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Abstract

In this article we study a class of stochastic fractional kinetic equations with fractional
noise which are spatially homogeneous and are fractional in time withH> 1/2. The
di�usion operator involved in the equation is the composition of the Bessel and Riesz
potentials with any fractional parameters. We prove the existence of the solution
under some mild conditions which generalized some results obtained by Dalang
(Electron. J. Probab. 4(6):1…29,1999) and Balan and Tudor (Stoch. Process. Appl.
120:2468…2494 ,2010). We study also its Hölder continuity with respect to space and
time variables withb = 0. Moreover, we prove the existence for the density of the
solution and establish the Gaussian-type lower and upper bounds for the density by
the techniques of Malliavin calculus.
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1 Introduction
This paper is concerned with the following stochastic fractional kinetic equation (SFKE
for short) with zero initial condition (see, for example, Anguloet al. [1, 3], Angulo et al.

[2], and Márquez-Carreras [16]):

�
�

�

�
� t u(t,x) = …(I …� )

�
2 (…� )

�
2 u(t,x) + b(u(t,x)) + �W(t,x) in [0,T ] × Rd,

u(0,x) = 0, x � Rd,
(1)

with T > 0,d � 1, � � 0, � > 0,b(·) is a measurable function and�W denotes a fractional

noise. We will specify later the required conditions on the noise�W. In the SFKE (1), I and
� are the identity and Laplacian operators, respectively, and the operators (I …� )

�
2 and

(…� )
�
2 have to be interpreted as the inverses of the Bessel potential and Riesz potential,

respectively. The fractional Riesz…Bessel operator was introduced by Anguloet al. in [3]

and the authors established the existence of the Riesz…Bessel motion.
The SFKE (1) (known also as Riesz…Bessel fractional di�usion equation, the fractional

di�usion equation or the fractional heat equation) driven by Gaussian white noise was in-
troduced by Anguloet al. [2] via the Eulerian approach. It was mainly used to model some
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physical phenomena, such as di�usion in porous media with fractal geometry, kinematics

in viscoelastic media, and propagation of seismic waves. In [2], the authors mainly studied

the SFKE (1) with additive Gaussian space-time white noise in bounded and unbounded

spatial domains. They connected it with the Eulerian theory of turbulence dispersion by

means of the advection…di�usion equation. They also gave a very interesting connection

with the Lagrangian theory.

Nowadays we can “nd a lot of applications of these equations in turbulence, ecology,

hydrology, geophysics, image processing, neurophysiology, economics and “nance, etc.

(see Anguloet al. [2], Anh et al. [4, 5], Márquez-Carreras [16] and the references therein

for more details). The composition of the Bessel and Riesz potentials plays an important

role in describing the behavior of the process at the spatial macro and microscales. Apart

from the classical context of heat conduction, an equation of form the SFKE (1) with � = 0

and � = 2 also arises in neurophysiology; see [21] for example. Di�usion operators in the

SFKE (1) with � = 0 and � > 0 correspond to the generalized heat equation which have

been used to de“ne hyperviscosity and to study its e�ect on the inertial-range scaling of

fully developed turbulence [13]. The presence of the Bessel operator is essential for a study

of stationary solutions of the SFKE (1). One can also see [4] and [5] for related models.

After the nice work of Angulo et al. [2], several authors have also studied this kind of

the SFKE (1) and other similar equations from a mathematical point of view. For exam-

ple, Anguloet al. [1] considered a more generalized type of space-time fractional kinetic

equation with Gaussian white noise or in“nitely divisible noise as follows:

�
An

� � n

� t � n
+ · · · + A1

� � 1

� t � 1
+ A0

� � 0

� t � 0

�
u(t,x) = …(I …� )

�
2 (…� )

�
2 u(t,x) + �X(t,x),

with � n > � n…1> · · · > � 1 > � 0 � 0, Ai > 0, i = 0, . . . ,n, and the fractional-in-time derivative

is de“ned in the Caputo…Djrbashian sense, i.e.,

� � u
� t �

(t ,x) =

�
�

�

� mu
� tm (t,x) if � = m � N,

1
� (m…� )

� t
0 (t …r)m…� …1� mu(r,x)

� rm dr if m … 1 <� < m,

where � (·) is the gamma function. The solutions to the equation are proved in both

bounded and unbounded domains, in conjunction with bounds for the variances of the in-

crements. The role of each of the parameters in the equation is investigated with respect to

second- and higher-order properties. In particular, they also proved that the long-range

dependence may arise in the temporal solution under certain conditions on the spatial

operators. In [6], the authors provided a detailed review of the related literature. They

considered a more general class of fractional (both in time and space) evolution equation

de“ned on Dirichlet regular bounded open domains. They derived the su�cient condi-

tions for the de“nition of a weak-sense Gaussian solution. The Hölder regularity of the

solution with respect to the time and space variables is also derived.

Meanwhile Márquez-Carreras [15] dealt with the SFKE (1) driven by a Gaussian noise

which is white in time and correlated in space. They proved the existence and unique-

ness of solution by means of a weak formulation and studied the Hölder continuity of this

solution. Moreover, they also proved the existence of a smooth density associated to the
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solution process and studied the asymptotic behavior of this density. Later on Márquez-

Carreras [16] studied the following kind of stochastic partial di�erential equations:

�
� t

u(t,x) = …(I …� )
�
2 u(t,x) + a

�
u(t,x)

	
+ b

�
u(t,x)

	
�W(t,x) with [0, T ] × Rd,

with � > 0 and the process�W is a Gaussian noise, white in time and correlated in space.

The existence and uniqueness of solution and the Hölder continuity of this solution was

proved. Moreover, they proved the existence of the density of the solution and that its

density was smooth.

In this paper, regarding the structure of the SFKE (1), we prove the existence and unique-

ness of the solution and the Hölder continuity of this solution. Moreover, we show that the

equation of the solution is absolutely continuous with respect to Lebesgue•s measure on

Rd (with d < � + � ) and establish the lower and upper bounds for its density by means of

Malliavin calculus.

We would like to list some di�erences between this study and all the papers mentioned

above. Firstly, the SFKE (1) we considered in this paper is driven by a more general Gaus-

sian noise (fractional in time and correlated in space) which extended the former noises

in Angulo et al. [2], Angulo et al. [1], and Márquez-Carreras [16]. Secondly, thanks to the

fractional noise, the properties of the solution are checked for any� > 0 and� > 0 and not

for a more restricted region. Moreover, these properties do not depend on the dimension

of x. Finally, we generalize some results of Balan and Tudor [7, 8] to the fractional opera-

tor setting. We study some new properties of the mild solution to the SFKE (1). Here, we

deal widely with the Hölder continuity in time and in space. We also study some density

properties of the solution by using the techniques of Malliavin calculus; see, for example

Nualart and Quer-Sardanyons [19, 20], and Liu and Yan [14].

This article is organized as follows. In Sect.2 we recall some preliminaries including

the fractional noise and Malliavin calculus. Section3 is devoted to describe what we un-

derstand by a solution of the SFKE (1) and prove the existence and uniqueness of this

solution. We show that the solution of the SFKE (1) exists if (12) holds. In Sect.4 we

check that spatially the solution of the SFKE (1) with b = 0 is a Gaussian “eld with zero

mean, stationary increments, and a continuous covariance function. We “nd its index

(see De“nition 4.1). We also show that the solution is not stationary in time. Finally in

Sect.5 we study the density properties of the solution of the SFKE (1), such as the ex-

istence of the density and related Gaussian-type lower and upper bounds for the den-

sity.

2 The preliminaries
This section is devoted to recalling some preliminaries about the fractional noise and re-

lated Malliavin calculus.

2.1 Fractional noise
Let us start by introducing some basic notions on Fourier transforms of functions: the

space of real valued in“nitely di�erentiable functions with compact support is denoted by

D(Rd) and byS(Rd) the Schwartz space of rapidly decreasingC� functions in Rd. For
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� � L1(Rd), we letF � be the Fourier transform of�

F � (	 ) =



Rd
e…i	 ·x� (x)dx,

so that the inverse Fourier transform is given byF…1� (	 ) = (2
 )…dF � (…	 ).

Similarly to [8] or [11] for the general case, on a complete probability space (� ,F ,Ft ,P),

for H > 1/2, we consider a zero-mean Gaussian processW = {W(� ),� � D([0,T ] × Rd)}

with covariance given by

E
�
W(� )W(� )

	
= � H


 T

0


 T

0




R2d
� (t,x)� (s,y)|t …s|2H…2 (x …y)dx dydsdt,

with � H = H(2H …1) and (·) : Rd � R+ is a non-negative de“nite function and its Fourier

transform F  = µ is a tempered measure. Moreover, we assume that there is an integer

m � 1 such that




Rd

1
(1 + |	 |2)m

µ (d	 ) < � .

We call �W the fractional noise; it has a spatial covariance (·) and has the covariance of a

fractional Brownian motion with Hurst parameterH > 1/2 in time.

Let H be the completion ofD([0,T ] × Rd) endowed with the inner product

� � , � �H = � H


 T

0


 T

0




R2d
� (t,x)� (s,y)|t …s|2H…2 (x …y)dx dydsdt

= � H


 T

0


 T

0




Rd
F � (t , ·)(	 )F � (s,·)(	 )|t …s|2H…2µ (d	 )dsdt,

(2)

whereF � refers to the Fourier transform with respect to the space variable only and the

last equality in (2) follows from the simple properties of the Fourier transform. The map

� �� W(� ) de“ned in D([0,T ] × Rd) can be extended to an isometry betweenH and the

Gaussian spaceHW of W. For any� � H, we denote this isometry by

� �� W(� ) =

 T

0




Rd
� (t,x)W(dt,dx).

