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Abstract
In this paper, we propose the meshless finite point method for solving a type of fluid
flow problem. The moving least square function is combined with the collocation
method to treat nonlinear one- and two-dimensional soil water-salt movement
equations. An adaptive windward scheme is used to stabilize the numerical solution
in regions with a large gradient change. Numerical examples with the comparison
among the proposed method, finite element method and characteristic finite
element method show that the meshless finite point method is more accurate and is
used to eliminate the numerical oscillation phenomenon.
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1 Introduction
Soil salinization caused by unreasonable irrigation has become a major bottleneck restrict-
ing the sustainable development of agriculture [1]. With the increase of world population,
world food production and water shortages are under greater pressure. Therefore, the ra-
tional development of inferior water resources and the improvement of the utilization of
saline-alkali land and soil water have become an issue of focus which all countries are
concerned about. Studying the process of soil water-salt balance migration and carrying
out quantitative numerical simulations of an appropriate mathematical model provide the
necessary foundation for monitoring, evaluating and controlling soil salinization in arid
areas. It is particularly important to prevent the accumulation of salinity, the loss of water
and soil resources, and the desertification of land. And it is also necessary to save water,
make irrigation, and increase production and income. The study of soil water-salt move-
ment [2] is derived from the study of soil water movement, which originates from Darcy’s
law. Since soil water movement and salt transport occur simultaneously and interact with
each other, soil salt migration has arisen. As early as the 1960s, the research on the move-
ment of water and salt has gradually developed from simple matter balance calculation
to mathematics and computer simulations, which makes the concept of water and salt
movement clearer and more quantitative. The numerical simulation can set the initial and
boundary conditions flexibly, meanwhile it can describe the process of water and salt mi-
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gration, which is more consistent with the actual situation. Scholars such as Shi Yuanchun,
Li Yunzhu and Jia Dalin have done a great deal of research on the simulation in soil salin-
ization treatment. Zhang Weizhen [3] proposed a preliminary study on the simulation of
soil water and salt transportation, therefore, the study of soil water and salt transport has
entered a complete new stage. Most of the studies are aimed at simulating the infiltration
characteristics of water infiltration and the transport of water [1], however, the salt migra-
tion of saline-alkali soil is less simulated. The purpose of this paper is to study the law of
water and salt migration under the conditions of water infiltration, the accuracy and va-
lidity of this algorithm are verified by practical problems, which provides a scientific basis
for reasonable irrigation.

The convection diffusion model is classical and popular among researchers of soil water-
salt transport models. However, only a handful of partial differential equations can be
obtained with exact solutions due to the heterogeneity of soil and the complexity of the
conditions. Therefore, the numerical solution of partial differential equations continues
to evolve. At present, the numerical methods for solving the equations of soil water and
salt movement are the finite difference method (FDM) [4, 5], the finite element method
(FEM) [6–8] and the characteristic finite element method (CFEM) [9, 10]. The central idea
of FEM and CFEM is that a problem domain can be split into small, non-overlapping ele-
ments so that simple interpolation functions can be used to approximate any field function
within each element. In addition, the Newton-Kantorovich method can also better solve
the problems associated with partial differential equations [11–14]. However, shape func-
tions for heavily distorted elements will not produce acceptable numerical solutions. One
way of dealing with such distortions is to re-mesh the local domain and apply adaptive
techniques, which has a high computational cost and adaptive analysis is difficult.

A meshless method based on nodes can completely or partially eliminate the grid.
Therefore it overcomes the dependence on the grid and is superior to FEM and CFEM,
because it not only reduces the difficulty of the simulation calculation, but also improves
the accuracy of the calculation. There are many different meshless methods [15, 16]. The
main difference lies in the formation of approximate function and discrete control equa-
tion. The shape function is constructed using the moving least squares method (MLS),
with its control equation discretized using the collocation method [17]. Without requiring
a background grid and numerical integrals, the finite point method has many advantages,
including a simple discrete format, short calculation time (CPU) and easy programming.
It has been successfully applied to compressible flow [18], sound propagation and other
practical problems [19–22].

In this paper, a numerical solution for the convection dispersion model is calculated
using the finite point method. A stabilizing term is added to the control equation before
discretizing governing equations. Along with an increase in the Reynolds number, Re, the
adaptive upwind support domain is used. This method is called the upwind finite point
method (UFPM). This numerical method can eliminate the uncertainty in the boundary
area and the case of large gradient changes.

