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Abstract
The fractional Hopfield neural network (HNN) model is studied here analyzing its
symmetry, uniqueness of the solution, dissipativity, fixed points etc. A Lyapunov and
bifurcation analysis of the system is done for specific as well as variable fractional
order. Since a very long time ago, HNN has been carefully studied and applied in
various fields. Because of the exceptional non-linearity of the neuron activation
function, the HNN system is stoutly non-linear. Chaos control using adaptive SMC
considering disturbances and uncertainties is done about randomly chosen points by
designing suitable controllers. Numerical simulations performed in MATLAB verify the
efficacy of the designed controllers.
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1 Introduction
Various mathematical models have been proposed to understand the various phenom-
ena better. Proposing biological models [1] has become most important as it helps scien-
tists in better understanding and bringing new insight into it, such as epidemic modeling
that may help in control of the epidemic. Most of the biological models [2, 3] that have
been proposed fall in the category of non-linear biological systems. Chaos, antimono-
tonicity, different types of bifurcations, multi-stability are the many properties [4] which
have been visualized in many biological models. In order to analyze the proposed non-
linear dynamical models [5–8], one should use non-linear methods such as Lyapunov
exponents, stagnation points analysis, basins of attraction, and bifurcation diagrams. In
order to model the changing dynamics, the considered parameter values can be changed
over a wide range.

Since a very long time ago, the Hopfield neural network (HNN) has been carefully stud-
ied and applied in various fields such as in image encryption, data storage, information
processing, and associative memory. Because of the exceptional non-linearity of the neu-
ron activation function, the HNN model is stoutly non-linear [9]. Like the chaotic time de-
lay systems, Chua circuit, and coupled HR neuron circuits [10], the HNN model generates
very complex behaviors like hyper-chaos, periodic chaos and quasi-period [11], which im-
plies that the HNN model simulates the prominent chaotic behavior like that of the brain
[12, 13]. Therefore, one must investigate these systems as they have a theoretical signifi-
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cance as well as practical significance. Up to now various HNN models have been studied
and proposed in the literature; such as the two dimensional neuronal model [14], three
dimensional neuronal model [15] and four dimensional neuronal model [16]. For these
systems a variety of studies has been done, such as multi-stability, coexisting attractors,
circuit implementation, and synchronization [17–23].

Many chaos control methods [24–27] have been developed in the recent past to tame
chaos and increase its application across various disciplines. Some of the popular meth-
ods used are active control, tracking control, sliding mode, and the parameter estimation
method. Chaos synchronization is also a way to contain chaos between master and slave
systems. Some popular synchronization methods use the anti-synchronization, projective
synchronization, difference synchronization, and matrix synchronization [28] methods
[29–32].

We study fractional [33, 34] HNN model varying parameter values and fractional orders.
Some basic dynamic methods [35–37] have been used such as Lyapunov exponents [38,
39], bifurcation diagrams [40], phase portraits, and time series. We have also discussed
the existence of the solution of the considered system. As the considered system did not
have any stagnation point, we have used chaos control using adaptive sliding mode about
two arbitrarily chosen desired points considering external disturbances and uncertainties.
The disturbances have been estimated and the error converging to zero has been achieved,
which have been plotted using MATLAB software.

2 The fractional Hopfield neural network
The fractional HNN model is [41]:

Ż1 = –Z1 – 1.4 tanh(Z1) + 1.2 tanh(Z2) – 7 tanh(Z3),

Ż2 = –Z2 + 1.1 tanh(Z1) + 2.8 tanh(Z3),

Ż3 = –Z3 + P tanh(Z1) – 2 tanh(Z2) + 4 tanh(Z3).

(1)

For P = 0.8 and I.C. (0, 0.01, 0), system (1) shows chaotic behavior. Here we introduce the
fractional version of HNN, perform its thorough dynamical analysis and chaos control.
Caputo’s derivative is used in the paper:

t0 Dα
t f (t) =

1
�(n – α)

∫ t

t0

f (n)(τ )
(t – τ )α–n+1 dτ , t > t0.

The fractional HNN model is given as

DqV1 = –Z1 – 1.4 tanh(Z1) + 1.2 tanh(Z2) – 7 tanh(Z3),

DqV2 = –Z2 + 1.1 tanh(Z1) + 2.8 tanh(Z3),

DqV3 = –Z3 + P tanh(Z1) – 2 tanh(Z2) + 4 tanh(Z3),

(2)

where Z = (Z1, Z2, Z3)T ∈ R3 are the state variables and P ∈ R is a parameter value.
For P = 0.8 and initial condition (I.C.) (0, 0.01, 0) the fractional system is chaotic for

q = 0.987 as is seen in Fig. 1 and Fig. 2.
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Figure 1 State trajectories of (2)

3 Dynamics of fractional HNN model
The dynamics of the fractional HNN with tanhyperbolic terms is explored here, studying
the symmetry, dissipative, uniqueness of the solution, bifurcation and Lyapunov dynamics,
fixed point analysis, etc.