Moreover, we can interchange the order of the integralsdsdt and µ(d	 ), since for the

indicator functions � and � , the integrand is a product of a function of (t,s). Hence, we

have

� � , � �H = � H




Rd


 T

0


 T

0
F � (t , ·)(	 )F � (s,·)(	 )|t …s|2H…2dsdtµ (d	 ).

The spaceH may contain distributions, but it contains the space|H| of measurable

functions � : [0,T ] �� Rd such that

� � , � � |H| = � H


 T

0


 T

0




R2d

�
�� (t ,x)

�
�
�
�� (s,y)

�
�|t …s|2H…2 (x …y)dx dydsdt< � .



Lu and LiuAdvances in Di�erence Equations       (2021) 2021:152 Page 5 of 33

We shall make a standard assumption on the spectral measureµ , which will prevail until

the end of the paper (see Dalang [10] for some details about this hypothesis).

Hypothesis 1 The measureµ satis“es the following integrability condition:




Rd

1
1 + |	 |2

µ (d	 ) < � . (3)

Remark2.1 Since the spectral measureµ is a non-trivial positive tempered measure, we

can ensure that there exist positive constantsc1,c2 andk such that

c1 <



{|	 |<k}
µ (d	 ) < c2. (4)

The following estimate (see, for example, [18]) will be needed in the sequel: If12 < H < 1

and f ,g � L
1
H ([a,b]), then


 b

a


 b

a
f (x)g(y)|x …y|2H…2dx dy	 CH
 f 


L
1
H ([a,b])


 g

L

1
H ([a,b])

, (5)

whereCH > 0 is a constant depending only on Hurst parameterH.

2.2 Malliavin calculus
SinceW = {W(t,x), (t,x) � [0,T ] × Rd} is Gaussian, we might develop the Malliavin cal-

culus (refer to Nualart [18] for more details) with respect to fractional noise introduced

in Sect.2.1 in order to study the density of the solution to the SFKE (1). We will also re-

call brie”y the results in Nourdin and Viens [17] in order to establish the lower and upper

bounds for the density.

Recall the notationW(� ) =
� T

0

�
Rd � (t,x)W(dt,dx) for � � H, and letS be the class of

smooth and cylindrical random variables of the form

F = f
�
W(� 1), . . . ,W(� n)

	
,

where f � C�
b (Rn) (the set of all functions with bounded derivatives of all orders) and

� i � H (i = 1, . . . ,n andn � N). For eachF � S , de“ne the derivativeDt,xF by

Dt,xF :=
n�

i=1

� f
� xi

�
W(� 1), . . . ,W(� n)

	
� i (t ,x).

Let D1,2 be the completion ofS under the norm


 F
 2
1,2 = E


|F|2 + 
 DF
 2

H
�
.

Then D1,2 is the domain of the closed operatorD on L2(� ). We also denote byDh the

closure ofS under the norm


 F
 2
h = E


|F|2 + |DhF|2

�
,
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with DhF = �DF,h�H. Let {hn,n � 1} be an orthonormal basis ofH. Then F � D1,2 if and

only if F � Dhn for eachn � N and
� �

n=1 E|DhnF|2 < � .

On the other hand, the divergence operator� is the adjoint of the derivative operatorD

characterized by

E�DF,u�H = E
�
F� (u)

	
, for anyF � S,

with u � L2(� ;H). Then Dom(� ), the domain of� , is the set of all functionsu � L2(� ;H)

such that

E
�
��DF,u�H

�
� 	 Cu
 F
 H,

for all F � D1,2, whereCu is some constant depending onu.

Proposition 2.1 Let FA := � {W(B),B � A} for A � B([0,T ] × Rd). If F is a square inte-

grable random variable that is measurable with respect to the� -“eld FAc, then

DF1A = 0 a.s.

Proposition 2.2 Let F� D1,2. Then the distribution of the random variable F is absolutely

continuous with respect to Lebesgue measure if
 DF
 2
H > 0 a.s.

We remark the following results.

Remark2.2

1. Let u = {u(t,x), (t,x) � [0,T ] × Rd} be an {Ft , t � [0,T ]}-adapted random field. By
Proposition 2.1, we have Ds,yu(t,x) = 0, a.s. for any 0 	 s< t 	 T and x,y � Rd .

2. Proposition 2.1 and Proposition 2.2 can be proved similarly to the work of
Nualart [18] with Wiener white noise replaced by fractional noise introduced in
Sect. 2.2.

Another important operator in the theory of Malliavin calculus is the generator of the

Ornstein…Uhlenbeck semigroup, which is usually denoted byL (see, for example, Nu-

alart [18]). It is related to the Malliavin derivativeD and its adjoint � through the formula

� DF = …LF in the sense thatF belongs to the domain ofL if and only if it belongs to the

domain of � D.

The authors in [17] considered a random variableF � D1,2 with mean zero and de“ned

the following function on R:

gF(z) = E
��

DF,…DL…1F
�
H|F = z

	
,

whereL…1denotes the pseudo-inverse ofL. Then Nourdin and Viens [17] proved the fol-

lowing.

Proposition 2.3 Assume that there exists a positive constant C1, such that gF(F) � C1 > 0,

a.s., then the law of F has a density p(·) whose support isR and satis“es, almost everywhere
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in R,

p(z) =
E|F|

2gF(z)
exp

�
…


 z

0

y
gF(y)

dy
�

. (6)

An immediate consequence of the above proposition, is that, if one also hasgF(F) 	 C2

a.s., then the densityp(·) satis“es, for almost allz � R,

E|F|
2C2

exp

�
…

z2

2C1

�
	 p(z) 	

E|F|
2C1

exp

�
…

z2

2C2

�
.

In order to deal with particular applications of this method, Proposition 3.7 in Nourdin

and Viens [17] established an alternative formula forgF(F). That is,

gF(F) =

 +�

0
e…� E


E�� �DF, �DF�H|F

	�
d� , (7)

where, for any random variableF de“ned in (� ,F ,P), �F denotes the shifted random vari-

able in� × � �, for some probability space� �, given by

�F
�
� , � �	 = F

�
e…� � +


1 …e…2� � �	 , � � � , � � � � �.

Notice that, indeed,�F depends on the parameter� , but we have decided to drop its explicit

dependence for the sake of simpli“cation. In Eq. (7), E� stands for the expectation with

respect to� �.

3 Existence and uniqueness
In this section, we will study the Cauchy problem for the SFKE (1) driven by fractional

noise. Following Walsh [22], let us recall the notation of amild solution to the SFKE (1).

Definition 3.1 An Lp(� ) Ft -adapted processu : [0,T ] × Rd × � � R is a mild solution

to the SFKE (1) if

u(t,x) =

 t

0




Rd
G(t …s,x …y)b

�
u(s,y)

	
dyds+


 t

0




Rd
G(t …s,x …y)W(ds,dy), (8)

whereG(t,x) is the fundamental solution (called also the Green function) of

�
� t

G(t,x) + (I …� )
�
2 (…� )

�
2 G(t,x) = 0.

Moreover, according to [15], the Green functionG(t,x) can be written as

G(t,x) =
1

(2
 )d




Rd
ei�x,	 � exp

�
…t|	 |�

�
1 + |	 |2

	 �
2
�

d	 , (9)

with i 2 = …1 and its Fourier transformFG(t,·)(	 ) is given by

FG(t,·)(	 ) = exp
�
…t|	 |�

�
1 + |	 |2

	 �
2
�
. (10)
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When H > 1/2, it turns out that under relatively mild assumptions on the fundamental
solution G given by (9), the condition

� H


 T

0


 T

0




Rd
FG(u,·)(	 )FG(v,·)(	 )|u …v|2H…2µ (d	 )dudv < � (11)

provides a necessary and su�cient condition for the stochastic integral with respect to
Gaussian processW given by

� t
0

�
Rd G(t …s,x …y)W(ds,dy) to be well-de“ned in Lp(� )

with p � 1. Hence the condition (11) is also the necessary and su�cient condition for the
existence of the solution in the linear case, i.e.

�
� t

u(t,x) + (I …� )
�
2 (…� )

�
2 u(t,x) = �W(t,x).

Next we “rstly give an integrability condition on the spectral measureµ .

Hypothesis 2 The measureµ satis“es the following integrability condition:




Rd

�
1

1 + |	 |2

� H(� +� )

µ (d	 ) < � . (12)

Before we prove the equivalence between (11) and (12). Let us now recall some of the
main examples of spatially covariances (·) (or the tempered measureµ ), which will be
our guiding examples in the remainder of the present paper.

Example3.1
1. Let  (x) =

� d
i=1 � Hi |xi |2Hi …2be the covariance function of a fractional Brownian

sheets with Hi > 1
2 and i = 1, . . . ,d. Then µ(d	 ) =

� d
i=1 � Hi |	 i |…2Hi +1 d	 . Then (12) is

equivalent to
� d

i=1(2Hi … 1) >d … 2H(� + � ).
2. Let  (x) = � � ,d|x|…(d…� ) be the Riesz kernel of order � � (0,d) with the constant � � ,d ,

then µ(d	 ) = |	 |…� d	 and the condition (12) is equivalent to 2H(� + � ) + � > d.
3. Let  (x) = � �

� �
0 �

� …d
2 …1e…� e…|x|2

4� d� be the Bessel kernel of order � > 0 with the
constant � � . Then µ(d	 ) = (1 + |	 |2)…�

2 d	 the condition (12) is equivalent to
2H(� + � ) + � > d.

4. Let  (0) <� (i.e. µ is a finite measure). It corresponds to a spatially smooth noise �W .
5. Suppose d = 1 and  = � 0 (i.e. µ is the Lebesgue measure). This corresponds to a

(rougher) noise �W which is “white in space”.

Proposition 3.1 Assume that the condition(12) holds, then(11) is satis“ed.

Proof The proof of this proposition can be completed by using Proposition3.2. �

Proposition 3.2 Denote

Nt(	 ) =

 t

0


 t

0
FG(u,·)(	 )FG(v,·)(	 )|u …v|2H…2dudv. (13)

Then we have

C3.1

�
1

1 + |	 |2

� H(� +� )

	 Nt (	 ) 	 C3.2

�
1

1 + |	 |2

� H(� +� )

, (14)
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with two positive constants C3.1 and C3.2 given by C3.1 = 1
4� …1

H (t2H + 2…2H) and C3.2 =

� …1
H t2H2H(� +� ) + CHH2H2H(� +� ) with t � [0,T ].