The structure of this paper as follows: the moving least squares approximation, finite
point method and its numerical algorithm are given in Sect. 2, the accuracy of the solution
is examined with some examples and the actual problem in Sect. 3, and finally, conclusions
are summarized in Sect. 4.
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2 Construction of the finite point algorithm
2.1 Moving least squares approximation
Consider an approximation function u(x) in closed domain � ∈ Rd (d = 1, 2 or 3). Divide
� into subdomain �i (i = 1, 2, . . . , n), and use

∑
�i to represent the coverage of �, so as

to obtain the local approximation of u(x). A point xi and a set of points xj (j = 1, 2, . . . , m)
surrounding xi form a local point, thus completing �i. Assuming that u(x) is sufficiently
smooth in �i, it has the following form:

uh(x, x) =
m∑

j=1

pj(x)aj(x) ≡ pT (x)a(x), (2.1)

where m is the number of terms, pT (x) = [p1(x), p2(x), . . . , pm(x)] is a vector and aT (x) =
[a1(x), a2(x), . . . , am(x)] are its undetermined coefficients, x is the calculating point, and x
is the spatial coordinate of the points of nearest to x.

Define a support function Wi(x) = W (x – xi) at each �i (i = 1, 2, . . . , n). The support
domain for Wi(x) and xi is �i. The formula ds = scale · dc defines the support domain of
the weighting function ds, where scale > 1.

In Eq. (2.1), the weighted least squares are used to approximate the local approximation
to obtain the coefficients aj(x). Define the following form:

J =
n∑

i=1

W (x – xi)
[
uh(x, xi) – u(xi)

]2 =
n∑

i=1

W (x – xi)

[ m∑

j=1

pj(xi)aj(x) – ui

]2

. (2.2)

The coefficients a(x) can be found through the extreme value of J , and the value is as
follows:

∂J/∂a = A(x)a(x) – B(x)Us = 0, (2.3)

where

Us = (u1, u2, . . . , un)T , (2.4)

A(x) =
n∑

i=1

Wi(x)p(xi)pT (xi), (2.5)

B(x) =
[
W1(x)p(xi), W2(x)p(xi), . . . , Wn(x)p(xi)

]
. (2.6)

From Eq. (2.4), there is

a(x) = A–1(x)B(x)Us. (2.7)

Thus, uh(x) is

uh(x) =
n∑

i=1

ϕi(x)ui = �T(x)Us. (2.8)
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As the weight function is compact, the global approximation function of the unknown
function can be obtained:

uh(x) =
N∑

i=1

ϕi(x)ui = �T(x)U ,

U = (u1, u2, . . . , uN )T ,

where the shape function is given by

�(x) = {ϕ1,ϕ2, . . . ,ϕn} = pT (x)A–1(x)B(x). (2.9)

Let γ T = A–1p, then Eq. (2.9) can be expressed as � = γ T B. The derivatives of the shape
functions are, respectively,

�T
,i = γ T

,i B + γ T B,i. (2.10)

�T
,ij = γ T

,ij B + γ T
,i B,j + γ T B,ij. (2.11)

2.2 Collocation method
The governing equation with boundary conditions is assumed to be of the following
form:

L
[
u(x)

]
= f (x), x ∈ �, (2.12)

B
[
u(x)

]
= g(x), x ∈ �, (2.13)

where L is a differential operator defining the governing equations in the domain �, and
B is the differential operator defining the boundary condition at boundary �.

The collocation method uses N� points selected in the domain � and N� points selected
in the boundary � to satisfy Eqs. (2.12) and (2.13), respectively. The unknown function
u(x) may be approximated at points xi (i = 1, 2, . . . , N ) with a compact support function
ϕj(x) as follows:

u(x) ≈ uh(x) =
N∑

j=1

ujφj(x) = �T (x)a. (2.14)

This is the main idea of the collocation method, put Eq. (2.14) into Eqs. (2.12) and (2.13).
When N� + N� = N , Eq. (2.14) is the determined system needed to approximate the
value of each node xi (i = 1, 2, . . . , N ). The method studied in this paper is the problem
N� + N� = N . If L, B are nonlinear operators, we can obtain the nonlinear equation group.
An iterative method is needed to solve the node approximation.

There are two forms of the support field given in Figs. 1–2. One is completely skewed to
the upwind side of the support domain; the other is the adaptive upwind support domain.
du is the distance between the center of the old and new support areas, i.e., the adaptive
upwind support region allows the collocation point to shift in the opposite direction of
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Figure 1 The completely skewed to the upwind side of the support domain

Figure 2 The adaptive upwind support domain

flow with the size of du and du = (coth |pe| – 1/pe) · rs, rs is the size of the support domain.
A schematic diagram of the two support domains is shown below.

