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Abstract

In this article we study a class of stochastic fractional kinetic equations with fractipnal
noise which are spatially homogeneous and are fractional in time4tii/2. The
di usion operator involved in the equation is the composition of the Bessel and Riesz
potentials with any fractional parameters. We prove the existence of the solution
under some mild conditions which generalized some results obtained by Dalang
(Electron. J. Probab. 4(6):1.1989 and Balan and Tudor (Stoch. Process. Appl.
120:2468...2492010. We study also its Hélder continuity with respect to space an
time variables witth = 0. Moreover, we prove the existence for the density of the
solution and establish the Gaussian-type lower and upper bounds for the density by
the techniques of Malliavin calculus.

MSC: 60G35; 60H15; 60HO07

Keywords: Stochastic fractional kinetic equation; Bessel and Riesz potentials;
Fractional noise; Malliavin calculus; Density estimates

o

1 Introduction

This paper is concerned with the following stochastic fractional kinetic equation (SFKE
for short) with zero initial condition (see, for example, Angulet al.[1, 3], Angulo et al.
[2], and Marquez-Carreras]6]):

sut,x)=..(... )2(... )zu(t,x) +b(u(t,x)) + W(t,x) in[0,T]x RY, 1)
u(0,x)=0, x R9Y,

with T>0,d 1, 0, >0,b(:)is a measurable function andlV denotes a fractional
noise. We will specify later the required conditions on the nois# . In the SFKE ), | and

are the identity and Laplacian operators, respectively, and the operatdrs.( )z and
(... )2 have to be interpreted as the inverses of the Bessel potential and Riesz potential,
respectively. The fractional Riesz...Bessel operator was introduced by Angi. in [ 3]
and the authors established the existence of the Riesz...Bessel motion.

The SFKE 1) (known also as Riesz...Bessel fractional di usion equation, the fractional
di usion equation or the fractional heat equation) driven by Gaussian white noise was in-
troduced by Anguloet al.[2] via the Eulerian approach. It was mainly used to model some
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physical phenomena, such as di usion in porous media with fractal geometry, kinematics
in viscoelastic media, and propagation of seismic waves.2h fhe authors mainly studied

the SFKE () with additive Gaussian space-time white noise in bounded and unbounded
spatial domains. They connected it with the Eulerian theory of turbulence dispersion by
means of the advection...di usion equation. They also gave a very interesting connection
with the Lagrangian theory.

Nowadays we can “nd a lot of applications of these equations in turbulence, ecology,
hydrology, geophysics, image processing, neurophysiology, economics and “nance, etc.
(see Anguloet al.[2], Anh et al.[4, 5], Marquez-Carreras 16] and the references therein
for more details). The composition of the Bessel and Riesz potentials plays an important
role in describing the behavior of the process at the spatial macro and microscales. Apart
from the classical context of heat conduction, an equation of form the SFKH (vith =0
and =2 also arises in neurophysiology; se2l| for example. Di usion operators in the
SFKE @) with =0 and >0 correspond to the generalized heat equation which have
been used to de“ne hyperviscosity and to study its e ect on the inertial-range scaling of
fully developed turbulencel3]. The presence of the Bessel operator is essential for a study
of stationary solutions of the SFKEL). One can also seef] and [5] for related models.

After the nice work of Angulo et al. [2], several authors have also studied this kind of
the SFKE 1) and other similar equations from a mathematical point of view. For exam-
ple, Anguloet al.[1] considered a more generalized type of space-time fractional kinetic
equation with Gaussian white noise or in“nitely divisible noise as follows:

n

An +...+A1t—1l+A0t—O0 ut,x)=...0... )2(... )zu(t,x) + X(t,x),

tn
with > .>---> 1> o 0,A;>0,i=0,...n, and the fractional-in-time derivative
is de“ned in the Caputo...Djrbashian sense, i.e.,

9 (t,X) if =m N,

(ml,,_) S(t--f)m """ l%dr ifm...1< <m,

Tu(t,x)=

where (:) is the gamma function. The solutions to the equation are proved in both
bounded and unbounded domains, in conjunction with bounds for the variances of the in-
crements. The role of each of the parameters in the equation is investigated with respect to
second- and higher-order properties. In particular, they also proved that the long-range
dependence may arise in the temporal solution under certain conditions on the spatial
operators. In B], the authors provided a detailed review of the related literature. They
considered a more general class of fractional (both in time and space) evolution equation
de“ned on Dirichlet regular bounded open domains. They derived the su cient condi-
tions for the de“nition of a weak-sense Gaussian solution. The Holder regularity of the
solution with respect to the time and space variables is also derived.

Meanwhile Marquez-Carreras15] dealt with the SFKE 1) driven by a Gaussian noise
which is white in time and correlated in space. They proved the existence and unique-
ness of solution by means of a weak formulation and studied the Holder continuity of this
solution. Moreover, they also proved the existence of a smooth density associated to the



Lu and LiuAdvances in Di erence Equations (2021) 2021:152 Page 3 of 33

solution process and studied the asymptotic behavior of this density. Later on Marquez-
Carreras [L6] studied the following kind of stochastic partial di erential equations:

—tu(t,x): L )zutx) +a ut,x) +b u(t,x) W(t,x) with [0, T]x RY,

with >0 and the proces®V is a Gaussian noise, white in time and correlated in space.
The existence and uniqueness of solution and the Hoélder continuity of this solution was
proved. Moreover, they proved the existence of the density of the solution and that its
density was smooth.

In this paper, regarding the structure of the SFKH), we prove the existence and unique-
ness of the solution and the Holder continuity of this solution. Moreover, we show that the
equation of the solution is absolutely continuous with respect to Lebesguess measure on
RY (with d <+ ) and establish the lower and upper bounds for its density by means of
Malliavin calculus.

We would like to list some di erences between this study and all the papers mentioned
above. Firstly, the SFKEL] we considered in this paper is driven by a more general Gaus-
sian noise (fractional in time and correlated in space) which extended the former noises
in Angulo et al.[2], Angulo et al.[1], and Marquez-Carreras16]. Secondly, thanks to the
fractional noise, the properties of the solution are checked for any>0and >0 and not
for a more restricted region. Moreover, these properties do not depend on the dimension
of x. Finally, we generalize some results of Balan and Tud@y §] to the fractional opera-
tor setting. We study some new properties of the mild solution to the SFKE)( Here, we
deal widely with the Holder continuity in time and in space. We also study some density
properties of the solution by using the techniques of Malliavin calculus; see, for example
Nualart and Quer-Sardanyonsl9, 20], and Liu and Yan [L4].

This article is organized as follows. In Sec2 we recall some preliminaries including
the fractional noise and Malliavin calculus. SectioBis devoted to describe what we un-
derstand by a solution of the SFKEL] and prove the existence and uniqueness of this
solution. We show that the solution of the SFKEL] exists if (L2) holds. In Sect.4 we
check that spatially the solution of the SFKELY with b = 0 is a Gaussian “eld with zero
mean, stationary increments, and a continuous covariance function. We “nd its index
(see De“nition 4.1). We also show that the solution is not stationary in time. Finally in
Sect.5 we study the density properties of the solution of the SFKHE)( such as the ex-
istence of the density and related Gaussian-type lower and upper bounds for the den-
sity.

