (t0, t1), then –P(t0) < 0, which is a contradiction. Assume λ < 0, fol-
lowing a similar approach, we have

P(t2) – P(t1) ≤ 1
�(q)

∫ t2

t1

(t2 – s)q–1λP(s) ds < 0,

then P(t2) < 0, which means that inequality (12) holds. �

Theorem 3.5 Assume that V (t) is a continuous and positive definite function which satis-
fies

C
t0 Dq2 V (t) ≤ –αV (t) (13)
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for t ≥ t0, where α is a positive constant. Then the following inequality can be got:

V (t) ≤ V (t0)Eq2

(
–αtq2

)
(14)

for t0 ≤ t < t∗ with t∗ = ( �(q2+1)
α

)q–1
2 , where Eq2 (t) is a Mittag-Leffler function which is de-

noted by Eq2 (t) =
∑∞

k=0
tk

�(q2k+1) . Moreover, V (t0) ≥ 0 with any given t0, and V (t) = 0 for
t ≥ t∗.

Proof Consider the initial value problem of the FO differential systems:

C
t0 Dq2 X(t) = –αX(t), X(t0) = V (t0).

Then this initial value problem has a unique solution as follows:

X(t) = X(t0)Eq2

(
–αtq2

)
for t0 ≤ t.

Therefore, on the basis of Theorem 3.4, one obtains that

V (t) ≤ X(t) = V (t0)Eq2

(
–αtq2

)
for t0 ≤ t < t∗,

where t∗ = ( �(q2+1)
α

)q2–1 and V (t) = 0 for ∀t ≥ t∗. �

3.2 Finite time control of the VFO system by SMC approach
For VFO differential system (3), the VFO sliding mode is proposed as follows:

si(t) = C
0 Dq(t)xi + βixi + β̄isgn(xi)|xi|q(t), (15)

where βi > 0, β̄i > 0 for i = 1, 2, . . . , n.

Remark 2 The representation of the sliding mode is related to the variable fractional order
operator, and it is focused on the VFO systems. When the VFO parameter is a constant,
it can be used to deal with the constant FO systems.

If the states of the system reach the sliding mode surface, then it is obtained that

si(t) = 0, i = 1, 2, . . . , n.

Thus,

C
0 Dq(t)xi = –βixi – β̄isgn(xi)|xi|q(t). (16)

Lemma 3.6 Assume that x(t) is a continuous differential function, then the following in-
equality holds for any time instant t ≥ 0:

1
2

C
0 Dq(t)

t x2(t) ≤ x(t)C
0 Dq(t)

t x(t), 0 < q(t) < 1.
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Theorem 3.7 Consider the VFO sliding mode dynamics (16), then its state trajectories
converge to zero asymptotically in a finite time.

Proof Choose the Lyapunov functional as

V1(t) =
n∑

i=1

x2
i (t), (17)

and apply VFO derivative q(t) to Lyapunov function (17) with respect to time. We obtain
that along with Lemma 3.6 by subsisting equation (16) of C

0 Dq(t)
t xi(t),

C
0 Dq(t)

t V1(t) =
n∑

i=1

C
0 Dq(t)

t x2
i (t)

≤
n∑

i=1

xi(t)C
0 Dq(t)

t xi(t)

=
n∑

i=1

xi(t)
[
–βixi(t) – β̄isgn(xi)|xi|q(t)]

≤ –aV1(t),

where a = min{βi, β̄i}. Then, according to Theorem 3.4 and Theorem 3.5, the state vari-
ables xi, i = 1, 2, . . . , n, asymptotically tend to zero in a finite time.

The following step is to design a robust sliding control law based on the sliding mode
approach. Then the state trajectories of the VFO system are forced to the sliding mode
surface in a finite time. Subsequently, the control law is given as follows:

ui(t) = ui
eq + ui

sw (18)

with

⎧⎨
⎩

ui
eq = –fi(t, X) – β̄isgn(xi)|xi|q(t) – βixi,

C
0 Dq(t)ui

sw = –(M�f
i + Md

i )sgn(si) – ξ i
1si – ξ i

2sgn(si),
(19)

where ui
eq is the equivalent control, and ui

sw is the reaching law with β̄i > 0, βi > 0, ξ i
1 > 0,

ξ i
2 > 0, i = 1, 2, . . . , n. �

The next theorem ensures that system trajectories (3) converge to the sliding mode sur-
face under the controller.