3.1 Symmetry, stagnation point analysis and dissipativity
System (2) in matrix form can be written as

⎡
⎢⎣

DqZ1

DqZ2

DqZ3

⎤
⎥⎦ =

⎡
⎢⎣

G1(Z)
G2(Z)
G3(Z)

⎤
⎥⎦

where

⎡
⎢⎣

G1(Z)
G2(Z)
G3(Z)

⎤
⎥⎦ =

⎡
⎢⎣

–Z1 – 1.4 tanh(Z1) + 1.2 tanh(Z2) – 7 tanh(Z3)
–Z2 + 1.1 tanh(Z1) + 2.8 tanh(Z3)

–Z3 + P tanh(Z1) – 2 tanh(Z2) + 4 tanh(Z3)

⎤
⎥⎦ .

The fractional HNN model (2) does not remain invariant under the Zi → –Zi, Zj → –Zj,
Zk → Zk transformation i.e. the system possesses asymmetric behavior about all the axes.
However, the system is symmetric about the origin as under the transformation Z1 → –Z1,
Z2 → –Z2, Z3 → –Z3, the system remains invariant.
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Figure 2 Chaotic attractors of (2)

The divergence of G is

∇G =
∂(G1(Z))

∂Z1
+

∂(G2(Z))
∂Z2

+
∂(G3(Z)

∂Z3

= –1 – 1.4 sech2 Z1 – 1 – 1 + 4 sech2 Z3

= –1 – 1.4 – 1 – 1 + 4

i.e.

∇G = –0.4 < 0.

Therefore (2) is dissipative.
Equating Gi(Z1, Z2, Z3) for i = 1, 2, 3 to 0, the system can be explored for stagnation

points i.e.

–Z1 – 1.4 tanh(Z1) + 1.2 tanh(Z2) – 7 tanh(Z3) = 0,

–Z2 + 1.1 tanh(Z1) + 2.8 tanh(Z3) = 0,

–Z3 + P tanh(Z1) – 2 tanh(Z2) + 4 tanh(Z3) = 0.

For P = 0.8 we obtain no stagnation points. The absence of stagnation points hints at
the complex nature of the chaotic system.
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3.2 Solution of HNN model
Theorem The I.V.P. of system (2)

DqZ(t) = B1Z(t) + B2Z(t), Z(0) = Zo

where

B1 =

⎡
⎢⎣

–1 0 0
0 –1 0
0 0 –1

⎤
⎥⎦ , B2 =

⎡
⎢⎣

–1.4 1.2 –7
1.1 0 2.8
0.8 –2 4

⎤
⎥⎦ ,

Zo =

⎡
⎢⎣

Z1o

Z2o

Z3o

⎤
⎥⎦ ,

q = (q1, q2, q3)T , 0 < qi < 1 for i = 1, 2, 3 for some constant τ > 0, then a unique solution
exists.

Proof Let G(Z) = B1Z(t) + B2 tanh(Z(t)), then G(Z) is continuous and bounded on [Z0 –
ε, Z0 + ε] for any ε > 0, therefore Lipschitz continuity over [Z0 – ε, Z0 + ε] proves the exis-
tence and uniqueness of the solution.

We have

∣∣G(Z) – G(W )
∣∣ =

∣∣(B1Z(t) + B2 tanh
(
Z(t)

))
–

(
B1W (t) + B2 tanh

(
W (t)

))∣∣
=

∣∣B1(Z – W ) + B2
(
tanh

(
Z(t)

)
– tanh

(
W (t)

))∣∣
≤ ‖B1‖|Z – W | + ‖B2‖

(∣∣tanh
(
Z(t)

)∣∣ +
∣∣tanh

(
W (t)

)∣∣)|.

We have

∣∣tanh
(
Z(t)

)∣∣ ≤ 1

≤ ‖B1‖|Z – W | + 2‖B2‖.

Thus

∣∣G(Z) – G(W )
∣∣ ≤ (‖B1‖ + 2‖B2‖

)|Z – W |
= D|Z – W |,

where D = (‖B1‖ + 2‖B2‖)[2|Zo| + 2ε])) and W (t) ∈ R3.
Hence system (2) possesses a unique solution. �

3.3 Lyapunov dynamics and bifurcation
For P = 0.8 and I.C. (0, 0.01, 0) the Lyapunov spectrum of the system for q = 0.987 is

0.1584, 0.0067 ≈ 0, –0.5987.
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Figure 3 Bifurcation diagram for P ∈ (0.5, 1)

The positive component confirms the presence of chaos. The L.E. shows the separation
rate of trajectories starting closely. The Lyapunov values help to find the chaotic dimension
of the chaotic attractor, called the Kaplan–Yorke dimension.