2 The preliminaries
This section is devoted to recalling some preliminaries about the fractional noise and re-
lated Malliavin calculus.

2.1 Fractional noise

Let us start by introducing some basic notions on Fourier transforms of functions: the
space of real valued in“nitely di erentiable functions with compact support is denoted by
D(RY) and by S(RY) the Schwartz space of rapidly decreasi®§ functions in RY. For
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LY(RY), we letF Dbe the Fourier transform of
F ()= e’ (dx
R

so that the inverse Fourier transform is given by ( )= (2 )9F (...).

Similarly to [8] or [ 11] for the general case, on a complete probability space,(F, %, P),
for H > 1/2, we consider a zero-mean Gaussian procé¥s={W( ), D([0,T] x RY)}
with covariance given by

EW()W() = 4 t,x) (sy)t..9?"2 (x..y)dxdydsdt
0 0 R«A

with 4 =H(2H...1)and (-):RY R.isanon-negative de“nite function and its Fourier
transform F =y is a tempered measure. Moreover, we assume that there is an integer
m 1 such that

1
— u(d )<
wo el et
We call W the fractional noise; it has a spatial covariance(-) and has the covariance of a
fractional Brownian motion with Hurst parameterH > 1/2 in time.
Let H be the completion ofD([0,T] x RY) endowed with the inner product

T T

, M= H t.¥) (syIt..97"2 (x..y)dxdydsdt
0 0 R«
T T @

= . Rdf t,)OF (50t ..92"%(d )dsdt,

where 7 refers to the Fourier transform with respect to the space variable only and the
last equality in @) follows from the simple properties of the Fourier transform. The map

W ( ) de“ned in D([0,T] x RY) can be extended to an isometry betweet and the
Gaussian spacel™W of W. Forany  #, we denote this isometry by

W( )= ! (t,x)W (dt,dx).
0 Rd

Moreover, we can interchange the order of the integratis dt and u(d ), since for the
indicator functions and , the integrand is a product of a function oft(s). Hence, we
have

T

.
» T H C F ()OF ()0t 9 Adsdu(d ).

Rd

The space may contain distributions, but it contains the spacé#| of measurable
functions :[0,T] RYsuch that

T T
= H tX)  (sy) |t..922 (x..y)dxdydsdt<
0 0 R«
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We shall make a standard assumption on the spectral measpurevhich will prevail until
the end of the paper (see Daland.{)] for some details about this hypothesis).

Hypothesis 1 The measurau satis“es the following integrability condition

)< ©)

rd 14| |
Remark2.1 Since the spectral measugeis a non-trivial positive tempered measure, we
can ensure that there exist positive constants, ¢, and k such that

c < n(d )<c. (4)
{l 1<k}

The following estimate (see, for examplel §]) will be needed in the sequel: I% <H<1
andf,g L#([a b)), then

b b
fOJa)Ix ..y1*" ~ddxdy Cy f

1
a a LH ([a,b])

g )

1 )
LH ([ab])

whereCy >0 is a constant depending only on Hurst parametét.

2.2 Malliavin calculus
SinceW = {W/(t,x), (t,x) [0,T]x RY} is Gaussian, we might develop the Malliavin cal-
culus (refer to Nualart [L8] for more details) with respect to fractional noise introduced
in Sect.2.1in order to study the density of the solution to the SFKEL]. We will also re-
call brie"y the results in Nourdin and Viens [L7] in order to establish the lower and upper
bounds for the density.

Recall the notationW ( ) = OT rd  (L,X)W(dt,dx) for ‘H, and letS be the class of
smooth and cylindrical random variables of the form

F=f W( 1),...,W( n):

wheref C, (R") (the set of all functions with bounded derivatives of all orders) and
i H(@=1,...nandn N).ForeachF &, de“ne the derivativeD;xF by

n
f
DixF = ~ W( 1),...W(n) it,x.
=1
Let D*2 be the completion ofS under the norm

F2,=E|F|*+ DF % .

Then D2 is the domain of the closed operatob on L?( ). We also denote byDy, the
closure ofS under the norm

F §=E |F|*+[DuF?
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with DnF = DF,h 4. Let{h,,n 1} be an orthonormal basis of{. ThenF D%?if and
onlyif F D, foreachn Nand _, E|Dp,F|?<

On the other hand, the divergence operatoris the adjoint of the derivative operatoD
characterized by

EDF,uy=EF (u, foranyF S,

with u  L2( ;H). ThenDom( ), the domain of , is the set of all functionsu  L?( ;H)
such that

E DF,u H Cu F H
forallF D2 whereC, is some constant depending oun.

Proposition 2.1 Let.Z, = {W(B),B A}for A B([0,T]x RY).If F is a square inte-
grable random variable that is measurable with respect to the‘eld .%ac, then

DF1,=0 a.s.

Proposition 2.2 LetF D2 Then the distribution of the random variable F is absolutely
continuous with respect to Lebesgue measurddf % >0as.

We remark the following results.

Remark2.2
1. Letu={u(t,x),(t,x) [0,T]x R%bean{%#,t [0,T]}-adapted random field. By
Proposition 2.1, we have Dgyu(t,x) =0, a.s. forany 0 s<t T and X,y RY.
2. Proposition 2.1 and Proposition 2.2 can be proved similarly to the work of
Nualart [18] with Wiener white noise replaced by fractional noise introduced in
Sect. 2.2.

Another important operator in the theory of Malliavin calculus is the generator of the
Ornstein...Uhlenbeck semigroup, which is usually denoted bysee, for example, Nu-
alart [18)). Itis related to the Malliavin derivativeD and its adjoint through the formula

DF = ..LF in the sense that~ belongs to the domain ol if and only if it belongs to the
domain of D.

The authors in [17] considered a random variabl& D2 with mean zero and de“ned

the following function on R:

(@) =E DF,.DL"¥ |F=z,

whereLldenotes the pseudo-inverse df. Then Nourdin and Viens [L7] proved the fol-
lowing.

Proposition 2.3 Assume that there exists a positive constant €uch that g(F) C;>0,
a.s.,then the law of F has a density(§ whose support iR and satis“esalmost everywhere
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in R,

_ EIFl ‘Y
"0 . e ©)

p(2)

An immediate consequence of the above proposition, is that, if one also lggd~) C,
a.s., then the densitp(:) satis“es, for almostalz R,

E|F| 22 © E|F| . z2
_— — —€X .
P P 5e

2¢, 7P e, 2C,
In order to deal with particular applications of this method, Proposition 3.7 in Nourdin
and Viens [L7] established an alternative formula fog-(F). That is,

eF)= e"EE DFDF y|F d, @)
0

where, for any random variabl& de“nedin ( ,.F,P), F denotes the shifted random vari-
ablein x , for some probability space , given by

Notice that, indeed F depends on the parameter, but we have decided to drop its explicit
dependence for the sake of simpli“cation. In Eq7), E stands for the expectation with
respect to

3 Existence and uniqueness
In this section, we will study the Cauchy problem for the SFKHR)(driven by fractional
noise. Following Walsh 22], let us recall the notation of amild solution to the SFKE ().