2.3 Finite point algorithm for soil water-salt transport equation
Water is the carrier of soluble salt. In addition, it also reflects the macro regulation in a
saline-alkali area. Corresponding models have been established for the water movement
and salt transport equations. The dynamic change in soil water content has been simu-
lated using the finite point method. In this paper, the algorithm developed is based on the
stable finite point method, in which the large gradient change making its support domain
gradually tends to be windward. That is to say that we are to use the adaptive windward
format to solve the stability of numerical solution. The algorithm is given now:

Step 1. The nodes are divided in the solution domain according to certain rules.
Step 2. A stability term is applied to the control equation.
Step 3. The moving least squares method is used to construct the shape function and

the approximate expression of the unknown function is obtained.
Step 4. The space variables in the equation are semi-discrete and the time variable is fully

discrete. The migration distance du of each node can then be solved, where du = (coth |pe|–
1/|pe|) · ds and ds are the size of the support domain. The support domain of the new node
is obtained by taking the new node as the center. The value of the shape function in each
node is solved in the support domain, and then put into the approximation expression for
the unknown function.

Step 5. Generate and solve a system of algebraic equations.
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2.3.1 Finite point algorithm for water movement equation
The Richards equation with water content as the variable is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ
∂t = ∂

∂x (D(θ ) ∂θ
∂x ) + ∂

∂z (D(θ ) ∂θ
∂z ) + ∂K (θ )

∂z + f , (x, z, t) ∈ (0, L) × (0, L) × (0, T),

θ (x, z, 0) = θ0(x, z), (x, z) ∈ [0, L] × [0, T],

θ (0, z, t) = ψ1(z, t), (z, t) ∈ [0, L] × [0, T],

θ (L, z, t) = ψ2(z, t), (z, t) ∈ [0, L] × [0, T],

θ (x, 0, t) = ψ3(x, t), (x, t) ∈ [0, L] × [0, T],

θ (x, L, t) = ψ4(x, t), (x, t) ∈ [0, L] × [0, T],

(2.15)

where D(θ ) is the moisture diffusion rate, K(θ ) is hydraulic conductivity, θ0(x, z) is the
initial condition, ψ1(z, t), ψ2(z, t), ψ3(x, t), ψ4(x, t) are boundary conditions.

Step 1: Construct the approximation function

θ (xp, zq) =
∑

i,j

ϕpq,ij(xp, zq) · θ (xi, zj),

where ϕpq,ij(x, z) is the shape function of (xi, zj), obtained for the point (xp, zq)in the support
domain.

Step 2: Discretize the control equation.
The governing equations in (2.15) have the following form:

∂θ

∂t
–

∂K(θ )
∂θ

· ∂θ

∂z
– D(θ )

∂2θ

∂x2 –
∂D(θ )

∂θ
·
(

∂θ

∂x

)2

– D(θ )
∂2θ

∂z2

–
∂D(θ )

∂θ
·
(

∂θ

∂z

)2

– f = 0. (2.16)

Let

r =
∂K(θ )

∂θ
· ∂θ

∂z
+

∂K(θ )
∂θ

· ∂θ

∂x
+ D(θ )

∂2θ

∂x2 +
∂D(θ )

∂θ
·
(

∂θ

∂x

)2

+ D(θ )
∂2θ

∂z2 +
∂D(θ )

∂θ
·
(

∂θ

∂z

)2

+ f –
∂K(θ )

∂θ
· ∂θ

∂x
, (2.17)

∇r =
(

∂r
∂x

∂r
∂y

)T
. (2.18)

A stability term is applied to Eq. (2.16):

∂θ

∂t
– r +

h
2|u| · u · ∇r = 0, (2.19)

where u = (– ∂K (θ )
∂θ

, – ∂K (θ )
∂θ

) is the coefficient of convection term and h is the characteristic
length. Assuming K(θ ) = θ , D(θ ) is a linear function of θ . Putting Eqs. (2.17) and (2.18)
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into (2.19),

∂θ

∂t
–

∂θ

∂z
– D(θ )

∂2θ

∂x2 –
∂D(θ )

∂θ
·
(

∂θ

∂x

)2

– D(θ )
∂2θ

∂z2 –
∂D(θ )

∂θ
·
(

∂θ

∂z

)2

– f

+
h

2|u|
[

–
(

∂2θ

∂z∂x
+ 3

∂D(θ )
∂θ

· ∂θ

∂x
· ∂2θ

∂x2

)

+ D(θ )
∂3θ

∂x3 +
∂D(θ )

∂θ
· ∂θ

∂x
· ∂2θ

∂z2

+ D(θ )
∂3θ

∂z2 · ∂x
+ 2

∂D(θ )
∂θ

· ∂θ

∂z
· ∂2θ

∂z · ∂x
+

∂2θ

∂z2 +
∂D(θ )