From the formula

DYK = p +
∑p

s=1 L.E.s
|L.E.s+1| + |L.E.s+2| ,

where p is such that
∑p

s=1 L.E.s ≥ 0 and
∑p+1

s=1 L.E.s < 0, we get the chaotic attractor’s di-
mension. Hence the K.Y. dimension is 2.27576.

Chaotic systems are highly sensitive to parameter values and I.C. By varying the param-
eter values and I.C. the nature of the dynamical system may vary from regular, periodic
to chaotic nature. Bifurcations give the nature of chaotic system by changing parameters
in a range. The bifurcations determine the route to chaos. For the HNN model by varying
the parameter in the range (0.5, 1) the bifurcations can be seen in Fig. 3. Figure 4 shows
Lyapunov and bifurcations for varying q between 0.8 to 1. The phase portrait of the system
for varying q is also shown in Fig. 5.

4 Controlling chaos
Chaos in fractional HNN model exposed to uncertainties and disturbances is controlled
using an adaptive SMC technique. Suitably designed controllers are constructed to sta-
bilize chaos in the trajectories of the system about an arbitrarily chosen point (p1, p2, p3).
The fractional HNN model exposed to uncertainties and external disturbances is

DqZ1 = –Z1 – 1.4 tanh(Z1) + 1.2 tanh(Z2) – 7 tanh(Z3) + 	H1 + D1 + v1,

DqZ2 = –Z2 + 1.1 tanh(Z1) + 2.8 tanh(Z3) + 	H2 + D2 + v2,

DqZ3 = –Z3 + P tanh(Z1) – 2 tanh(Z2) + 4 tanh(Z3) + 	H3 + D3 + v3,

(3)

where 	Hi are uncertainties and Di are disturbances, vi are controllers designed about de-
sired point. Figures 6 and 7 give the trajectories and plots of the exposed system. Consider
| 	 Hi| and Di to be bounded by positive values Ci and Fi with Ĉi, F̂i being their estimates.
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Figure 4 System dynamics for 0.8 ≤ q ≤ 1

Define the control error about the desired point (p1, p2, p3) as

e1 = Z1 – p1,

e2 = Z2 – p2,

e3 = Z3 – p3.

(4)

Differentiating (4) we get

Dqe1 = –(e1 + p1) – 1.4 tanh(e1 + a) + 1.2 tanh(e2 + p2)

– 7 tanh(e3 + p3) + 	H1 + D1 + v1,

Dqe2 = –(e2 + p2) + 1.1 tanh(e1 + a) + 2.8 tanh(e3 + p3)

+ 	H2 + D2 + v2,

Dqe3 = –(e3 + p3) + 0.8 tanh(e1 + p1) – 2 tanh(e2 + p2)

+ 4 tanh(e3 + p3) + 	H3 + D3 + v3.

(5)
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Figure 5 Chaotic attractors for (2) at q = (a) 0.95, (b) 0.98, (c) 0.99, (d) 1

The sliding surface is defined as

si(t) = Dq–1ei(t) + λi

∫ t

0
ei(ξ ) dξ . (6)

To have (5) in sliding mode, the necessary condition is

si(t) = 0, ṡi(t) = 0. (7)

Differentiating (6):

ṡi(t) = Dqei(t) + λiei(t), i = 1, 2, 3. (8)

Then from (7), we have

Dqei(t) = –λiei(t). (9)
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Figure 6 Trajectories of exposed system (3)

Equation (9) is stable using Matignon’s theorem [42]. The designed controllers are

v1 = (e1 + p1) + 1.4 tanh(e1 + a) – 1.2 tanh(e2 + p2)

+ 7 tanh(e3 + p3) – λ1e1 – (Ĉ1 + F̂1 + r1) sign(s1),

v2 = (e2 + p2) – 1.1 tanh(e1 + a) – 2.8 tanh(e3 + p3)

– λ2e2 – (Ĉ2 + F̂2 + r2) sign(s2),

v3 = (e3 + p3) – 0.8 tanh(e1 + p1) + 2 tanh(e2 + p2)

– 4 tanh(e3 + p3) – λ3e3 – (Ĉ3 + F̂3 + r3) sign(s3),

(10)

with sign(·), the signum function.
Parameter update conditions are

˙̂Ci = ci|si|,
˙̂Ei = fi|si|,

(11)

with ci, fi > 0 are constants.