Definition 3.1 An LP( ) .%;-adapted processi : [0,T] x RY x R is a mild solution
to the SFKE Q) if

t t

u(t,x)= . RdG(t..sx...y)b u(sy) dyds+ . RdG(t..sx...y)W(dsdy), (8)

whereG(t, x) is the fundamental solution (called also the Green function) of
—tG(t,x) +(... )2(... )2G(t,x) =0.
Moreover, according to 5], the Green functionG(t,x) can be written as

G(t,x) = % exp .t| | 1+] 122 d, (9)

1
(2 )9 g
with i? = ...1 and its Fourier transforrG(t, -)( ) is given by

FG(t,)( )=exp .t | 1+] 22 . (10)
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When H > 1/2, it turns out that under relatively mild assumptions on the fundamental
solution G given by 0), the condition

T T
: RACCR@MEUDQT ~MPu(d )dudv< (11)
0 0 R

provides a necessary and su cient condition for the stochastic integral with respect to
Gaussian proces$V given by ; rd G(t ..8X ..y)W (ds dy) to be well-de“ned in LP( )
with p 1. Hence the condition (1) is also the necessary and su cient condition for the
existence of the solution in the linear case, i.e.

—tu(t,x) +( ... )2(... )Zu(t,x) = W(t,x).
Next we “rstly give an integrability condition on the spectral measurg.

Hypothesis 2 The measurau satis“es the following integrability condition

H(+)
— d)< . 12
LT M@ (12)
Before we prove the equivalence betweehlj and (12). Let us now recall some of the
main examples of spatially covariances(:) (or the tempered measuret), which will be
our guiding examples in the remainder of the present paper.

Example3.1

1. Let (X)= idzl H,[Xi|?Hi-2be the covariance function of a fractional Brownian
sheets with H; > % andi=1,...d. Thenp(d )= id:l nl il ®*1d . Then (12) is
equivalent to idzl(ZHi LB+ ).

2. Let (X)= g4|x|"¢") be the Riesz kernel of order (0,d) with the constant g,
then p(d )=]| |- d and the condition (12) is equivalent to 2H( + )+ >d.

3. Let (X)= 1 e"J%E d be the Bessel kernel of order > 0 with the
constant . Thenp(d )=(1+| |?)2zd the condition (12) is equivalent to
2H( + )+ >d.

4. Let (0)< (ie. M isa finite measure). It corresponds to a spatially smooth noise W.

5. Supposed=1and = g (i.e. 4 is the Lebesgue measure). This corresponds to a
(rougher) noise W which is “white in space”.

Proposition 3.1 Assume that the conditiorf12) holds then (11) is satis“ed
Proof The proof of this proposition can be completed by using Propositic 2 O

Proposition 3.2 Denote
t t
Ne( )= FGWU, ) )FGV, ) )lu ..v*dudv. (13)
0 O
Then we have

1 H(+) 1 H(+)

Csa 1+ Ni() Co2 7—

(14)
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with two positive constants € and Cs given by Gy =% ;%2 +2-#) and Gz, =
GAZHHCH) L CyHH2HCF D with t [0, T

Proof Recall that the Fourier transformFG(t,-)( ) of G(t,x) with respect to the spatial
variablex is given by (0). Then we can rewriteN;( ) de“ned by (13) as follows:

t

t
Ne( )= el L@ D2 |y vy dy,
0 0

Now we want to “nd the lower and upper bound forN;( ). Firstly assuming thaf | <1
and using the face* 1 for anyx >0, then one obtains

1 H( +)

..}2H L A2HSH( + )
Ne() it g2 TP :

where we have used the fact that 11<+|2—|2 when| |<1.

Suppose now thaf | 1, by means of the change of variables, inequali) énd the
factthat 1 ..e* <1 for allx >0, we have

tot
el | 1+ 1) l2|u ...\/|2H"'2du dv

0o 0
1 dradp®onraap o .29 4
= eYYu.. v dudv
(TP 0 -
c H2H 1 e[ (@ 2) 2 2H
rasrp
1
2H
CuH | [2AC+)
2HoH( + ) 1 e
CyH??2 - ,
. 1+] 2
where we have used the fa% (TZIZ)H( )if| | 1.
So combining the two estimates foN;( ) with | |<land| | 1, we have
1 H( + )

N C —_— ,
O G2

with C3 o= H'{ZHZH( + )+CHH2H2H( ),
Next let us proceed to prove the lower bound faX,( ). Suppose “rstiyt| | (1+] |?)z
1, then, foranyu [0,t],

ul | 1+ P2t ] 1+ 22 >

Usinge* > 1 ..x for anyx > 0, we conclude that
e @2 g | 1+ 22

1.t] | 1+] )22

Page 9 of 33



Lu and LiuAdvances in Di erence Equations (2021) 2021:152

1
5
Hence one obtains that
t t
Ne( )= el A1 P2 |y 22y dy
0 O
1 t
- [u..v*"dudv
40 o
} o 1 H(+)
41 1+] |2 ’
where for the last inequality we have used the fact that 1ﬁ2. O

Suppose now| | (1+| |9z %,usingthechange ofvariablas =u| | (1+] |?)z and
v=v| | (1+]| |9z andthe fact1.e* <xforall x>0, we get

t
el | (14 1) l2|u ...\/|2H"'2du dv

0o 0
1 ey onrean? .74
= e Ylu..v*"dudv
IERREE 0 -
1 1/2 1/2 ot
ULV
T+ B et Vu..v*dudv
1 1 1/2 1/2 o
AT A P o -

1 1 H(+)
H22+2H 1+| |2 !

where we have used the fact that| (1+] |9z (1+] |22 . Thus we can conclude to
the following lower bound forN;( ):

1 H(+)
N Cy1 ——— ,
(O G

with Cg1= 3 4t2" +2#). Thus the proof of this proposition is complete.

Remark3.1 Note that Proposition3.1extends the case of stochastic heat equationin Balan
and Tudor [8] with condition (12) (i.e. =0and =2). Moreover, Proposition3.1is also
an improvement of Lemma 2.1 obtained inlf5] and also generalizes the cases in Marquez-
Carreras[L6] (with =0and > 0). Moreover, we also prove the equivalence betweéd)
and (12) in this paper.

Now we can state the main result in this section. The proof of this theorem could be
derived by the standard arguments with some estimates of the Green functis(t, x) and
some properties of the stochastic integral irBf. However, we have preferred to give the
complete proof. We shall also make the following hypothesis on the coe ciemt

Page 10 of 33
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(H.1): The function b satis“es the Lipschitz condition as follows:
b(x)..by) CIx..yl, xy RC. (15)

Theorem 3.1 Assume that(12) holds and the coe cient b satis“egH.1), then there exists
a unique solution yt,x) to the SFKE1) such that

sup  Eutx)P’< |
(tx) [0,T]xRd

forany T>0andp 2.

Firstly let us give a useful estimate associated with the Green functiB(t, x) given by

).

Lemma 3.1 We have the followingwitht [0, T]:

G(t,x)2dx  t+, (16)
Rd

where the notation f g means that there exist two constantsxsuchthatcg f Cg.