Proof Recall that the Fourier transformFG(t,·)(	 ) of G(t,x) with respect to the spatial

variablex is given by (10). Then we can rewriteNt (	 ) de“ned by (13) as follows:

Nt (	 ) =

 t

0


 t

0
e…(u+v)|	 |� (1+|	 |2)

�
2 |u …v|2H…2dudv.

Now we want to “nd the lower and upper bound forNt (	 ). Firstly assuming that|	 | < 1

and using the facte…x 	 1 for anyx > 0, then one obtains

Nt (	 ) 	 � …1
H t2H 	 � …1

H t2H2H(� +� )
�

1
1 + |	 |2

� H(� +� )

,

where we have used the fact that 1 <2
1+|	 |2

when |	 | < 1.

Suppose now that|	 | � 1, by means of the change of variables, inequality (5) and the

fact that 1 …e…x < 1 for all x > 0, we have


 t

0


 t

0
e…(u+v)|	 |� (1+|	 |2)� /2

|u …v|2H…2dudv

=
1

(|	 |� (1 + |	 |2)� /2)2H


 t|	 |� (1+|	 |2)� /2

0


 t|	 |� (1+|	 |2)� /2

0
e…u…v|u …v|2H…2dudv

	 CH
H2H

(|	 |� (1 + |	 |2)� /2)2H

�
1 …e…t|	 |� (1+|	 |2)� /2

H
	 2H

	 CHH2H 1
|	 |2H(� +� )

	 CHH2H2H(� +� )
�

1
1 + |	 |2

� H(� +� )

,

where we have used the fact 1
|	 |2H(� +� ) 	 ( 2

1+|	 |2
)H(� +� ) if |	 | � 1.

So combining the two estimates forNt (	 ) with |	 | < 1 and|	 | � 1, we have

Nt(	 ) 	 C3.2

�
1

1 + |	 |2

� H(� +� )

,

with C3.2 = � …1
H t2H2H(� +� ) + CHH2H2H(� +� ).

Next let us proceed to prove the lower bound forNt (	 ). Suppose “rstlyt|	 |� (1+|	 |2)
�
2 	

1
2 , then, for anyu � [0,t],

u|	 |�
�
1 + |	 |2

	 �
2 	 t |	 |�

�
1 + |	 |2

	 �
2 	

1
2

.

Usinge…x > 1 …x for any x > 0, we conclude that

e…u|	 |� (1+|	 |2)
�
2 � 1 …u|	 |�

�
1 + |	 |2

	 �
2

� 1 …t|	 |�
�
1 + |	 |2

	 �
2
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�
1
2

.

Hence one obtains that

Nt (	 ) =

 t

0


 t

0
e…(u+v)|	 |� (1+|	 |2)

�
2 |u …v|2H…2dudv

�
1
4


 t

0


 t

0
|u …v|2H…2dudv

�
1
4

� …1
H t2H

�
1

1 + |	 |2

� H(� +� )

,

where for the last inequality we have used the fact that 1� 1
1+|	 |2

. �

Suppose nowt|	 |� (1+|	 |2)
�
2 � 1

2, using the change of variablesu� = u|	 |� (1+|	 |2)
�
2 and

v� = v|	 |� (1 + |	 |2)
�
2 and the fact 1 …e…x < x for all x > 0, we get


 t

0


 t

0
e…(u+v)|	 |� (1+|	 |2)� /2

|u …v|2H…2dudv

=
1

(|	 |� (1 + |	 |2)� /2)2H


 t|	 |� (1+|	 |2)� /2

0


 t|	 |� (1+|	 |2)� /2

0
e…u…v|u …v|2H…2dudv

�
1

(|	 |� (1 + |	 |2)� /2)2H


 1/2

0


 1/2

0
e…u…v|u …v|2H…2dudv

�
1
4

1
(|	 |� (1 + |	 |2)� /2)2H


 1/2

0


 1/2

0
|u …v|2H…2dudv

�
1

� H22+2H

�
1

1 + |	 |2

� H(� +� )

,

where we have used the fact that|	 |� (1 + |	 |2)
�
2 	 (1 + |	 |2)

� +�
2 . Thus we can conclude to

the following lower bound forNt (	 ):

Nt (	 ) � C3.1

�
1

1 + |	 |2

� H(� +� )

,

with C3.1 = 1
4� …1

H (t2H + 2…2H). Thus the proof of this proposition is complete.

Remark3.1 Note that Proposition3.1extends the case of stochastic heat equation in Balan

and Tudor [8] with condition ( 12) (i.e.� = 0 and� = 2). Moreover, Proposition3.1is also

an improvement of Lemma 2.1 obtained in [15] and also generalizes the cases in Márquez-

Carreras [16] (with � = 0 and� > 0). Moreover, we also prove the equivalence between (11)

and (12) in this paper.

Now we can state the main result in this section. The proof of this theorem could be

derived by the standard arguments with some estimates of the Green functionG(t,x) and

some properties of the stochastic integral in (8). However, we have preferred to give the

complete proof. We shall also make the following hypothesis on the coe�cientb.
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(H.1): The function b satis“es the Lipschitz condition as follows:

�
�b(x) …b(y)

�
� 	 C|x …y|, � x,y � Rd. (15)

Theorem 3.1 Assume that(12) holds and the coe�cient b satis“es(H.1), then there exists

a unique solution u(t,x) to the SFKE(1) such that

sup
(t,x)� [0,T ]× Rd

E
�
�u(t,x)

�
�p

< � ,

for any T > 0 and p � 2.

Firstly let us give a useful estimate associated with the Green functionG(t,x) given by

(9).

Lemma 3.1 We have the following, with t � [0,T ]:




Rd
G(t,x)2 dx � t… d

� +� , (16)

where the notation f� g means that there exist two constants c,C such that cg	 f 	 Cg.

Proof Using the Plancherel theorem and equality (10), we can write




Rd
G(t,x)2 dx =

1
(2
 )d




Rd

�
�FG(t,·)(	 )

�
�2

d	

=
1

(2
 )d




Rd
exp

�
…2t|	 |�

�
1 + |	 |2

	 � /2�
d	

=
Sd

(2
 )d


 +�

0
rd…1exp

�
…2tr � �

1 + r2	 � /2�
dr,

where we have used the integration in polar coordinates in the last equation above andSd is

a positive constant resulting from the integration over the angular spherical coordinates.

Now using the factr� (1 + r2)� /2 � r � +� with r > 0, we get, with the change of variable

formula u = 2tr � +� ,


 +�

0
rd…1exp

�
…2tr � �

1 + r2	 � /2�
dr 	


 +�

0
rd…1exp

�
…2tr � +� �

dr

= (2t)… d
� +�

1
� + �


 +�

0
u

d
� +� …1e…u du

= (2t)… d
� +�

1
� + �

�
�

d
� + �

�
t… d

� +� ,

where� ( d
� +� ) is a Gamma function.

On the other hand, using the factr� (1 + r2)� /2 	 (1 + r2)
� +�

2 with r > 0, we get with the

change of variable formulau = 2t(1 + r2)
� +�

2 ,


 +�

0
rd…1exp

�
…2tr � �

1 + r2	 � /2�
dr
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�

 +�

0
rd…1exp

�
…2t

�
1 + r2	 � +�

2
�

dr

=
1
2

(2t)… 2
� +�


 +�

0

��
u
2t

� 2
� +�

… 1
� d

2 …1

u
2

� +� …1e…u du

�
1
2

(2t)… d
� +�


 +�

0
u

d
� +� …1e…u du, asu � � ,

where the last integral is “nite. Then we can conclude the proof of this lemma. �

Now let us prove the main result in this section.

Proof of Theorem3.1 We use the Picard approximation to get a solution to (8). De“ne

u(n+1)(t,x) =

 t

0




Rd
G(t …s,x …y)b

�
u(n)(s,y)

	
dyds

+

 t

0




Rd
G(t …s,x …y)W(ds,dy).

(17)

Firstly, we will prove that

sup
n� N�{ 0}

sup
(t,x)� [0,T ]× Rd

E
�
�u(n)(t,x)

�
�p

< � .

It follows from (17) that for eachn � N

E
�
�u(n+1)(t,x)

�
�p

	 Cp
�
A(n)

p (t,x) + B(n)
p (t,x)

	
, (18)

where

A(n)
p (t,x) = E

�
�
�
�


 t

0




Rd
G(t …s,x …y)b

�
u(n)(s,y)

	
dyds

�
�
�
�

p

and

B(n)
p (t,x) = E

�
�
�
�


 t

0




Rd
G(t …s,x …y)W(ds,dy)

�
�
�
�

p

.

Note that, by the Hölder inequality and the fact thatG(t …s,x…y) isRd-integrable fort �= s,

A(n)
p (t,x) 	 Cp

� 
 t

0




Rd

�
�G(t …s,x …y)

�
� dyds

� p…1

× E
� 
 t

0




Rd

�
�b

�
u(n)(s,y)

	 ��p
·
�
�G(t …s,x …y)

�
� dyds

�

	 CpE
� 
 t

0




Rd

�
1 +

�
�u(n)(s,y)

�
�p	

·
�
�G(t …s,x …y)

�
� dyds

�

	 Cp


 t

0

�
1 + sup

y� Rd
E

�
�u(n)(s,y)

�
�p

� � 


Rd

�
�G(t …s,x …y)

�
� dy

�
ds.

(19)
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For the term B(n)
p (t,x), since the stochastic integral

� t
0

�
Rd G(t …s,x …y)W(ds,dy) is Gaus-

sian, according to Proposition3.2and Eq. (12), we have

B(n)
p (t,x) = E

�
�
�
�


 t

0




Rd
G(t …s,x …y)W(ds,dy)

�
�
�
�

p

	 Cp,H

� 
 t

0


 t

0




Rd
FG(u,·)(	 )FG(v,·)(	 )|u …v|2H…2µ (d	 )dudv

� p
2

	 Cp,T,H




Rd

�
1

1 + |	 |2

� H(� +� )

µ (d	 ) < � .