Theorem 4.1 Trajectories of fractional HNN model exposed to uncertainties and distur-
bances achieve stability about any desired point (p1, p2, p3) using (10)–(11).
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Figure 7 Chaotic attractors of exposed system (3)

Proof The proof is based on Lyapunov’s direct method, defining [43] the Lyapunov func-
tion by

V = V1 + V2 + V3, (12)

where

V1 =
1
2

s2
1 +

1
2c1

(Ĉ1 – C1)2 +
1

2f1
(F̂1 – F1)2,

V2 =
1
2

s2
2 +

1
2c2

(Ĉ2 – C2)2 +
1

2f2
(F̂2 – F2)2,

V3 =
1
2

s2
3 +

1
2c3

(Ĉ3 – C3)2 +
1

2f3
(F̂3 – F3)2.

(13)

Differentiating (13):

V̇1 = s1ṡ1 +
1
c1

(Ĉ1 – C1) ˙̂C1 +
1
f1

(F̂1 – F1) ˙̂F1,

V̇2 = s2ṡ2 +
1
c2

(Ĉ2 – C2) ˙̂C2 +
1
f2

(F̂2 – F2) ˙̂F2,

V̇3 = s3ṡ3 +
1
c3

(Ĉ3 – C3) ˙̂C3 +
1
f3

(F̂3 – F3) ˙̂F3.

(14)
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From (8), we have

V̇1 = s1
(
Dqe1 + λ1e1

)
+

1
c1

(Ĉ1 – C1) ˙̂C1 +
1
f1

(F̂1 – F1) ˙̂F1,

V̇2 = s2
(
Dqe2 + λ2e2

)
+

1
c2

(Ĉ2 – C2) ˙̂C2 +
1
f2

(F̂2 – F2) ˙̂F1,

V̇3 = s3
(
Dqe3 + λ3e3

)
+

1
c3

(Ĉ3 – C3) ˙̂C3 +
1
f3

(F̂3 – F3) ˙̂F3.

(15)

Substituting Dqei, ˙̂Ci and ˙̂Fi in (15):

V̇i = s1
[
(	Hi + Di) – (Ĉi + F̂i + ri) sign si

]
+ (Ĉi – Fi)|si| + (Ĉi – Fi)|si|

≤ (| 	 Hi| + |Di|
)|si| + (Ĉi – Fi)|si| + (Ĉi – Fi)|si|

< (Ci + Fi)|si| – (Ĉi + F̂i + ri)| sign si| + (Ĉi – Fi)|si| + (Ĉi – Fi)|si|
= –Ti|si|.

Finally,

V̇ =
3∑

i=1

V̇i

< –
3∑

i=1

(
Ti|si|

)
.

(16)

Thus ∃ a real T ≥ 0 so that

3∑
i=1

Ti|si| > T

then

V̇ < –T
√

s2
1 + s2

2 + s2
3

< 0.
(17)

From Lyapunov stability theory ‖si‖ → 0 as t → ∞. Hence the errors converge to si = 0
implying stability about the desired point. �

4.1 Simulations
For performing simulations, the following assumptions have been made: P = 0.8 for q =
0.987 and I.C. as (0, 0.01, 0), 	H1 = sin(Z1), D1 = 0, 	H2 = 0, D2 = sin(7t), 	H3 = 0, D3 =
cos(7t). Here v1, v2, v3 are controllers about any point (p1, p2, p3), λ1 = 1, λ2 = 2, λ3 = 3, r1 =
1, r2 = 2, r3 = 3. Figure 8 gives the controlled trajectories, errors, surface with estimated
disturbances about (1, 2, 3) and Fig. 9 gives results about (–1, –2, –3).
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Figure 8 Controlling chaos about (1, 2, 3) (b) with error, surface and estimated disturbances

5 Conclusion
Dynamical properties of fractional order HNN model are studied in the paper by ana-
lyzing the system’s symmetry, uniqueness of the solution, dissipativity and fixed points.
Lyapunov dynamics and bifurcations of the system are studied for specific order as well
as variable order. The chaos in a fractional system exposed to uncertainties and distur-
bances is contained by designing suitable controllers based on an adaptive sliding mode
control technique about two arbitrarily chosen desired points. The simulations performed
in Matlab have been displayed and discussed.
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Figure 9 Controlling chaos about (–1, –2, –3) (b) with error, surface and estimated disturbances

Synchronization of the fractional HNN model with some other system involves future
scope of work in this direction. Also studying the system as regards its hidden attractors
as well as its electronic circuit would be interesting.
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