Proof Using the Plancherel theorem and equalityL0), we can write

G(t,x)?dx = G(t,)( ) °d
L SEdx= e FG(()
1 /
:W ]Rdexp 2' | 1+| |2 2 d
:% rddexp .2 1+r2 2 dr,
0

where we have used the integration in polar coordinates in the last equation above Sjid
a positive constant resulting from the integration over the angular spherical coordinates.
Now using the factr (1 +r%) 2 r * with r >0, we get, with the change of variable

+

formulau=2tr * ,

+ +
rdTexp & 1+r2 ? dr rd-lexp ..o * dr
0 0
1 +
= (2t u+EYdu
* 0
1 d
= (2 o+,

where (-2-) is a Gamma function.
On the other hand, using the fact (1+r2) 2 (1+r2)~= with r >0, we get with the
change of variable formula = 2t(1 +r2) =,

+
2

rd xp .. 1+r2 '“ dr
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+

rdTexp .2 1+r2 2 dr
0

PRSI SR g
= @z el u™ et du
%(Zt)'“% 0+ u%“']e"“du, asu ,
where the last integral is “nite. Then we can conclude the proof of this lemma. O

Now let us prove the main result in this section.

Proof of Theoren3.1 We use the Picard approximation to get a solution tdf. De*ne

t
U™t x) = G(t..sx..y)b u®(sy) dyds
0 Rd

t (17)
+ G(t..sx..y)W(dsdy).
0 Rd
Firstly, we will prove that
sup sup Eu®(t,x) P<

n N{O}tx) [0T]xRd
It follows from (17) that foreachn N

Eu™(t,x)”  Cp A(t,x)+BI(t,x) , (18)

where

t

p
AD(t,x) = E G(t ..sx..y)b u™(sy) dyds
0 Rd

and

t p
BO(t,x)=E G(t..sx..y)W(dsdy) .
0 Rd

Note that, by the H6lder inequality and the fact thaG(t ..s, x ..y) is RY-integrable fort = s,

t p...1

AD(t, x) G(t..sx..y) dyds
Rd

O
kel

t
x E bu(sy) - G(t..sx..y) dyds
d
o (19)
C.E 1+ u(sy)? - G(t..sx..y) dyds
0 Rd

C, 1l+supEuP(sy)” G(t..sx..y) dy ds
0 y Rd Rd
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For the term Bé”)(t,x), since the stochastic integralg rd Gt ..5X..y)W (ds dy) is Gaus-
sian, according to Propositior8.2and Eq. (2), we have

t p
Bg])(t,X):E Gt ..sx..y)W(dsdy)
0 Rd

NIT

Con C FGu,)( )FGV, ))lu..v*%u(d )dudv (20)
0 0 Rd

H(+)

i <
CotH v TH P H(d)

Combining (18), (19) and (20), we have

t
supEu™V(e,x) " C,  1+supEu(sy)” G(t..sx..y) dyds (21)
x Rd 0 y Rd Rd

Then that fact that|G(t .. s x ..y)| is R-integrable fort = sin (19) together with the Gron-
wall lemma ensures that

sup sup E u™I(t,x) P< |
0Ot Ty Rrd

and consequentlfu™(t,x),n 1} is well de“ned. Moreover, by Lemma 15 in Daland.)],
one can obtain

sup sup  Eu™t,x) P<
n N{O}tx [0T]xRd

Secondly let us prove thafu™(t,x),n 1} converges irL?( ).Asforn 2,

E u™t,x)..u™(t,x) P

t p
=E G(t..sx..y) bu®(sy) ..b u™Ysy) dyds
0 Rd
t (22)
Cp EuM(sy)..u™Ysy)” G(t..sx..y) dyds
0 Rd
t
C, supEu(sy)..umYsy) P G(t..sx..y) dy ds
0 y Rd Rd
Then Gronwallss lemma yields
sup E u™D(t,x)..utx) P < . (23)

n 0(tx [0T]xRd
Hence {u™(t,x)}, o is a Cauchy sequence ib°( ). Let

u(t,x) = lim u™(t,x).
n
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Then, foreach {,x) [0,T]x RY,

sup  E u(t,x) P<

(tx) [0,T]xRd
Taking n in LP( ) in both sides of (17) shows thatu = {u(t,x); {t,x) [0,T]x RY}
satis“es @.1).
The uniqueness can be checked by a standard argument. O
Remark3.2

1. Our result Theorem 3.1 here is an extension of the one in Mérquez-Carreras [15]
(when H = 1/2) to fractional noise. However, the noises considered in
Marquez-Carreras [15] is multiplicative.

2. Thecases =0and =2, then Eq. (1) reduces to the classical stochastic heat
equation with fractional version considered in Balan and Tudor [8]. Then the
condition (12) is coherent with the results found in [8] for the stochastic heat
equation with fractional noise.

4 Index- B Gaussian random “eld

In this section we will prove that the solution to the SFKEL] satis“es the following prop-
erty de“ned by De“nition 4.1; see Marquez-Carreraslp] for example. As a related prob-
lem, we also study the sample paths of the solution to the SFKIE (

Definition 4.1 Let X(t) be a Gaussian process that has zero mean, stationary increments,
and a continuous covariance function. Se( )= E[|X(t+ )..X(t)|?]. Then, if there exists
(0, 1] such that

=sup : ()=o0 ) 0,
then X = {X(t),t RY}is called an index- Gaussian “eld.

Example4.1 From the above de“nition of index- Gaussian random “elds, it is the local
variance of their increments which determines the degree of fractality of the sample path.
For example, from the covariance function of fractional Brownian motioB™ = {B" (t),t

[0, T]}

E B (1)B"(9 :% M+t g2,

it is seen thatB™ is an indexH random “eld.

Moreover, from Anguloet al.[1], the following results hold with probability one.
1. dimy(graph(X))=d+1 ... , where dimy is the Hausdorff dimension which
quantifies the irregularity of a set and graph(X) :={(t,X(t)),t RY}.
2. X is Holder continuous of order  strictly less than . However, forany < , X fails
to satisfy any uniform Holder condition of order
In this section we essentially show that the solution to the SFKE pas similar properties
to the solution studied in Anguloet al. [1], Marquez-Carreras 15]. However before we
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state our main result in this section, we will “rstly give another condition on the tempered
measurey which is slightly stronger than Hypothesi® because of the appearance of
(0,1).