(20)

Combining (18), (19) and (20), we have

sup
x� Rd

E
�
�u(n+1)(t,x)

�
�p

	 Cp


 t

0

�
1 + sup

y� Rd
E

�
�u(n)(s,y)

�
�p

� 


Rd

�
�G(t …s,x …y)

�
� dyds. (21)

Then that fact that |G(t …s,x…y)| is Rd-integrable fort �= sin (19) together with the Gron-

wall lemma ensures that

sup
0	 t	 T

sup
x� Rd

E
�
�u(n+1)(t,x)

�
�p

< � ,

and consequently{u(n)(t,x),n � 1} is well de“ned. Moreover, by Lemma 15 in Dalang [10],

one can obtain

sup
n� N�{ 0}

sup
(t,x)� [0,T ]× Rd

E
�
�u(n)(t,x)

�
�p

< � .

Secondly let us prove that{u(n)(t,x),n � 1} converges inLp(� ). As for n � 2,

E
� ��u(n+1)(t,x) …u(n)(t,x)

�
�p	

= E
� �

�
�
�


 t

0




Rd
G(t …s,x …y)


b
�
u(n)(s,y)

	
…b

�
u(n…1)(s,y)

	�
dyds

�
�
�
�

p�

	 Cp


 t

0




Rd
E

�
�u(n)(s,y) …u(n…1)(s,y)

�
�p�

�G(t …s,x …y)
�
� dyds

	 Cp


 t

0
sup
y� Rd

E
�
�u(n)(s,y) …u(n…1)(s,y)

�
�p

� 


Rd

�
�G(t …s,x …y)

�
� dy

�
ds.

(22)

Then Gronwall•s lemma yields

�

n� 0

sup
(t,x)� [0,T ]× Rd

E
� ��u(n+1)(t,x) …u(n)(t,x)

�
�p	

< � . (23)

Hence,{u(n)(t,x)}n� 0 is a Cauchy sequence inLp(� ). Let

u(t,x) = lim
n��

u(n)(t,x).
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Then, for each (t,x) � [0,T ] × Rd,

sup
(t,x)� [0,T ]× Rd

E
�
�u(t,x)

�
�p

< � .

Taking n � � in Lp(� ) in both sides of (17) shows thatu = {u(t,x); (t,x) � [0,T ] × Rd}

satis“es (3.1).

The uniqueness can be checked by a standard argument. �

Remark3.2

1. Our result Theorem 3.1 here is an extension of the one in Márquez-Carreras [15]
(when H = 1/2) to fractional noise. However, the noises considered in
Márquez-Carreras [15] is multiplicative.

2. The cases � = 0 and � = 2, then Eq. (1) reduces to the classical stochastic heat
equation with fractional version considered in Balan and Tudor [8]. Then the
condition (12) is coherent with the results found in [8] for the stochastic heat
equation with fractional noise.

4 Index-β Gaussian random “eld
In this section we will prove that the solution to the SFKE (1) satis“es the following prop-

erty de“ned by De“nition 4.1; see Márquez-Carreras [15] for example. As a related prob-

lem, we also study the sample paths of the solution to the SFKE (1).

Definition 4.1 Let X(t) be a Gaussian process that has zero mean, stationary increments,

and a continuous covariance function. Set� 2(� ) = E[|X(t +� )…X(t)|2]. Then, if there exists

� � (0, 1] such that

� = sup
�
�� : � (� ) = o

�

 � 
 �� 	

, 
 � 
 � 0
�
,

then X = {X(t),t � Rd} is called an index-� Gaussian “eld.

Example4.1 From the above de“nition of index-� Gaussian random “elds, it is the local

variance of their increments which determines the degree of fractality of the sample path.

For example, from the covariance function of fractional Brownian motionBH = {BH(t),t �

[0,T ]},

E
�
BH(t)BH(s)

	
=

1
2

�
t2H + s2H …|t …s|2H 	

,

it is seen thatBH is an index-H random “eld.

Moreover, from Anguloet al. [1], the following results hold with probability one.

1. dimH(graph(X)) = d + 1 …� , where dimH is the Hausdorff dimension which
quantifies the irregularity of a set and graph(X) := {(t,X(t)),t � Rd}.

2. X is Hölder continuous of order � strictly less than � . However, for any � < � , X fails
to satisfy any uniform Hölder condition of order � .

In this section we essentially show that the solution to the SFKE (1) has similar properties

to the solution studied in Anguloet al. [1], Márquez-Carreras [15]. However before we
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state our main result in this section, we will “rstly give another condition on the tempered

measureµ which is slightly stronger than Hypothesis2 because of the appearance of� �

(0, 1).

Hypothesis 3 For some� � (0, 1),the measureµ satis“es the following integrability con-

dition:




Rd

�
1

1 + |	 |2

� H(� +� )�

µ (d	 ) < � . (24)

Let us denote

U(t,x) =

 t

0




Rd
G(t …s,x …y)W(ds,dy), (25)

which is the mild solution to the SFKE (1) with b = 0. Then we have

Theorem 4.1 Assume that the spectral measureµ satis“es(24).Then, for a “xed t � [0,T ]

and x,x� � Rd, the spatial covariance function of U(t,x) given by(25) is

Rt
�
x …x�	 =




Rd
e…i� 	 ,x…x��


 e…u
 2
H([0,t|	 |� (1+|	 |2)� /2 ])

(|	 |� (1 + |	 |2)� /2)2H
µ (d	 ).

Moreover, at each “xed time t� [0,T ],

• if H(� + � ) > 1 then U(t,·) is an index-� 1 Gaussian field with � 1 � (0, 1);
• if H(� + � ) 	 1 then U(t,·) is an index-� 2 Gaussian field with

� 2 � (0,H(� + � )(1 …� )) for � � (0, 1).

Proof We “rst calculate the spatial covariance function for a “xedt � [0,T ]. By means of

the de“nition of the Fourier transform, a change of variable formula and Fubini•s theorem,

we obtain, for anyx,x� � Rd,

E
�
U(t,x)U

�
t,x�		

=

 t

0


 t

0




Rd
FG(t …s1,x …·)(	 ) ·FG

�
t …s2,x� …·

	
(	 )|s1 …s2|2H…2µ (d	 )ds1 ds2

=



Rd


 t

0


 t

0
e…i� 	 ,x�FG(t …s1,·)(	 ) · e…i	 ·x�FG(t …s2,·)(	 )|s1 …s2|2H…2ds1 ds2µ (d	 )

=



Rd
e…i� 	 ,x…x��


 t

0


 t

0
e…(2t…s1…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2µ (d	 )

=



Rd
e…i� 	 ,x…x��


 e…u
 2
H([0,t|	 |� (1+|	 |2)� /2 ])

(|	 |� (1 + |	 |2)� /2)2H
µ (d	 ),

where we use the notation
 e…u
 2
H([0,t|	 |� (1+|	 |2)� /2 ])

to denote the double integral


 t|	 |� (1+|	 |2)� /2

0


 t|	 |� (1+|	 |2)� /2

0
e…u1…u2|u1 …u2|2H…2du1 du2,
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which is “nite. In fact using the change of variables formulau1 = (t …s1)|	 |� (1 + |	 |2)� /2

andu2 = (t …s2)|	 |� (1 + |	 |2)� /2, then we have


 t

0


 t

0
e…(2t…s1…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2

=
1

(|	 |� (1 + |	 |2)� /2)2H


 t|	 |� (1+|	 |2)� /2

0


 t|	 |� (1+|	 |2)� /2

0
e…u1…u2|u1 …u2|2H…2du1 du2

	
1

(|	 |� (1 + |	 |2)� /2)2H
� …1

H

�
t|	 |�

�
1 + |	 |2

	 � /2	 2H

= � …1
H t2H .

Moreover, for a “xed time t � [0,T ], the processU(t,x) is a Gaussian “eld that has zero

mean, stationary increments and a continuous covariance function.

We now begin to study the index. Fort � [0,T ], x � Rd and small� � Rd, we have

� 2(� ) = E
�
�U(t,x + � ) …U(t,x)

�
�2

= E

�
�
�
�


 t

0




Rd

�
G(t …s,x + � …y) …G(t …s,x …y)

	
W(ds,dy)

�
�
�
�

2

=

 t

0


 t

0




Rd
F

�
G(t …s1,x + � …·) …G(t …s1,x …·)

	
(	 )

× F
�
G(t …s2,x + � …·) …G(t …s2,x …·)

	
(	 )|s1 …s2|2H…2µ (d	 )ds1 ds2.

(26)

Then using the formula

F
�
G(t …s,x + � …·) …G(t …s,x …·)

	
(	 )

= e…i� 	 ,(x+� )�F
�
G(t …s,·)

	
(	 ) …e…i� 	 ,x�F

�
G(t …s,·)

	
(	 )

= e…i� 	 ,x�  e…i� 	 ,� � … 1
�
F

�
G(t …s,·)

	
(	 ).

Then we can rewrite (26) as follows:

� 2(� ) =

 t

0


 t

0




Rd
F

�
G(t …s1,x + � …·) …G(t …s1,x …·)

	
(	 )

× F
�
G(t …s2,x + � …·) …G(t …s2,x …·)

	
(	 )|s1 …s2|2H…2µ (d	 )ds1 ds2

=

 t

0


 t

0




Rd

�
�e…i� 	 ,x�

�
�2�

�1 …e…i� 	 ,� �
�
�2F

�
G(t …s1,·)

	
(	 )F

�
G(t …s2,·)

	
(	 )

× | s1 …s2|2H…2µ (d	 )ds1 ds2

=

 t

0


 t

0




Rd

�
�1 …e…i� 	 ,� �

�
�2F

�
G(t …s1,·)

	
(	 )

× F
�
G(t …s2,·)

	
(	 )|s1 …s2|2H…2µ (d	 )ds1 ds2

=

 t

0


 t

0




Rd

�
�1 …e…i� 	 ,� �

�
�2

e…(2t…s1…s2)|	 |� (1+|	 |2)� /2
|s1 …s2|2H…2µ (d	 )ds1 ds2.