Theorem 3.8 Consider VFO system (3). If controller (18) is applied to system (3) with
β̄i > 0, βi > 0, ξ i

1 > 0, ξ i
2 > 0, then the states of system (3) are driven to reach to the sliding

mode surface (15) asymptotically from the initial conditions in the finite time and stay on
it forever.
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Proof The Lyapunov function is defined as

V2(si) =
1
2

n∑
i=1

s2
i (t). (20)

Calculating the variable fractional order derivative q(t) for V2(si) with respect to time, it
is obtained from Lemma 3.6 that

C
0 Dq(t)

t V2(si) ≤
n∑

i=1

si
C
0 Dq(t)

t si. (21)

According to the sliding mode (15), it is rewritten under controller (18) as follows:

C
0 Dq(t)

t V2(si) ≤
n∑

i=1

si
[C

0 Dq(t)
t

(C
0 Dq(t)

t xi + βixi + β̄isgn(xi)|xi|q(t))]

=
n∑

i=1

si
[C

0 Dq(t)
t

(
fi(t, X) + �fi(t, X) + di(t) + ui(t) + βixi + β̄isgn(xi)|xi|q(t))]

=
n∑

i=1

si
[C

0 Dq(t)
t

(
fi(t, X) + �fi(t, X) + di(t) – fi(t, X) – βixi – β̄isgn(xi)|xi|q(t)

+ ui
sw + βixi + β̄isgn(xi)|xi|q(t))]

=
n∑

i=1

si
[C

0 Dq(t)
t �fi(t, X) + C

0 Dq(t)
t di(t) + C

0 Dq(t)
t ui

sw
]

≤
n∑

i=1

[
M�

i |si| + Md
i |si| – M�

i |si| – Md
i |si| – ξ i

1s2
i – ξ i

2|si|
]

= –
n∑

i=1

ξ i
1s2

i –
n∑

i=1

ξ i
2|si|

≤ –ξV2(si),

where ξ = min{ξ 1
1 , ξ 2

1 , . . . , ξn
1 } is a constant.

From Theorem 3.4 and Theorem 3.5, we obtain that the state trajectories of VFO sys-
tem (3) will be driven to si(t) = 0, i = 1, 2, . . . , n, as t → ∞ in a finite time and stay on it
forever. Combined with Theorem 3.7 and Theorem 3.8, the trajectories will converge to
zero asymptotically in a finite time. �

4 Numerical simulation
The simulation results are presented to validate our theoretical results in this section.

4.1 Control of the VFO brushless motor system by SMC
The VFO brushless motor system is stated as follows:

⎧⎪⎪⎨
⎪⎪⎩

C
0 Dq(t)x1 = –0.875x1 + x2x3 + �f1(X, t) + d1(t) + u1(t),
C
0 Dq(t)x2 = –x2 + 55x3 – x1x3 + �f2(X, t) + d2(t) + u2(t),
C
0 Dq(t)x3 = 4(x2 – x3) + �f3(X, t) + d3(t) + u3(t),

(22)
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where �fi(X, t), i = 1, 2, 3, and di(t), i = 1, 2, 3, denote the perturbation and uncertainty
terms of the system, respectively,

⎧⎪⎪⎨
⎪⎪⎩

�f1(X, t) + d1(t) = –0.15 · sin(2t) + 0.2 · cos(3t)x1,

�f2(X, t) + d2(t) = 0.2 · sin(3t) + 0.25 · sin(4t)x2,

�f3(X, t) + d3(t) = –0.25 · cos(4t) + 0.3 · sin(2t)x3.