Hypothesis 3 Forsome (0, 1),the measureu satis“es the following integrability con-
dition:
1 H(+)

rd 1+] |2

nd )< . (24)

Let us denote
t

U(t,x) = . G(t..sx..y)W(ds dy), (25)
Rd

which is the mild solution to the SFKE 1) with b=0. Then we have

Theorem 4.1 Assume that the spectral measupesatis“es(24). Then,fora“xedt [0,T]
and x,x RY, the spatial covariance function of {f,x) given by(25) is

u 2
R X.X = gl XX H(OA | (1H P 2

1)
y QT+ p e H@)

Moreoverat each “xed timet [0,T],
o« ifH( + )>1thenU(t,") is an index- 1 Gaussian field with 1 (0,1}
e ifH( + ) 1thenU(t,-)isan index- » Gaussian field with
2 (OH( + )2...))for (0,1)

Proof We “rst calculate the spatial covariance function for a “xed [0, T]. By means of
the de“nition of the Fourier transform, a change of variable formula and Fubiniss theorem,
we obtain, for anyx,x RY,

E U(t,X)U t,x

t t
= Rd]—"G(t LS,XL () FG s X s (s ..o/ 1(d )ds ds

t t
= et X FG(t..s,)( ) e X FG(t..2,)( st .. ™ s dspp(d )

R 0 0O
t t
— de...| X.X e-@s2)l | (14 12) /2|81 --Sz|2H"'2dSLd82H(d )
R 0 O
u 2
= el xx o HOUIEAR P
Rd (1 @+][») =2 '

where we use the notatione 2

51 | @4 12) 2] to denote the double integral

a2 1) ad? 2
e'ul"u2|U1 ..U2|2H"'2dul dUz,
0 0
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which is “nite. In fact using the change of variables formula; = (t ..s)| | (L+] |?) 2
anduy=(t..8)| | (1+] |» 2, then we have

tot
e-@s.2) | 14 12) /2|Sl __52|2H...2dsld32

0 0
1 dradp® o oaraap 290
= et 2 ug . up|7 - duy duy
TTa+ P 2& o |
1 1 2 /2 2H
GTas e it el
-

Moreover, for a “xed timet [0, T], the processU(t,x) is a Gaussian “eld that has zero
mean, stationary increments and a continuous covariance function.
We now begin to study the index. Fot [0,T],x RYandsmall RY, we have

2()=E U(t,x+ )..U(t,x) >

t 2
=E ; Gt..sx+ ..y).G(t..sx..y) W(dsdy)
. (26)
= F G(t..s,x+ ...)..G(t..s,x...) ()
0 0 Rd
x FGt.ox+ ...).Gt.x...)()s..2* %d )dsds.
Then using the formula
FGt..sx+ ...)..G(t.sx...) ()
=e' W FGt.s)()..e" *FGt.s)()
=e' X e LIFG(t.s) ()
Then we can rewrite 26) as follows:
t t
2()= F Gt ..s,x+ ..2)..G(t..s,x...) ()
0 0 Rd
x FGt.sx+ ..).Gt.5x...)()s..2* 4 )dsds
= eix?g i 2 G(t..s,7) ( )F Gt .5 ()
0 0 Rrd
x|s1..5*"fu(d )dsids (27)
= 1.l 2F G(t..s) ()
0 0 Rrd
x F G(t..5) (s %™ d )ds ds,
t t

= Do e 1. g 2e'“(2"51"92)| | @+ 13 /ZISL ..sz|2H"'%1(d )ds; dsp.
R
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Usingthe factRY={| |2<1} {| |? 1}, wecandivide ?( )intotwo parts 2( )1 j2<y
and ( )1y |2 y accordingtothe value of |. Letus “rstly estimate the term 2 )Ly <y
Recall the following inequality:

1. %=4sin? — | PR (28)

Then with (4) in Remark2.1, we have

t

t
O ey | 1P | [? Ist ../ sy dspp(d )
g1<y 0 o

(29)

AR )
LS

cl |~

For the proof of the second term 2( )Ly 12-1, We distinguish two cases depending on the
value ofH( + ). We “rststudy the caseH( + )> 1. With inequality (28), we have

2
2 1 - ...*ZH 2 | | d
Oy &LE @ @)
1
.32H 2
H% || ||>1||2(l-|(—+)---1)“(d ) (30)
H( + ).l

H.%H( M) 2 u(d ).

(1 1+] 2

Next, according to Hypothesis3, we just need choose a constant satisfying 0 < <
1..-—~—, then we can conclude that

T
1 H( + )...1 1 H( + )

e IF P u(d) o TF P ud )<

This yields
H( + )1
e R T D N
LG A 11 1+ P (31)
=Cadl I,

with C41= l._i.ZQH( +)...32H | |>1(ﬁ2)H( + )h(d )
ForthecaseH( + ) 1, we need the following inequality, with 0 < <1:

1 ..B"'i .2 4l| |2 | |2 ) (32)

Then one gets

2H

i 1
Oy @ 1ot 5 e K@)
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1
1. ..32H| |2
4 Hlt | | ||>1||2(H(7+)m)l1(d )
H
dhe gt p S
11 1+ J?
H
41... H1(2H| |2 1 (+) “(d ),
[p1 1+] 2

provided we choose a positive constant satisfying 0 < <H( + )(1... ). Then we
conclude that

1 H(+)

2( )1{| 251} 41 H{ZHl |2 I.,l(d )

b1 1] 2 (33)
=Csg >, O0< <H( + )(1..).

Combining the above estimate2Q), (30), (31) and (33) for ?( ), we conclude that

P
2( ) Cl| | ?fH( + )>1, (34)
Cl |? ifH( + ) 1,

with 0,1), (0,1))and0< <H( + )(1...). d

Next let us move to the case dfJ with respect to the time variable. The result is given
as follows.

Theorem 4.2 Assume that the measurng satis“es Hypothesi8 forsome (0,1).Then,
fort R, R such that t+ R, and x,z RY,the spatial-temporal covariance func-
tionof U(t+ ,x)and U(t,2)is

Rt( X ..Z) = e---i X..Z e...| | @+ |2 2
L Rd
t+ (35)

t
2y 12
N e @s2 1 WP 2 g o1 s ds,u(d ).
0 0

Moreover U (+,x) is asymptotically in time with an index- Gaussian “eld withO < <
HX...).

Since the procesd) is not stationary in time but ast tends to in“nity, it converges to a
stationary process. That means the limiting-time process is stationary in time and space.

Proof Fort [0,T]and Rsuchthatt+ [0,T]andx,z RY, with Fubinies theorem,

E U+ ,x)U(t,2)

t+ t

o Rd]—'G(t+ L SuX LD ()FGE 5,20 )lse .. 5/ h(d )ds ds

t+ t

= . o et X2 FG(t+ ..s,°)( )YFG{ .5, ) )lst ../ h(d )ds ds
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_ t+ ot
- gl Xz

et st 1 1 ) 21 g 12HHg dsp(d ).
Rd 0 0

In the following we should prove that the integral ;* et st | aH ) Bg
|2 ds ds; is “nite. Actually with (5) one gets

t+ t
e st | (14 12) /2|Sl ..sz|2H'"2dsldsz
0 0
t t+ .. 1+ |?) 72 H
cu exp ( sl | (1+] %) ds,
0 H
! t.. 1+ |7 72 .
o e ATAHIDE
0 H
H 2H Ll ad A2 L1132
=CH ———— 1.e)—w — 1.et——w .
|| @+ )"

On the other hand, one gets

t+

t
2y 12
e,..(+ s+t.)| | @ [9) |S_I_ .Sz|2H2dsld32

t 2y 12
— e...(+ st | (14 [9) |Sl .SQ|2H2dS_|_dSZ

0 0

t+ t

2y 12
+ e---("' s+t | (14 %) |Sl 52|2H2d&d32
t 0

=+,

With the change of variables formula and the de“nition of the norm ir#{, one can get

1 2H
I, el | (@4 12y 12 el
[ ] @+] D72 H(OL | (14 P 12])
(2H) 1 2H (39)
el @B a5t +
2H .1 | | (L+] |2 2 '

where () is the gamma function. For the second terrtp, one can show that it tends to
zero ast . Thus we complete the proof of 5).