(27)
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Using the factRd = {|	 |2 < 1} � {| 	 |2 � 1}, we can divide� 2(� ) into two parts � 2(� )1{|	 |2<1}

and� 2(� )1{|	 |2� 1} according to the value of|	 |. Let us “rstly estimate the term� 2(� )1{|	 |2<1}.

Recall the following inequality:

�
�1 …e…i� 	 ,� �

�
�2

= 4sin2
�

� 	 , � �
2

�
	 | 	 |2|� |2. (28)

Then with (4) in Remark2.1, we have

� 2(� )1{|	 |2<1} 	 | � |2



{|	 |2<1}
|	 |2


 t

0


 t

0
|s1 …s2|2H…2ds1 ds2µ (d	 )

	 � …1
H |� |2t2H




{|	 |2<1}
µ (d	 )

	 C|� |2.

(29)

For the proof of the second term� 2(� )1{|	 |2>1}, we distinguish two cases depending on the

value ofH(� + � ). We “rst study the caseH(� + � ) > 1. With inequality (28), we have

� 2(� )1{|	 |2>1} 	 � …1
H t2H |� |2




|	 |>1

|	 |2

(|	 |� (1 + |	 |2)� /2)2H
µ (d	 )

	 � …1
H t2H |� |2




|	 |>1

1
|	 |2(H(� +� )…1)

µ (d	 )

	 � …1
H 2H(� +� )…1t2H |� |2




|	 |>1

�
1

1 + |	 |2

� H(� +� )…1

µ (d	 ).

(30)

Next, according to Hypothesis3, we just need choose a constant� satisfying 0 <� <

1 … 1
H(� +� ) , then we can conclude that




|	 |>1

�
1

1 + |	 |2

� H(� +� )…1

µ (d	 ) 	



|	 |>1

�
1

1 + |	 |2

� H(� +� )�

µ (d	 ) < � .

This yields

� 2(� )1{|	 |2>1} 	 � …1
H 2H(� +� )…1t2H




|	 |>1

�
1

1 + |	 |2

� H(� +� )…1

µ (d	 )|� |2

= C4.1|� |2,

(31)

with C4.1 = � …1
H 2H(� +� )…1t2H

�
|	 |>1(

1
1+|	 |2

)H(� +� )…1µ (d	 ).

For the caseH(� + � ) 	 1, we need the following inequality, with 0 <� < 1:

�
�1 …e…i� 	 ,� �

�
�2

	 41…� |	 |2� |� |2� . (32)

Then one gets

� 2(� )1{|	 |2>1} 	 � …1
H t2H




|	 |>1

�
�1 …e…i� 	 ,� �

�
�2

�
1

|	 |� (1 + |	 |2)� /2

� 2H

µ (d	 )
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	 41…� � …1
H t2H |� |2�




|	 |>1

1
|	 |2(H(� +� )…� )

µ (d	 )

	 41…� � …1
H t2H |� |2�




|	 |>1

�
1

1 + |	 |2

� H(� +� )…�

µ (d	 )

	 41…� � …1
H t2H |� |2�




|	 |>1

�
1

1 + |	 |2

� H(� +� )�

µ (d	 ),

provided we choose a positive constant� satisfying 0 <� < H(� + � )(1 …� ). Then we

conclude that

� 2(� )1{|	 |2>1} 	 41…� � …1
H t2H |� |2�




|	 |>1

�
1

1 + |	 |2

� H(� +� )�

µ (d	 )

= C4.2|� |2� , 0 <� < H(� + � )(1 …� ).

(33)

Combining the above estimates (29), (30), (31) and (33) for � 2(� ), we conclude that

� 2(� ) 	

�
�

�
C|� |2� if H(� + � ) > 1,

C|� |2� if H(� + � ) 	 1,
(34)

with � � (0, 1),� � (0, 1) and 0 <� < H(� + � )(1 …� ). �

Next let us move to the case ofU with respect to the time variable. The result is given

as follows.

Theorem 4.2 Assume that the measureµ satis“es Hypothesis3 for some� � (0, 1).Then,

for t � R+, � � R such that t+ � � R+ and x,z � Rd, the spatial-temporal covariance func-

tion of U(t + � ,x) and U(t,z) is

Rt (� ,x …z) =



Rd
e…i� 	 ,x…z� e…� |	 |� (1+|	 |2)� /2

×

 t+�

0


 t

0
e…(2t…s1…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2µ (d	 ).

(35)

Moreover, U(·,x) is asymptotically in time with an index-� Gaussian “eld with 0 < � <

H(1 …� ).

Since the processU is not stationary in time but ast tends to in“nity, it converges to a

stationary process. That means the limiting-time process is stationary in time and space.

Proof For t � [0,T ] and � � R such thatt + � � [0,T ] and x,z � Rd, with Fubini•s theorem,

E
�
U(t + � ,x)U(t,z)

	

=

 t+�

0


 t

0




Rd
FG(t + � …s1,x …·)(	 )FG(t …s2,z…·)(	 )|s1 …s2|2H…2µ (d	 )ds1 ds2

=

 t+�

0


 t

0




Rd
e…i� 	 ,x…z�FG(t + � …s1,·)(	 )FG(t …s2,·)(	 )|s1 …s2|2H…2µ (d	 )ds1 ds2
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=



Rd
e…i� 	 ,x…z�


 t+�

0


 t

0
e…(t+� …s1+t…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2µ (d	 ).

In the following we should prove that the integral
� t+�

0

� t
0 e…(t+� …s1+t…s2)|	 |� (1+|	 |2)� /2

|s1 …

s2|2H…2ds1 ds2 is “nite. Actually with ( 5) one gets


 t+�

0


 t

0
e…(t+� …s1+t…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2

	 CH

� 
 t+�

0
exp

�
…

(t + � …s1)|	 |� (1 + |	 |2)� /2

H

�
ds1

� H

×
� 
 t

0
exp

�
…

(t …s2)|	 |� (1 + |	 |2)� /2

H

�
ds1

� H

= CH

�
H

|	 |� (1 + |	 |2)� /2

� 2H 
1 …e…(t+� ) |	 |� (1+|	 |2)� /2

H
�

1 …e…t |	 |� (1+|	 |2)� /2
H

�
.

On the other hand, one gets


 t+�

0


 t

0
e…(t+� …s1+t…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2

=

 t

0


 t

0
e…(t+� …s1+t…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2

+

 t+�

t


 t

0
e…(t+� …s1+t…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2

:= I1 + I2.

With the change of variables formula and the de“nition of the norm inH, one can get

I1 =
�

1
|	 |� (1 + |	 |2)� /2

� 2H

e…� |	 |� (1+|	 |2)� /2 �
� e…u

�
�
H([0,t|	 |� (1+|	 |2)� /2 ])

�
� (2H)
2H … 1

�
1

|	 |� (1 + |	 |2)� /2

� 2H

e…� |	 |� (1+|	 |2)� /2
ast � +� ,

(36)

where� (·) is the gamma function. For the second termI2, one can show that it tends to

zero ast � � . Thus we complete the proof of (35).

We now tackle the second part of this theorem. We assume thatx � Rd, t � [0,T ] and

� � R such thatt + � � [0,T ]. Then we have

E
�
�U(t + � ,x) …U(t,x)

�
�2

= E

�
�
�
�


 t+�

0




Rd
G(t + � …s,x …y)W(ds,dy) …


 t

0




Rd
G(t …s,x …y)W(ds,dy)

�
�
�
�

2

	 2
�

E

�
�
�
�


 t+�

t




Rd
G(t + � …s,x …y)W(ds,dy)

�
�
�
�

2

+ E

�
�
�
�


 t

0




Rd

�
G(t + � …s,x …y) …G(t …s,x …y)

	
W(ds,dy)

�
�
�
�

2�

:= 2(A1 + A2).

(37)
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We “rstly study the term A1. In fact according to the inner product (2) and Fourier trans-

form for G we have

A1 = E

�
�
�
�


 t+�

t




Rd
G(t + � …s,x …y)W(ds,dy)

�
�
�
�

2

=

 t+�

t


 t+�

t




Rd
FG(t + � …s1,x …·)(	 )

× FG(t + � …s2,x …·)(	 )|s1 …s2|2H…2µ (d	 )ds1 ds2

=



Rd


 t+�

t


 t+�

t
e…(2(t+� )…s1…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2µ (d	 )

=



|	 |	 1


 t+�

t


 t+�

t
e…(2(t+� )…s1…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2µ (d	 )

+



|	 |>1


 t+�

t


 t+�

t
e…(2(t+� )…s1…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2µ (d	 )

:= A1,1 + A1,2.