(23)

Under the initial conditions

x1(0) = 10, x2(0) = –5, x3(0) = 5,

system (22) is chaotic behavior with the following VFO:

q(t) =

⎧⎨
⎩

0.96 + 0.002t/T , t ∈ [0, T],

0.96, t > T .

The chaotic trajectories of uncontrolled system (22) are illustrated in Fig. 1. From the fig-
ure, we can find that the system presents chaotic behavior under the initial value condition.

According to the sliding mode surface (15), the following sliding mode surfaces in this
simulation are utilized:

si(t) = C
0 Dq(t)xi + βixi + β̄isgn(xi)|xi|q(t), i = 1, 2, 3. (24)

Subsequently, the controller is designed according to (18) in order to stabilize the chaotic
system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) = 0.875x1 – x2x3 – β̄sgn(x1)|x1|q(t) – βx1 + u1
sw,

C
0 Dq(t)u1

sw = –(M�f
1 + Md

1 )sgn(s1) – ξ
(1)
1 s1 – ξ

(1)
2 sgn(s1),

u2(t) = x2 – 55x3 + x1x3 – β̄sgn(x2)|x2|q(t) – βx2 + u2
sw,

C
0 Dq(t)u2

sw = –(M�f
2 + Md

2 )sgn(s2) – ξ
(2)
1 s2 – ξ

(2)
2 sgn(s2),

u3(t) = –4(x2 – x3) – β̄sgn(x3)|x3|q(t) – βx3 + u3
sw,

C
0 Dq(t)u3

sw = –(M�f
3 + Md

3 )sgn(s3) – ξ
(3)
1 s3 – ξ

(3)
2 sgn(s3),

(25)

the constant parameters are

⎧⎨
⎩

β1 = 8, β̄1 = 6, β2 = 4, β̄2 = 5, β3 = 3, β̄3 = 2,

M�f
i = Md

i = 0.05, ξ
(i)
1 = 0.5, ξ

(i)
2 = 0.4, i = 1, 2, 3.

(26)

Then the trajectories of the system under the controller are depicted in Fig. 2, which shows
that the trajectories of the system can be stabilized to the origin. The time responses are
showed in Fig. 3 and Fig. 4 for the control inputs (25) and the sliding mode surfaces (24),
which show that the time responses have been driven to the origin in a finite time. It is
concluded that the state variables converge to the origin in a finite time. Moreover, the
chaotic behavior is suppressed.
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Figure 1 The chaotic trajectories of uncontrolled system (22)

Figure 2 The state trajectories of system (22) under controller (25)

Figure 3 The history of control input (25)
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Figure 4 The time response of the sliding mode surface (24)

4.2 Control of the VFO electrostatic transducer by SMC approach
Consider the VFO uncertain nonlinear system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C
0 Dq(t)x1 = x2 + u1(t),
C
0 Dq(t)x2 = x3 + 0.15cos(2t) + u2(t),
C
0 Dq(t)x3 = –(6.8 – 0.2sin(t))x1 – 3.92x2 – x3 + (1 + 0.3 ∗ cos(0.5t))x2

1(t)

+ 1.2 ∗ cos(3t) + u3(t),

(27)

with the model uncertainty terms of the system as follows:

⎧⎪⎪⎨
⎪⎪⎩

�f1(X, t) + d1(t) = 0,

�f2(X, t) + d2(t) = 0.15cos(2t),

�f3(X, t) + d3(t) = 1.2cos(3t).

(28)

By (15), the sliding mode is designed as

si(t) = Dq(t)xi + βixi + β̄isgn(xi)|xi|q(t), i = 1, 2, 3, (29)

in terms of (18), the controller is proposed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) = –x2 – β̄sgn(x1)|x1|q(t) – βx1 + usw
1 ,

C
0 Dq(t)usw

1 = –(M�f
1 + Md

1 )sgn(s1) – ξ
(1)
1 s1 – ξ

(1)
2 sgn(s1),

u2(t) = –x3 – β̄sgn(x2)|x2|q(t) – βx2 + usw
2 ,

C
0 Dq(t)usw

2 = –(M�f
2 + Md

2 )sgn(s2) – ξ
(2)
1 s2 – ξ

(2)
2 sgn(s2),

u3(t) = (6.8 – 0.2sin(t))x1 + 3.92x2 + x3 – (1 + 0.3cos(0.5t))x2
1 – β̄sgn(x3)|x3|q(t)