We now tackle the second part of this theorem. We assume that R, t [0,T] and
R such thatt + [0,T]. Then we have

EU{+ ,x)..U(t,x) >
t+ t 2

=E G+ ..sx..y)W(dsdy)... G(t..sX..y)W(dsdy)
0 Rd 0 Rd

t+ 2

2 E G(t+ ..sX..y)W(dsdy) (37)
t Rd

2

+E G+ ..sx..y).G(t.sx..y) W(dsdy)
0 Rd

=201+ AY).
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We “rstly study the term A;. In fact according to the inner product 2) and Fourier trans-
form for G we have

t+ 2
Ai=E Gt+ ..sx..y)W(dsdy)
t Rd
t+ t+

= d]-'G(t+ SSLX ()

t t R
x FGt+ ..ox.)()ls - 2/*(d )dsids
t+ t 2y 12

- | @ ).s)l | (4 19 st ..Sz|2H"'2ng_dSZ|J(d ) (38)

RO t t

t t 2y 2
] 1t t
t t 2y 12
|51 t t

::A1V1+A1’2.

By means of the inequalitiess) and 1 ..e*  xfor all x>0, we can prove that

YowslanR 2 2H
AT © A ds  p(d)
t
HZH 1] a4+ 13 12 o
= Y )
CH ||1(| [ (1+] |2) /2)2H 1l..e H @ ) -
Cq p(d )] |2H'
[l 1
and also with 6), by choosing some constant=1...  (0,1), we can prove that under
Hypothesis3
Yowslan B 2 2H
R ) " ds  p(d)
| >1 t
HT a2 oy
" [ (] @+] [?) 2)H 1l..e H @)
H2H | | (a4 |2) 2 oH
C L p-llagn® |
H P (] @+ [?) 2)H @) .
1
2H
= | [>1 m“(d )
2H 1.
H(+ gy, 2 1 (+)1.) d
) H(d )

11 1+ 2
=Csg |, =1... (0,2),
witht [0,T], R such thatt + [0,T]and

1 2H( + )(1...)

C4_2: CH2H( +)(1...)
[p1 1+] 2

u(d ).
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Combining (38), (39) and (40), we conclude that
A Cag I, =1.. (0,

with C43=Cy 1 p(d )+ Cy. Finally let us study the second termA,,

t 2
A, =E ) Gt+ ..sx..y)..G(..sx..y) W(dsdy)
0 R
t t
= F G+ ..5,X...)..G(t..s,x...) ()
0 0 Rd
x F G+ .5X...)..Gt..5x...) ()|st..5|*2u(d )ds ds
t t

= de..(z.sl..szn LAt B2 gl 1@ 22g  g2H-2(d )dg ds
0 0 R

t t
) 1. e @H 12 12 2 e-@s.9) | (14 12) /2|31 ..32|2H"'2dsldszu(d )
R 0 0

1. . e-llagP 22
[11 0 o

t 2y 12
e...(Z..Sl..92)| | @4 |9) |Sl 32|2H2ds_]_d32u(d )

t t
+ 1. e-lladp 22 e @Sl | P 2
1> 0 0

x| s ..5|*" s dsp(d )
= A2,1 + A2,2' (41)

With similar calculations to (39) and the factthat 1 .e* x for all x>0, we can bound
Az asfollowswith =1... (0,1):

Az,l CHtZH . 1 ..E'"l L ? 22 }J(d )
I (42)

Cut? || 1+ 2 2

11

Cad 7.
Let (O,H(..))with  (0,1).Forthe double integral, ;e-® - | @ BRSNS
s|?ds ds; in A2, by means of ), we can bound it as follows:

ot » 14 12) 12 2H
e-@s2l | @117 %5 g Mg ds)

0o 0
1 dian Bz odraan? 2H

= Up..u2
SaTar R . & 2uy . |- duy du

c H* ARG

H(| | (]_+| |2) /2)2H :

1
CHHZH

| |2(+)H'
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Thus with the inequality|1 ..e*| 2% |1..e¥| forsome (O,H(1...)) (0,1)and
thefact1l..e* xforall x>0, we have with Hypothesi8

l+| |2) 2 2 1

2H ¢ -
A212 CyH i 1l..e | |2( +OH H(d )
2H
2H 2.2 lanprz 1
CyH"2 ||>l1..e &R pd)
1 ) (43)
2Ho2..2) |2 L
H...
CyHM 222+ ) 2 L X+)uw>
|1 1] 2

Cagl [>,0< <H(L...),

with Cs 6= CyH2122--2+H..)( + ) | |>1(1+—|1|2)(H---)( *)u(d ). Putting together @7), (39),
(39), (40), (41), (42 and (43), we then can conclude that with =1 ... (0,1) and
(O,H(1...))

2
EUM+ ,X)..UGX) " Caz| I +| 7 Cagl I?. O

Finally in this section, as a related problem, we can also get the following path Holder
regularity of U (t,x) with respect to the time and space variables, respectively, by following
similar arguments to the proof of Theoremd.1and Theorem4.2

Proposition 4.1 Assume that the spectral measugesatis“es Hypothesi8 for some
(0,1).Then, foreveryts [0,T],T>0,xy R%p 2, ;1 (OH(L.. )and , (0,1)
and 3 (O,H( + )(1...)),we have

EU®tX)..UGSX)" Chgt..gP 1
and

Caagx..yP2 ifH( + )>1,
EU®LX) ..Uy " sa0x -] C+) (44)
Conlx..yP2 ifH( + ) 1.

5 Analysis of the density

This section is devoted to a study of the density of the solution to the SFKB @t any
“xed (t,x) [0,T]x RY. This will be done by using Malliavin calculus. The aim in this
section is two-fold. Firstly we will prove that the solution to the SFKELY at any “xed
(t,x) [0,T]x RYis a random variable whose equation admits a density. Secondly we
apply the results obtained by Nourdin and Viensl[7] to the SFKE () to obtain the upper
and lower Gaussian-type estimates for the density (see recent work by Nualart and Quer-
Sardanyons19, 20], and Liu and Yan [L4]).

5.1 Existence of the density
The main result in this subsection is stated as follows.
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Theorem 5.1 We set the conditions of Theoreiland d< + |, furthermore we also
assumethatl) CY(R)with bounded Lipschitz continuous derivativ@ hen, for any “xed
(t,x) [0,T]x RY, the equation of the solution to Eq(1) is absolutely continuous with
respect to the Lebesgue measure

Before giving the proof of Theorenb.1, we “rstly give the following.

Proposition 5.1 Assume that the spectral measugesatis“es Hypothesig, suppose also
thatd < + and the coe cient b(:) is C}(R) with bounded Lipschitz continuous deriva-
tive. Then, for any “xed (t,x) [0, T]x RY, the random variable ut,x) belongs td*? and
satis“es

Dyu(t,X) =G(t ..v,x..2) + ) G(t..sx..y)b u(sy) Dy u(sy)dyds (45)

v R

forall0O<v tandx RdY.