(38)

By means of the inequalities (5) and 1 …e…x 	 x for all x > 0, we can prove that

A1,1 	 CH




|	 |	 1

� 
 t+�

t
e…(t+� …s)|	 |� (1+|	 |2)� /2

H ds
� 2H

µ (d	 )

= CH




|	 |	 1

H2H

(|	 |� (1 + |	 |2)� /2)2H

�
1 …e…� |	 |� (1+|	 |2)� /2

H
	 2H

µ (d	 )

	 CH




|	 |	 1
µ (d	 )|� |2H ,

(39)

and also with (5), by choosing some constant� = 1 …� � (0, 1), we can prove that under

Hypothesis3

A1,2 	 CH




|	 |>1

� 
 t+�

t
e…(t+� …s)|	 |� (1+|	 |2)� /2

H ds
� 2H

µ (d	 )

= CH




|	 |>1

H2H

(|	 |� (1 + |	 |2)� /2)2H

�
1 …e…� |	 |� (1+|	 |2)� /2

H
	 2H

µ (d	 )

	 CH




|	 |>1

H2H

(|	 |� (1 + |	 |2)� /2)2H

�
1 …e…� |	 |� (1+|	 |2)� /2

H
	 2H�

µ (d	 )

	 CH � 2H�



|	 |>1

1
|	 |2H(� +� )(1…� )

µ (d	 )

	 2H(� +� )(1…� )CH � 2H�



|	 |>1

�
1

1 + |	 |2

� 2H(� +� )(1…� )

µ (d	 )

= C4.2|� |2H� , � = 1 …� � (0, 1),

(40)

with t � [0,T ], � � R such thatt + � � [0,T ] and

C4.2 = CH2H(� +� )(1…� )



|	 |>1

�
1

1 + |	 |2

� 2H(� +� )(1…� )

µ (d	 ).
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Combining (38), (39) and (40), we conclude that

A1 	 C4.3|� |2H� , � = 1 …� � (0, 1),

with C4.3 = CH
�

|	 |	 1 µ (d	 ) + C4.2. Finally let us study the second term,A2,

A2 = E

�
�
�
�


 t

0




Rd

�
G(t + � …s,x …y) …G(t …s,x …y)

	
W(ds,dy)

�
�
�
�

2

=

 t

0


 t

0




Rd
F

�
G(t + � …s1,x …·) …G(t …s1,x …·)

	
(	 )

× F
�
G(t + � …s2,x …·) …G(t …s2,x …·)

	
(	 )|s1 …s2|2H2µ (d	 )ds1 ds2

=

 t

0


 t

0




Rd
e…(2t…s1…s2)|	 |� (1+|	 |2)� /2 �

�1 …e…� |	 |� (1+|	 |2)� /2 �
�2

|s1 …s2|2H…2µ (d	 )ds1 ds2

=



Rd

�
�1 …e…� |	 |� (1+|	 |2)� /2 �

�2

 t

0


 t

0
e…(2t…s1…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2µ (d	 )

=



|	 |	 1

�
�1 …e…� |	 |� (1+|	 |2)� /2 �

�2

 t

0


 t

0
e…(2t…s1…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2µ (d	 )

+



|	 |>1

�
�1 …e…� |	 |� (1+|	 |2)� /2 �

�2

 t

0


 t

0
e…(2t…s1…s2)|	 |� (1+|	 |2)� /2

× | s1 …s2|2H…2ds1 ds2µ (d	 )

:= A2,1 + A2,2. (41)

With similar calculations to (39) and the fact that 1 …e…x 	 x for all x > 0, we can bound

A2,1 as follows with� = 1 …� � (0, 1):

A2,1 	 CHt2H



|	 |	 1

�
�1 …e…� |	 |� (1+|	 |2)� /2 �

�2�
µ (d	 )

	 CHt2H



|	 |	 1

�
� |	 |�

�
1 + |	 |2

	 � /2	 2�
	 C4.4|� |2� .

(42)

Let � � (0,H(1 …� )) with � � (0, 1). For the double integral
� t

0

� t
0 e…(2t…s1…s2)|	 |� (1+|	 |2)� /2

|s1 …

s2|2H…2ds1 ds2 in A2,2, by means of (5), we can bound it as follows:


 t

0


 t

0
e…(2t…s1…s2)|	 |� (1+|	 |2)� /2

|s1 …s2|2H…2ds1 ds2

=
1

(|	 |� (1 + |	 |2)� /2)2H


 t|	 |� (1+|	 |2)� /2

0


 t|	 |� (1+|	 |2)� /2

0
e…u1…u2|u1 …u2|2H…2du1 du2

	 CH
H2H

(|	 |� (1 + |	 |2)� /2)2H

�
1 …e…t|	 |� (1+|	 |2)� /2

H
	 2H

	 CHH2H 1
|	 |2(� +� )H

.
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Thus with the inequality |1 …e…x| 	 21…� |1 …e…x|� for some� � (0,H(1 …� )) � (0, 1) and

the fact 1 …e…x 	 x for all x > 0, we have with Hypothesis3

A2,2 	 CHH2H



|	 |>1

�
�1 …e…� |	 |� (1+|	 |2)� /2 �

�2 1
|	 |2(� +� )H

µ (d	 )

	 CHH2H22…2�



|	 |>1

�
�1 …e…� |	 |� (1+|	 |2)� /2 �

�2�
�

1
|	 |(� +� )

� 2H

µ (d	 )

	 CHH2H22…2� |� |2�



|	 |>1

�
1

|	 |(� +� )

� 2(H…� )

µ (d	 )

	 CHH2H22…2� +(H…� )(� +� )|� |2�



|	 |>1

�
1

1 + |	 |2

� (H…� )(� +� )

µ (d	 )

	 C4.6|� |2� , 0 <� < H(1 …� ),

(43)

with C4.6 = CHH2H22…2� +(H…� )(� +� )
�

|	 |>1(
1

1+|	 |2
)(H…� )(� +� )µ (d	 ). Putting together (37), (38),

(39), (40), (41), (42) and (43), we then can conclude that with� = 1 …� � (0, 1) and� �

(0,H(1 …� ))

E
�
�U(t + � ,x) …U(t,x)

�
�2

	 C4.7
�
|� |2H� + |� |2� 	

	 C4.8|� |2� . �

Finally in this section, as a related problem, we can also get the following path Hölder

regularity ofU(t,x) with respect to the time and space variables, respectively, by following

similar arguments to the proof of Theorem4.1and Theorem4.2.

Proposition 4.1 Assume that the spectral measureµ satis“es Hypothesis3 for some� �

(0, 1).Then, for every t,s� [0,T ], T > 0,x,y � Rd, p � 2, � 1 � (0,H(1 …� )) and � 2 � (0, 1)

and � 3 � (0,H(� + � )(1 …� )), we have

E
�
�U(t,x) …U(s,x)

�
�p

	 C4.9|t …s|p� 1;

and

E
�
�U(t,x) …U(t,y)

�
�p

	

�
�

�
C4.10|x …y|p� 2 if H (� + � ) > 1,

C4.11|x …y|p� 3 if H (� + � ) 	 1.
(44)

5 Analysis of the density
This section is devoted to a study of the density of the solution to the SFKE (1) at any

“xed (t,x) � [0,T ] × Rd. This will be done by using Malliavin calculus. The aim in this

section is two-fold. Firstly we will prove that the solution to the SFKE (1) at any “xed

(t,x) � [0,T ] × Rd is a random variable whose equation admits a density. Secondly we

apply the results obtained by Nourdin and Viens [17] to the SFKE (1) to obtain the upper

and lower Gaussian-type estimates for the density (see recent work by Nualart and Quer-

Sardanyons [19, 20], and Liu and Yan [14]).

5.1 Existence of the density
The main result in this subsection is stated as follows.
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Theorem 5.1 We set the conditions of Theorem3.1 and d < � + � , furthermore we also
assume that b(·) � C1(R) with bounded Lipschitz continuous derivative.Then, for any “xed
(t,x) � [0,T ] × Rd, the equation of the solution to Eq. (1) is absolutely continuous with
respect to the Lebesgue measure.

Before giving the proof of Theorem5.1, we “rstly give the following.

Proposition 5.1 Assume that the spectral measureµ satis“es Hypothesis2, suppose also
that d < � + � and the coe�cient b(·) is C1(R) with bounded Lipschitz continuous deriva-
tive. Then, for any “xed (t,x) � [0,T ] × Rd, the random variable u(t,x) belongs toD1,2 and
satis“es

Dv,zu(t,x) = G(t …v,x …z) +

 t

v




Rd
G(t …s,x …y)b�� u(s,y)

	
Dv,zu(s,y)dyds, (45)

for all 0 <v 	 t and x � Rd.

Proof Let u(n)(t,x)(n � 1) be the solution of Eq. (17). Sinceb is Lipschitz, by a standard
argument, one can see that the sequencesu(n) converges tou in Lp(� ) for any p � 2 and
(t,x) � [0,T ] × Rd asn � � . Then a similar argument to that in Zhang and Zheng [23]
shows that, for eachn � N andh � H, u(n)(t,x) � Dh,

Dhu(n)(t,x) =

 t

0




Rd
G(t …s,x …y)b�� u(n…1)(s,y)

	
Dhu(n…1)(s,y)dyds

+
�
G(t …·,x …·),h

�
H.

(46)

Sinceu(n)(t,x) � u(t,x) asn � � in the Lp(� ) sense, there exists a random “elduh(t,x)
such thatDhu(n)(t,x) � uh(t,x) asn � � uniformly on (t,x) � [0,T ] × Rd, and the latter
satis“es

uh(t,x) =

 t

0




Rd
G(t …s,x …y)b�� u(s,y)

	
uh(s,y)dyds+

�
G(t …·,x …·),h

�
H. (47)

Hence, from the closeness of the operatorDh, it follows thatu(t,x) � Dh,Dhu(t,x) = uh(t,x)
and

Dhu(t,x) =

 t

0




Rd
G(t …s,x …y)b�� u(s,y)

	
Dhu(s,y)dyds+

�
G(t …·,x …·),h

�
H. (48)

Next we proceed to proving thatu(t,x) � D1,2. Recall the sequence{hn,n � 1} introduced
in Sect.2. By (48), one gets

E
�
�Dhnu(t,x)

�
�2

= E

�
�
�
�


 t

0




Rd
G(t …s,x …y)b�� u(s,y)

	
Dhnu(s,y)dyds+

�
G(t …·,x …·),hn

�
H

�
�
�
�

2

	 C5.1.1E
� 
 t

0




Rd

�
G(t …s,x …y)

	 2�
Dhnu(s,y)

	 2
dyds

�

+ C5.1.2
�
G(t …·,x …·),hn

�2
H, (49)
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with two positive constantsC5.1.1andC5.1.2. Set

Um(t) = sup
x� Rd

E
m�

n=1

�
�Dhnu(t,x)

�
�2

.

Then, by (49), the Hölder inequality with p = q = 2 and estimates (16) for the Green

function, we have

Um(t) 	 C5.1.3E
� 
 t

0




Rd

�
G(t …s,x …y)

	 2
Um(s)dyds

�
+ C5.1.4

�
� G(t …·,x …·)

�
� 2
H

	 C5.1.5+ C5.1.6


 t

0
(t …s)… d

� +� Um(s)ds.