– βx3 + u3
sw,

C
0 Dq(t)u3

sw = –(M�f
3 + Md

3 )sgn(s3) – ξ
(3)
1 s3 – ξ

(3)
2 sgn(s3),

(30)
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the parameters satisfy

βi = β̄i = 2, M�f
i = Md

i = 1, ξ
(i)
1 = 4, ξ

(i)
2 = 5, i = 1, 2, 3, 4. (31)

Under the initial value

x1(0) = 1, x2(0) = 1, x3(0) = 1,

system (27) shows chaotic phenomena, which is indicated by Fig. 5. By using the proposed
SMC (30), the state trajectories of system (27) are described by Fig. 6. From the figure, we
can see that the system converges to zero quickly. Figure 7 and Fig. 8 demonstrate that the
sliding mode surface (29) responses converge to zero and controller (30) can stabilize sys-
tem (27) effectively in a finite time. Therefore, the control inputs give a good performance
in practice.

Figure 5 The chaotic trajectories of uncontrolled system (27)

Figure 6 The state trajectories of the system under controller (30)
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Figure 7 The time response of the sliding mode surface (29)

Figure 8 The history of the control input (30)

5 Conclusion
This paper investigates a control problem of the VFO nonlinear system. A robust con-
troller is proposed to stabilize the system in the present with uncertainty and external
disturbance. By applying the sliding mode control to the system, a VFO derivative slid-
ing mode surface is designed. And then, a control law has been designed which is free of
chattering signal for a kind of VFO system. According to the proposed stability criteria,
the finite time stability of the controlled systems has been proved. Lastly, numerical re-
sults are provided to illustrate the validity and efficiency of the proposed FO controllers.
Furthermore, the proposed results motivate the development of theoretical and practical
tools for implementing the proposed controllers to the fractional model.

Acknowledgements
Not applicable.



Jiang et al. Advances in Difference Equations        (2021) 2021:127 Page 15 of 16

Funding
This paper has been supported by National Natural Science Foundation of China (No.12002194), Ministerio de Ciencia,
Innovación y Universidades (No. PGC2018-097198-B-I00) and Fundación Séneca de la Región de Murcia (No.20783/PI/18).

Availability of data and materials
This paper is a theoretical work, and it is not based on any data.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have worked in research in an equal way to obtain the results of this paper. All authors read and approved the
final manuscript.

Author details
1Department of Mathematics, Shanghai University, Shanghai 200444, China. 2Division of Dynamics and Control, School
of Mathematics and Statistics, Shandong University of Technology, ZiBo 255000, China. 3Beijing Electro-mechanical
Engineering Institute, Beijing 100074, China. 4Division of Dynamics and Control, School of Astronautics, Harbin Institute
of Technology, Harbin 150001, China. 5Department of Applied Mathematics and Statistics, Technical University of
Cartagena, Hospital de Marina, Cartagena 30203, Spain.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 October 2020 Accepted: 10 February 2021

References
1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
2. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
3. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to

heat transfer model. Therm. Sci. 20, 763–769 (2016)
4. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order.

Chaos Solitons Fractals 89, 447–454 (2016)
5. Li, C., Zhang, F.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193(1), 27–47