Proof Let u™(t,x)(n 1) be the solution of Eq. 17). Sinceb is Lipschitz, by a standard
argument, one can see that the sequenaa® converges tou in LP( ) foranyp 2 and
(t,x) [0,T]x R%asn . Then a similar argument to that in Zhang and Zheng23]
shows that, foreactn N andh #,u™(t,x) Dy,

t
Dhu®™(t,x) = G(t..sx..y)b u™Hsy) D™ s y)dyds
0 Rd (46)

+ G(t...,x..0),h .
Sinceu®™(t,x)  u(t,x) asn in the LP( ) sense, there exists a random “eld;(t, )
such thatDpu™(t,x)  un(t,x) asn uniformly on (t,x) [0,T]x RY, and the latter
satis“es

t
Un(t,X) = . RdG(t..sx...y)b u(sy) un(sy)dyds+ Gt ....x..:),h . (47)

Hence, from the closeness of the operatdy,, it follows thatu(t,x) Dy, Dhu(t,x) = un(t,x)
and

t

Dhu(t,x) = . RdG(t ~SX..y)b u(sy) Dpu(sy)dyds+ G(t ...,x...),h . . (48)

Nextwe proceed to proving thati(t,x) D2 Recallthe sequendg,,n 1} introduced
in Sect.2. By @8), one gets

E Dp,u(t,x) 2

t 2

=E dG(t .SX..y)b u(sy) Dpu(sy)dyds+ G(t ..., x...),hn ,,
0 R

t
Cs.1iE L G(t.sx..y) ? Dp,u(sy) “dyds
0 R

+Cs.12G(t ..+, X ..),hn 5, (49)



Lu and LiuAdvances in Di erence Equations (2021) 2021:152 Page 24 of 33

with two positive constantsCs ; ; and Cs 1 . Set

m

Unt)=supE  Dp,u(t,x) >
x R4 o

Then, by @9), the Holder inequality with p = q = 2 and estimates 16) for the Green
function, we have

2

Un(t) CsiE L G(t.5x..y) Um(9dyds +Cs14 Gt ..c.X..) o,
0 R

. ; (50)
Cs15+Cs16 (t..97F Uy(9ds
0

Then the Gronwall lemma yields
d
Um(t) Csizexp CsigT '

whereCs 1 7and Cs 3 gare independent oin. Letm to get

supE  Dpu(t,x) > <
xR =

That means thatu(t,x) D2

Sinceu(t,x) is .#;-adapted, there exists a measurable functidh,,u(t,x) 7 such that
Dyu(t,x)=0if v>t and foranyh #

Dhu(t,x) = Du(t,x),h ,,. (51)
From (48), (51) and Fubinies theorem, it follows that

Du(t,x),h ,,

t

G(t..sx..y)b u(sy) Du(sy),h, dyds+ G(t...,x...),h
Rd

t
= G(t..sx..y)b u(sy) Du(sy)dydsh + G(t...,x..:),h .

0 Rd H
Therefore
t
Dy u(t,x) = , G(t..sx..y)b u(sy) Dyu(sy)dyds+ G(t ..v,Xx..y).
v R
Thus we can conclude the proof of this proposition. O

We also need the following lemma concerning the estimates for thé-norm of the
Malliavin derivative Du(t, x).



Lu and LiuAdvances in Di erence Equations (2021) 2021:152 Page 25 of 33

Lemma5.1 For (O,t)andd< + ,there existtwo positive constantgggand Cs 110

such that
t ) q
sup sup E Dyzu(sy) “dzdv <Csie (52)
s [t..tly rd t.. Rd
and
t ) q
sup sup sup E E Dyou(sy) ” dzdv <Csiio Lo (53)
Rs [t..t]ly Rd t.. Rd

Proof We will only deal with the proof of (52), since 63) can be checked by using exactly
the same arguments. Fas [t ... ,t], set

S

L (sy)=E , Duali(sy) dzdv .
t.. R
Then from the proof of Proposition5.1, we get

sup L (sy)<
(sy) [0.T]xRd

Let us invoke the linear equation45) satis“ed by the Malliavin derivativeDu(s,y) for
(sy) [t..,t]xR? then

S

L(sy) 2 G(s...v,x..z)zdzdv
t.. Rd

S S 2

+ E G(s..r1,y..z1)b u(r1,z1) Dysu(re,z1)dz dry dzdv
t... Rd v Rd

=2 L a(sy)+L 2(sy) - (54)

With the estimate (16) associated with the Green functiois(t, x), we have

G(t.sy.2)2%dz Ct.9+. (55)
Rd

Then

S d

d d
L i(sy) C (s.v)F dv Cspi 7. (56)
t...

For the second termL »(sy), we apply the Holder inequality, the fact thab is bounded
and Fubiniss theorem, so that we end up with

S

L 2(sy) GCsi12 ) G(s..ry,y..z1) 2

o (57)

x E Dyu(r1,z1) “dzdv dz dr.
t.. Rd
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Then, from (54), (55), (56), (57), we obtain

S

sup E Dv,zu( ,Y) 2dZ dv
() [t...gxRrd t... Rd

1.4 s d

Cs111 ™ +Cs112 (s..r)"* sup

t... (.m) [t...r]xRd

: 2

x E Dv,zu( ,m) dzdv dr.
t.. Rd

Now we can conclude by using Gronwalles lemma (for example, Lemma 15 in
Dalang [L0)). 0

Furthermore according to Bouleau and Hirsches criterion, if a random varialfen the
spaceD*? satis“es the non-degeneracy conditionDF 4 >0, a.s., then the law oF is
absolutely continuous with respect to the Lebesgue measure.

Proof of Theorenb.1 We will adopt a technical argument which has been proposed by
many authors (see, e.g., Cardon...Weligjj fo prove Theorem5.1 It su ces to prove that

Du(t,x) ,,>0.
Notice that (see, e.g., Jiareg al.[12])
Du >0 Du L2([0,T]x RY) >0.

Hence we only need to prove thatDu |2 1jxrdy > 0 a.s. For 0 < <t, recall @5), we have

t t
Dy zu(t,x) 2dzdr Dy zu(t,x) 2dzdr
Rd Rd

0 t...

C5_1_13|1(t,X, )...|2(t,X, ) ,

(58)

where
t 2
I1(t,x, )= G(t..r,x..z) “dzdr
t.. Rd
and
t t 2
lo(t,x, )= G(t..r1,x..z1)b u(r1,z1) Drou(ry,z1)dz;dry  dzdr.
t.. Rd r Rd

According to (16), there exists a constant€ > 0 such that

l(t,x, )=C L% (59)
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By (66) and Lemmab.1, one gets

t r

E I5(t,x, ) G(t..r;,x..z7) E D ,u(r1,z1) 2dzdr dz;dry
t.. Rd t.. Rd
t
d
Csi14 7% G(t..ry,x..z;) dz;drg (60)
t.. Rd
2. 3d
Cs115 77%2 .
Then, for each ¢ > 0, according to 68), (59) and (60),
t 2
P Dr’zU(t,X) dzdr>0 sup P Cs116l2(t,%, )..1o(t,x, ) >0
0 R (0, o]
sup P |2(t,X, ) C5_1_17|1(t,X, )
0, ol

1 (61)

1...inf ————Ex(t,x, )

O Cgyqg T+
1. inf Cspg0 7% =1.
(0, o]

Thus the proof of this theorem is complete. O

5.2 Lower and upper bounds for the density

Let us considerT >0 and letu = {u(t,x), (t,x) [0,T]* RY} be the unique mild solution
to Eqg. (1). This section is devoted to proving the following result concerning with the
Gaussian-type estimates for the density aft,x) at any “xed ,x) [0,T] x RY.