(50)

Then the Gronwall lemma yields

Um(t) 	 C5.1.7exp
�
C5.1.8T

1… d
� +�

�
,

whereC5.1.7andC5.1.8are independent ofm. Let m � � to get

sup
x� R

E
��

n=1

�
�Dhnu(t,x)

�
�2

< � .

That means thatu(t,x) � D1,2.

Sinceu(t,x) is Ft -adapted, there exists a measurable functionDv,zu(t,x) � H such that

Dv,zu(t,x) = 0 if v > t and for anyh � H

Dhu(t,x) =
�
Du(t,x),h

�
H. (51)

From (48), (51) and Fubini•s theorem, it follows that

�
Du(t,x),h

�
H

=

 t

0




Rd
G(t …s,x …y)b�� u(s,y)

	�
Du(s,y),h

�
H dyds+

�
G(t …·,x …·),h

�
H

=
� 
 t

0




Rd
G(t …s,x …y)b�� u(s,y)

	
Du(s,y)dyds,h

�

H
+

�
G(t …·,x …·),h

�
H.

Therefore

Dv,zu(t,x) =

 t

v




Rd
G(t …s,x …y)b�� u(s,y)

	
Dv,zu(s,y)dyds+ G(t …v,x …y).

Thus we can conclude the proof of this proposition. �

We also need the following lemma concerning the estimates for theL2-norm of the

Malliavin derivativeDu(t,x).
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Lemma 5.1 For � � (0,t) and d < � + � , there exist two positive constants C5.1.9and C5.1.10

such that

sup
s� [t…� ,t]

sup
y� Rd

E
� 
 t

t…�




Rd

�
�Dv,zu(s,y)

�
�2

dz dv
�

< C5.1.9�
1… d

� +� (52)

and

sup
� � R

sup
s� [t…� ,t]

sup
y� Rd

E
� 
 t

t…�




Rd
E�� �� �Dv,zu(s,y)

�
�2	

dz dv
�

< C5.1.10�
1… d

� +� . (53)

Proof We will only deal with the proof of (52), since (53) can be checked by using exactly

the same arguments. Fors� [t …� ,t], set

L� (s,y) = E
� 
 s

t…�




Rd

�
�Dv,zu(s,y)

�
�2

dz dv
�

.

Then from the proof of Proposition5.1, we get

sup
(s,y)� [0,T ]× Rd

L� (s,y) < � .

Let us invoke the linear equation (45) satis“ed by the Malliavin derivativeDu(s,y) for

(s,y) � [t …� ,t] × Rd, then

L� (s,y) 	 2
� 
 s

t…�




Rd

�
�G(s…v,x …z)

�
�2

dz dv

+

 s

t…�




Rd
E

�
�
�
�


 s

v




Rd
G(s…r1,y…z1)b�� u(r1,z1)

	
Dv,zu(r1,z1)dz1 dr1

�
�
�
�

2

dz dv
�

:= 2
�
L� ,1(s,y) + L� ,2(s,y)

	
. (54)

With the estimate (16) associated with the Green functionG(t,x), we have




Rd

�
�G(t …s,y…z)

�
�2

dz 	 C� (t …s)… d
� +� . (55)

Then

L� ,1(s,y) 	 C�

 s

t…�
(s…v)… d

� +� dv 	 C5.1.11�
1… d

� +� . (56)

For the second termL� ,2(s,y), we apply the Hölder inequality, the fact thatb� is bounded

and Fubini•s theorem, so that we end up with

L� ,2(s,y) 	 C5.1.12�

 s

t…�




Rd

�
�G(s…r1,y …z1)

�
�2

×
� 
 s

t…�




Rd
E

�
Dv,zu(r1,z1)

	 2
dz dv

�
dz1 dr1.

(57)
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Then, from (54), (55), (56), (57), we obtain

sup
(� ,y)� [t…� ,s]× Rd

E
� 
 s

t…�




Rd

�
�Dv,zu(� ,y)

�
�2

dz dv
�

	 C5.1.11�
1… d

� +� + C5.1.12�

 s

t…�
(s…r)… d

� +� sup
(� ,m)� [t…� ,r]× Rd

× E
� 
 s

t…�




Rd

�
�Dv,zu(� ,m)

�
�2

dz dv
�

dr.

Now we can conclude by using Gronwall•s lemma (for example, Lemma 15 in

Dalang [10]). �

Furthermore according to Bouleau and Hirsch•s criterion, if a random variableF in the

spaceD1,2 satis“es the non-degeneracy condition
 DF
 H > 0, a.s., then the law ofF is

absolutely continuous with respect to the Lebesgue measure.

Proof of Theorem5.1 We will adopt a technical argument which has been proposed by

many authors (see, e.g., Cardon…Weber [9]) to prove Theorem5.1. It su�ces to prove that

�
� Du(t,x)

�
�
H > 0.

Notice that (see, e.g., Jianget al. [12])


 Du
 H > 0� 
 Du
 L2([0,T ]× Rd) > 0.

Hence we only need to prove that
 Du
 L2([0,T ]× Rd) > 0 a.s. For 0 <� < t, recall (45), we have


 t

0




Rd

�
�Dr,zu(t,x)

�
�2

dz dr �

 t

t…�




Rd

�
�Dr,zu(t,x)

�
�2

dz dr

� C5.1.13
�
I1(t,x, � ) …I2(t,x, � )

	
,

(58)

where

I1(t,x, � ) =

 t

t…�




Rd

�
�G(t …r,x …z)

�
�2

dz dr

and

I2(t,x, � ) =

 t

t…�




Rd

�
�
�
�


 t

r




Rd
G(t …r1,x …z1)b�� u(r1,z1)

	
Dr,zu(r1,z1)dz1 dr1

�
�
�
�

2

dz dr.

According to (16), there exists a constantC� > 0 such that

I1(t,x, � ) = C� � 1… d
� +� . (59)
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By (56) and Lemma5.1, one gets

E
�
�I2(t,x, � )

�
� 	


 t

t…�




Rd

�
�G(t …r1,x …z1)

�
�E

� 
 r1

t…�




Rd

�
�Dr,zu(r1,z1)

�
�2

dz dr
�

dz1 dr1

	 C5.1.14�
1… d

� +�


 t

t…�




Rd

�
�G(t …r1,x …z1)

�
� dz1 dr1

	 C5.1.15�
2… 3d

2� +2� .

(60)

Then, for each� 0 > 0, according to (58), (59) and (60),

P
� 
 t

0




R

�
�Dr,zu(t,x)

�
�2

dz dr > 0
�

� sup
� � (0,� 0]

P
�
C5.1.16

�
I1(t,x, � ) …I2(t,x, � )

	
> 0

	

� sup
� � (0,� 0]

P
�
I2(t,x, � ) 	 C5.1.17I1(t,x, � )

	

� 1 … inf
� � (0,� 0]

�
1

C5.1.18�
1… d

� +�
E

�
�I2(t,x, � )

�
�
�

� 1 … inf
� � (0,� 0]

C5.1.19�
1… d

2� +2� = 1.

(61)

Thus the proof of this theorem is complete. �

5.2 Lower and upper bounds for the density
Let us considerT > 0 and letu = {u(t,x), (t,x) � [0,T ] × Rd} be the unique mild solution
to Eq. (1). This section is devoted to proving the following result concerning with the
Gaussian-type estimates for the density ofu(t,x) at any “xed (t,x) � [0,T ] × Rd.

Theorem 5.2 Fix t � [0,T ] and x � Rd. Suppose that Hypothesis3 is satis“ed for some
� � (0, 1).Moreover, the coe�cient b(·) is of class C1(Rd) and has a bounded Lipschitz con-
tinuous derivative. Then the density of the random variable u(t,x) satis“es the following:
for almost every z� R

E|u(t,x) …m|
C5.2.2t2H

exp

�
…

(z…m)2

C5.2.1t2H

�
	 p(z) 	

E|u(t,x) …m|
C5.2.1t2H

exp

�
…

(z…m)2

C5.2.2t2H

�
, (62)

where m= Eu(t,x) and C5.2.1and C5.2.2are positive constants depending on H,
 b�
 � , � ,T .

Under Hypothesis3, one can conclude this lemma from the proof of Proposition3.2.

Lemma 5.2 Let d< � + � , d � 1 and T � 0.Then under Hypothesis3, we have:
1. There exists a positive constant k1 such that for any t � [0,T ]

� H


 t

0


 t

0




Rd
FG(u,·)(	 )FG(v,·)(	 )|u …v|2H…2µ (d	 )dudv � k1t2H . (63)

2. There exists a positive constant k2 such that, for any t � [0,T ],

� H


 t

0


 t

0




Rd
FG(u,·)(	 )FG(v,·)(	 )|u …v|2H…2µ (d	 )dudv 	 k2t2H . (64)
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Remark5.1 It is worth mentioning that the integrability condition (12) was su�cient for
us to prove the existence of density for the solutionu(t,x) at any “xed point (t,x) � [0,T ] ×
Rd. However, as will be made clearer in Lemma5.2, we will really need lower and upper
bounds of the form (63) and (64) in order to obtain lower and upper bounds for the density
of u(t,x) at any “xed (t,x) � [0,T ] × Rd.

Remark5.2 It is interesting to note that the lower and upper bounds obtained in this
proposition did not include the parameter� and � .

Theorem5.2will be a consequence of Theorem 3.1 in [17] and Proposition5.1. We use
the notation F = u(t,x) …Eu(t,x) and we recall that we will need to “nd almost sure lower
and upper bounds for the random variablegF(F), which is given by

gF(F) =

 �

0
e…� E


E�� �DF, �DF�H

	
|F

�
d�

=

 �

0
e…� E


E��� Du(t,x), �Du(t,x)

�
H

	
|F

�
d� ,

(65)

where �DF = (DF)(e…� � +


1 …e…2� � �).