(2011)
6. Li, C., Li, Z.: Asymptotic behaviours of solution to Caputo–Hadamard fractional partial differential equation with

fractional Laplacian. Int. J. Comput. Math. 98, 305–339 (2021)
7. Jiang, J., Cao, D., Chen, H., Zhao, K.: The vibration transmissibility of a single degree of freedom oscillator with

nonlinear fractional order damping. Int. J. Syst. Sci. 48(11), 2379–2393 (2017)
8. Jiang, J., Guirao, J.L.G., Chen, H., Cao, D.: The boundary control strategy for a fractional wave equation with external

disturbances. Chaos Solitons Fractals 121, 92–97 (2019)
9. Gao, W., Veeresha, P., Baskonus, H.M., Prakasha, D., Kumar, P.: A new study of unreported cases of 2019-nCOV epidemic

outbreaks. Chaos Solitons Fractals 138, 109929 (2020)
10. Shiri, B., Wu, G.C., Baleanu, D.: Collocation methods for terminal value problems of tempered fractional differential

equations. Appl. Numer. Math. 156, 385–395 (2020)
11. Ilhan, E., Kymaz, I.: A generalization of truncated m-fractional derivative and applications to fractional differential

equations. Appl. Math. Nonlinear Sci. 5(1), 171–188 (2020)
12. Baleanu, D., Jajarmi, A., Sajjadi, S.S., Asad, J.H.: The fractional features of a harmonic oscillator with position-dependent

mass. Commun. Theor. Phys. 72(5), 055002 (2020)
13. Veeresha, P., Prakasha, D.G., Baskonus, H.M., Yel, G.: An efficient analytical approach for fractional

Lakshmanan-Porsezian-Daniel model. Math. Methods Appl. Sci. 43(7), 4136–4155 (2020)
14. Al-Refai, M.: Maximum principles for nonlinear fractional differential equations in reliable space. Fundam. Inform. 6(2),

95–99 (2020)
15. Sweilam, N.H., Hasan, M.M.A.: Efficient method for fractional Levy-Feller advection-dispersion equation using Jacobi

polynomials. Prog. Fract. Differ. Appl. 6(2), 115–128 (2020)
16. Zhang, Y., Cattani, C., Yang, X.J.: Local fractional homotopy perturbation method for solving non-homogeneous heat

conduction equations in fractal domains. Entropy 17(10), 6753–6764 (2015)
17. Coimbra, C.F.: Mechanics with variable-order differential operators. Ann. Phys. 12(11–12), 692–703 (2003)
18. Effati, S., Nik, H.S., Jajarmi, A.: Hyperchaos control of the hyperchaotic Chen system by optimal control design.

Nonlinear Dyn. 73(1–2), 499–508 (2013)
19. Jajarmi, A., Baleanu, D.: On the fractional optimal control problems with a general derivative operator. Asian J. Control

40(2) (2019). https://doi.org/10.1002/asjc.2282
20. Jajarmi, A., Hajipour, M.: An efficient recursive shooting method for the optimal control of time-varying systems with

state time-delay. Appl. Math. Model. 40(4), 2756–2769 (2016)
21. Jajarmi, A., Pariz, N., Effati, S., Kamyad, A.V.: Infinite horizon optimal control for nonlinear interconnected large-scale

dynamical systems with an application to optimal attitude control. Asian J. Control 14(5), 1239–1250 (2012)
22. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and

Applications. Springer, New York (2010)
23. Chen, D., Zhang, R., Ma, X., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple

chaotic systems via a sliding mode control scheme. Nonlinear Dyn. 69(1–2), 35–55 (2012)

https://doi.org/10.1002/asjc.2282


Jiang et al. Advances in Difference Equations        (2021) 2021:127 Page 16 of 16

24. Azar, A.T., Vaidyanathan, S., Ouannas, A.: Fractional Order Control and Synchronization of Chaotic Systems, vol. 688.
Springer, Berlin (2017)

25. Zuñiga-Aguilar, C., Gómez-Aguilar, J., Escobar-Jiménez, R., Romero-Ugalde, H.: Robust control for fractional
variable-order chaotic systems with non-singular kernel. Eur. Phys. J. Plus 133(1), 1–13 (2018)

26. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. CRC Press, Florida (1998)
27. Dadras, S., Momeni, H.R.: Control of a fractional-order economical system via sliding mode. Phys. A, Stat. Mech. Appl.

389(12), 2434–2442 (2010)
28. Utkin, V.: Sliding Modes in Control and Optimization. Springer, New York (2013)
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