Theorem 5.2 Fixt [0,T] and x RY. Suppose that Hypothesi3is satis“ed for some

(0, 1).Moreoverthe coe cient b(-) is of class &RY) and has a bounded Lipschitz con-
tinuous derivative Then the density of the random variable(t) x) satis“es the following
for almost every z R

Eju(t,x) ..m| (z..m)? Eju(t,x) ..m| (z..m)?
_ _— , 62
Cso A2 P Cs.o. gt P(@) Cs.o.t =P Cso A2 62)
where m= Eu(t, x) and Cs ».1and Cs ;o are positive constants dependingontb | T.

Under Hypothesis3, one can conclude this lemma from the proof of PropositioB.2

Lemma 5.2 Letd< + ,d 1andT 0.Then under Hypothesi8, we have
1. There exists a positive constant Ky such that for anyt [0,T]

tot

H FG(u,)( )FGV, Y )u ..V Ydudv kt?, (63)
0 0 Rd

2. There exists a positive constant Ky such that, foranyt [0,T],

H C FG(u,)( )FG(v, ) )|u...v|2H'“il(d )dudv kthH. (64)
0 0 Rd
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Remark5.1 It is worth mentioning that the integrability condition (12) was su cient for
us to prove the existence of density for the solutiom(t, x) at any “xed point (t,x) [0,T]x
RY. However, as will be made clearer in Lemn@&2, we will really need lower and upper
bounds of the form ©3) and (64) in order to obtain lower and upper bounds for the density
of u(t,x) atany “xed (t,x) [0,T]x RY.

Remark5.2 It is interesting to note that the lower and upper bounds obtained in this
proposition did not include the parameter and

Theorem5.2will be a consequence of Theorem 3.1 il¥] and Proposition5.1 We use
the notation F = u(t, x) .. Eu(t,x) and we recall that we will need to “nd almost sure lower
and upper bounds for the random variablg-(F), which is given by

®(F)= e EE DF,DF 4 |F d
° (65)

= e E E Du(t,x),Du(t,x) ,, [F d ,
0

whereDF=(DF)(e~ + 1..e-2 ).

Proposition 5.1 Fix T >0and assume that &< + and the function k() is of C(RY)
with a bounded Lipschitz continuous derivativéhen, forallt [0, T], there exist positive
constants G, and Csz.»

Cs2it™  &(F) Csog™. (66)

In order to prove Proposition5.1, we will also need the following lemma, whose proof is
similar to that of Lemmab.1, Lemma 4.6 in Nualart and Quer-Sardanyon&9] or Lemma5b
in Nualart and Quer-SardanyonsZ0].

Lemma 5.3 For  (0,1]and assuming &< + and Hypothesis3 holds there exist two

positive constants £, sand Cs» 4such that dependingonb , and the constant kin
(64) such that
2
sup E Du(ry) e yaelF Cs2d )", as. (67)

(ry) [(1.)ttxRd

and
2
sup  sup  EE DU(Y) qayere P Cs2d 7, as. (68)

Ly [@..)ttxRrd

Proof From (45) in Theorem 5.1, and applying the Minkowski inequality, we get

DU(t,¥) 3.y rd)
G(t -+ X ) gy yagxrd) -
t

+ b . G(t..sx..y) E Du(sy) (L. )ta]x RY dyds
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As a consequence, we have the following estimate:

E Du(t,x) H([(l...)t,t]X]Rd)lF
G(t X ) ’H([(l...)t,l]X]Rd) (70)
t
+ f - G(t..sx..y) E Du(sy) ”H([(l...)t,t]X]Rd)lF dyds
R
Let

Yi:= sup E Du(r,x) rdy|F

(1) [Ot]x R HA-)t]xRY)

Then according to 64), we have proved that

t d
Y GCooAd )+ (t..9Z+)Yeds
0

Then a suitable generalization of the Gronwall-type lemma (see, for example, Lemma 15

in Dalang [10]) allows us to conclude the proof. The estimatior6g) can be checked using
exactly the same arguments. O

Proof of Propositiorb.1 We “rst recall that the Malliavin derivative of u(t,x), (t,X)
[0,T] x Rsatis*esD,,u(sy) O,forall (v,z2) [0,T]x RY, a.s. Thisis because the Malli-
avin derivative solves the linear equatior®). Let us deal with the proof of 66) in two
steps. Our method used here is essentially due to Nualart and Quer-SardanydSsénd
[20].

Step 1. The lower boundrix (0,1] and let us “rst derive the lower bound of §6).
Since the Malliavin derivative ofi(t,x) is non-negative, Eq.g5) yields

o(F) . e E E Du(t,x),Du(t,x) (. )ta]x BY) [F d . (72)

By (45), we can decompose the right-hand side of the abov&l) in a sum of four terms:

ot )= Gt X ) Sy gy (72)
t
1t,x; )=E dG(t..s,x...y)b u(sy)
0 R (73)
x G(t...,x...),Du(sy) H([(lm)t’t]de)ddeF ,
t
ot,Xx; )= e'E E Gt ..sx..y)b u(sy)
0 0 Rd
(74)
x G(t...,x...),Du(sy) H({(Lx’t]xkd)dyds{F d ,
+ t t
3(t,x; )= e'E E Gt ..sx..y)b u(sy) G(t..r,x..2
0 0 RI 0 Rd (75)

x b u(r,2) Du(sy),Du(r,2) 511 yyxpeydrdsdydqF) d .
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Firstly we notice that withd< + and (63) in Lemmab5.2,

Thus we can write
P k(D .oatx )+ otx )+ st ). (76)

Thus we will need to obtain the upper bounds for the termsi(t,x; ),i =1,2,3. We apply
Fubinies theorem, the boundedness bf, the estimate 64) in Lemma5.2and the bound
(67) in Lemmab5.3 Then we have the following estimate:

1(t,%; )

Cs29 G(t ...,

t

x T G(t..sx..y) E Du(sy) 71{([(1“'”]””1{{(,)dyds}F

Cs2.10 Gt ...,

) gy rxrd) P

(77)
X ) gy ggxrd) B
t

x sup E Du(sy) < Rd G(t..sx..y) dyds
(s) [(L..)tAx BY HAA-IUIXRT) )y g
d
Cs2.14 )220,
In order to get an upper bound for] ,(t,X; )|, one can proceed using exactly the same

arguments as fo] (t,x; )|, but apply 68) in Lemmab5.3instead of €7) in Lemma5.3
Hence one obtains

d
o(t,X; ) Csaad £ I, (78)

Let us “nally estimate| 3(t,x; )|. For this, we apply Fubinies theorem, the fact that is
bounded, the Cauchy...Schwartz inequality, and we “nally invoke Lemng

3(t,X; )
+ t t

Cs2a1s f e G(t..sx..y)G(t..5x..)
0 (1.t R (@.)t Rd

x E Du(sy) .yt E Du(sy) M)t ] RY) |F dydsdyds d .
At this point, we apply the Cauchy...Schwartz inequality with respect to the conditional

expectation with respect toF. One can use the bounds