Proposition 5.1 Fix T > 0 and assume that d< � + � and the function b(·) is of C1(Rd)
with a bounded Lipschitz continuous derivative. Then, for all t � [0,T ], there exist positive
constants C5.2.1and C5.2.2

C5.2.1t2H 	 gF(F) 	 C5.2.2t2H . (66)

In order to prove Proposition5.1, we will also need the following lemma, whose proof is
similar to that of Lemma5.1, Lemma 4.6 in Nualart and Quer-Sardanyons [19] or Lemma 5
in Nualart and Quer-Sardanyons [20].

Lemma 5.3 For � � (0, 1]and assuming d< � + � and Hypothesis3 holds, there exist two
positive constants C5.2.3and C5.2.4such that depending on
 b�
 � , � and the constant k2 in
(64) such that

sup
(r,y)� [(1…� )t,t]× Rd

E
 �� Du(r,y)

�
� 2
H([(1…� )t,t]× Rd)|F

�
	 C5.2.3(� t)2H , a.s. (67)

and

sup
� � 1

sup
(r,y)� [(1…� )t,t]× Rd

E

E�� �� �Du(r,y)

�
� 2
H([(1…� )t,t]× Rd)

	
|F

�
	 C5.2.4(� t)2H , a.s. (68)

Proof From (45) in Theorem 5.1, and applying the Minkowski inequality, we get

�
� Du(t,x)

�
�
H([(1…� )t,t]× Rd)

	
�
� G(t …·,x …� )

�
�
H([(1…� )t,t]× Rd)

+
�
� b�

�
�

�


 t

0




Rd

�
�G(t …s,x …y)

�
�E

 �� Du(s,y)
�
�
H([(1…� )t,t]× Rd)

�
dyds.

(69)
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As a consequence, we have the following estimate:

E
 �� Du(t,x)

�
�
H([(1…� )t,t]× Rd)|F

�

	
�
� G(t …·,x …� )

�
�
H([(1…� )t,t]× Rd)

+
�
� f �

�
�

�


 t

0




Rd

�
�G(t …s,x …y)

�
�E

 �� Du(s,y)
�
�
H([(1…� )t,t]× Rd)|F

�
dyds.

(70)

Let

Yt := sup
(r,x)� [0,t]× Rd

E
 �� Du(r,x)

�
�
H([(1…� )t,t]× Rd)|F

�
.

Then according to (64), we have proved that

Yt 	 C5.2.7(� t)2H +

 t

0
(t …s)… d

2(� +� ) Ysds.

Then a suitable generalization of the Gronwall-type lemma (see, for example, Lemma 15
in Dalang [10]) allows us to conclude the proof. The estimation (68) can be checked using
exactly the same arguments. �

Proof of Proposition5.1 We “rst recall that the Malliavin derivative of u(t,x), (t,x) �
[0,T ] × R satis“esDv,zu(s,y) � 0, for all (v,z) � [0,T ] × Rd, a.s. This is because the Malli-
avin derivative solves the linear equation (45). Let us deal with the proof of (66) in two
steps. Our method used here is essentially due to Nualart and Quer-Sardanyons [19] and
[20].

Step 1. The lower bound.Fix � � (0, 1] and let us “rst derive the lower bound of (66).
Since the Malliavin derivative ofu(t,x) is non-negative, Eq. (65) yields

gF(F) �

 �

0
e…� E


E��� Du(t,x), �Du(t,x)

�
H([(1…� )t,t]× Rd)

	
|F

�
d	 . (71)

By (45), we can decompose the right-hand side of the above (71) in a sum of four terms:

� 0(t,x;� ) =
�
� G(t …·,x …·)

�
� 2
H([(1…� )t,t]× Rd), (72)

� 1(t,x;� ) = E
� 
 t

0




Rd
G(t …s,x …y)b�� u(s,y)

	

×
�
G(t …·,x …·),Du(s,y)

�
H([(1…� )t,t]× Rd) dyds|F

�
,

(73)

� 2(t,x;� ) =

 �

0
e…� E

�
E�

� 
 t

0




Rd
G(t …s,x …y)b�� �u(s,y)

	

×
�
G(t …·,x …·), �Du(s,y)

�
H([(1…� )t,t]× Rd) dyds|F

��
d� ,

(74)

� 3(t,x;� ) =

 +�

0
e…� E

�
E�


 t

0




Rd


 t

0




Rd
G(t …s,x …y)b�� u(s,y)

	
G(t …r,x …z)

× b�� �u(r,z)
	�

Du(s,y), �Du(r,z)
�
H([(1…� )t,t]× Rd) dr dsdydz|F)

�
d� .

(75)
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Firstly we notice that withd < � + � and (63) in Lemma5.2,

� 0(t,x;� ) � k1(� t)2H .

Thus we can write

gF(F) � k1(� t)2H …
�
�� 1(t,x;� ) + � 2(t,x;� ) + � 3(t,x;� )

�
�. (76)

Thus we will need to obtain the upper bounds for the terms� i (t,x;� ), i = 1,2,3. We apply
Fubini•s theorem, the boundedness ofb�, the estimate (64) in Lemma5.2and the bound
(67) in Lemma5.3. Then we have the following estimate:

�
�� 1(t,x;� )

�
�

	 C5.2.9
�
� G(t …·,x …·)

�
�
H([(1…� )t,t]× Rd)

�
� b�

�
�

�

×
� 
 t

(1…� )t




Rd

�
�G(t …s,x …y)

�
�E

�
� Du(s,y)

�
�
H([(1…� )t,t]× Rd) dyds|F

�

	 C5.2.10
�
� G(t …·,x …·)

�
�
H([(1…� )t,t]× Rd)

�
� b�

�
�

�

× sup
(s,y)� [(1…� )t,t]× Rd

E
�
� Du(s,y)

�
�
H([(1…� )t,t]× Rd)


 t

(1…� )t




Rd

�
�G(t …s,x …y)

�
� dyds

	 C5.2.11(� t)2H+1… d
2(� +� ) .

(77)

In order to get an upper bound for|� 2(t,x;� )|, one can proceed using exactly the same
arguments as for|� 1(t,x;� )|, but apply (68) in Lemma5.3 instead of (67) in Lemma5.3.
Hence one obtains

�
�� 2(t,x;� )

�
� 	 C5.2.14(� t)2H+1… d

2(� +� ) . (78)

Let us “nally estimate|� 3(t,x;� )|. For this, we apply Fubini•s theorem, the fact thatb� is
bounded, the Cauchy…Schwartz inequality, and we “nally invoke Lemma5.3,

�
�� 3(t,x;� )

�
�

	 C5.2.15
�
� f �

�
�

�


 +�

0
e…�

� 
 t

(1…� )t




Rd


 t

(1…� )t




Rd
G(t …s,x …y)G(t …s,x …y)

×
�
E

 �� Du(s,y)
�
�
H([(1…� )t,t]× Rd)E

�� �� �Du(s,y)
�
�
H([(1…� )t,t]× Rd)

	
|F

�	
dydsdy ds

�
d� .

At this point, we apply the Cauchy…Schwartz inequality with respect to the conditional
expectation with respect toF. One can use the bounds (67) and (68) in Lemma 5.3and
obtain

�
�� 3(t,x;� )

�
� 	 C5.2.17(� t)2H+1… d

� +� . (79)

Eventually, plugging the bounds (77), (78), (79) into (76), we have withd < � + �

gF(F) � k1(� t)2H …

C5.2.19(� t)2H+1… d

2(� +� ) + C5.2.17(� t)2H+1… d
� +�

�
.
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Hence we have

gF(F) � t2H 
k1� 2H …� 2H �

C5.2.19(� T )1… d
2(� +� ) + C5.2.17(� T )1… d

� +�
	�

.

Hence if we assume that� < 1 � 1
T , it only remains to choose a positive quantity� suf-

“ciently small such that the quantity � 2H [k1 … (C5.2.19(� T )1… d
2(� +� ) + C5.2.17(� T )1… d

� +� )] is
strictly positive, then we can write

gF(F) � C5.2.1t2H .

Thus, the lower bound in (66) has been proved.
Step 2. The upper bound.The upper bound in (66) is almost an immediate consequence

of the computations which we have just performed for the lower bound. More precisely,

according togF(F) and the considerations in the “rst part of the proof, we have the follow-
ing:

gF(F) 	
3�

i=0

� i (t ,s;� ),

where we notice that we have substituted� by 1 in � i (t ,x;� ), i = 0,1,2,3. We have already

seen that, fori = 1,2,

�
�� i (t ,x; 1)

�
� 	 C5.2.14t

2H+1… d
2(� +� )

and

�
�� 3(t,x; 1)

�
� 	 C5.2.17t

2H+1… d
� +� .

So we just need to bound� 0(t,x; 1), which follows directly from (64). Thus

gF(F) 	 k3t2H + 2C5.2.14t
2H+1… d

2(� +� ) + C5.2.17t
2H+1… d

� +� .

Therefore we conclude that

gF(F) 	 C5.2.2t2H ,

with the positive constantsC5.2.2depending onT. Therefore the proof of this proposition
is complete. �

Proof of Theorem5.2 For any “xed (t,x) � [0,T ] × R, we know that the random variable

F = u(t,x) …E(u(t,x)) is centered and belongs toD1,2 and by (66); we have 0 <C5.2.1t2H 	
gF(F) for all t � [0,T ]. We then apply Theorem 3.1 and Corollary 3.3 in Nourdin and
Viens [17], and “nd that the probability density � : R �� R of the random variableF is

given by

� (z) =
E|u(t,x) …E(u(t,x))|

2gF(z)
exp

�
…


 z

0

y
gF(y)

dy
�

,
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for almost everyz � R. Then the densityp of the random variableu(t,x) satis“es

p(z) =
E|u(t,x) …E(u(t,x))|

2gF(z…E(u(t,x)))
exp

�
…


 z…E(u(t,x))

0

y
gF(y)

dy
�

. (80)

In order to conclude the proof, we only need to apply the bounds obtained in Proposi-

tion 5.1to (80). �
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