∂θ
· ∂θ

∂z
· ∂2θ

∂x2

+ D(θ )
∂3θ

∂x2 · ∂z
+ 2

∂D(θ )
∂θ

· ∂θ

∂x
· ∂2θ

∂x · ∂z
+

∂D(θ )
∂θ

· ∂θ

∂z
· ∂2θ

∂z2 + D(θ )
∂3θ

∂x3

+ 2
∂D(θ )

∂θ
· ∂θ

∂z
· ∂2θ

∂z2 +
∂f
∂x

+
∂f
∂z

]

. (2.20)

To deal with the problem of two-dimensional partial differential equations, a bottom-
up principle is used for rearranging the calculation points (x, z) in two dimensions. The
space variables in the equation are semi-discretized. The time variable is fully discrete. The
value of the shape function in each node is solved in the support domain and put into the
approximation expression for the unknown function. The following algebraic equations
can be obtained:

θm+1
n = θm

n + �t ·
N∑

h=1

[
∂ϕpq,ij(x, z)

∂z
+ D

(
θm) · ∂2ϕpq,ij(x, z)

∂x2 + D
(
θm) · ∂2ϕpq,ij(x, z)

∂z2

+
h

2|u| · ∂2ϕpq,ij(x, z)
∂z∂x

+
h

2|u| · D
(
θm) · ∂3ϕpq,ij(x, z)

∂x3

+
h

2|u| · D
(
θm) · ∂3ϕpq,ij(x, z)

∂z2∂x
+

h
2|u| · D

(
θm) · ∂3ϕpq,ij(x, z)

∂x2∂z

+
h

2|u| · D
(
θm) · ∂3ϕpq,ij(x, z)

∂z3

]∣
∣
∣
∣
x=xp ,z=zp

· θij

+ �t ·
[

∂D(θm)
∂θ

·
( N∑

i=1

∂ϕpq,ij

∂x
· θm

ij

)2

+
∂D(θm)

∂θ
·
( N∑

h=1

∂ϕpq,ij

∂z
· θm

ij

)2

+
3h

2|u| · ∂D(θm)
∂θ

( N∑

h=1

∂ϕpq,ij

∂x
· θm

ij

)

·
( N∑

h=1

∂2ϕpq,ij

∂x2 · θm
ij

)

+
h

2|u| · ∂D(θm)
∂θ

( N∑

h=1

∂ϕpq,ij

∂x
· θm

ij

)

·
( N∑

h=1

∂2ϕpq,ij

∂z2 · θm
ij

)

+
h
|u| · ∂D(θm)

∂θ
·
( N∑

h=1

∂ϕpq,ij

∂z
θm

ij

)

·
( N∑

h=1

∂2ϕpq,ij

∂z∂x
θm

ij

)

+
h

2|u|
∂D(θm)

∂θ
·
( N∑

h=1

∂ϕpq,ij

∂z
θm

ij

)

·
( N∑

h=1

∂2ϕpq,ij

∂x2 θm
ij

)

+
h
|u| · ∂D(θm)

∂θ
·
( N∑

h=1

∂ϕpq,ij

∂x
θm

ij

)

·
( N∑

h=1

∂2ϕpq,ij

∂x∂z
θm

ij

)
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+
3h

2|u| · ∂D(θm)
∂θ

( N∑

h=1

∂ϕpq,ij

∂z
· θm

ij

)

·
( N∑

h=1

∂2ϕpq,ij

∂z2 · θm
ij

)

+ f +
h

2|u| ·
(

∂f
∂x

+
∂f
∂z

)]

x=xp,z=zq

. (2.21)

There are two ways to solve the equations. One method is the forward iteration method
when the right side of the equation is all about the value of the m layer of θ . Another
method is the predictor corrector method when the equation gets this form: θm+1 =
Am+1θm + Fm+1.

2.3.2 Finite point algorithm for the soil salt transport equation
The convection dispersion equation for non-volatile, non-reactive, non-adsorptive soil
water and salt transport can be written as

∂

∂t
(θc) =

∂

∂z

(

D1h
∂c
∂z

)

–
∂

∂z
(Jwc), (2.22)

where the hydrodynamic dispersion coefficient D1h is formed by the superposition of the
molecular diffusion coefficient and mechanical dispersion coefficient, and Jw is the soil
moisture flux. In the case of saturated flow, the water content θ is constant, and Eq. (2.22)
gets the following form:

∂c
∂t

=
∂

∂x

(
D1h

θ

∂c
∂x

)

–
∂

∂x

(
Jw

θ
c
)

. (2.23)

For a steady flow condition, Eq. (2.23) gets the following form:

∂c
∂t

=
∂

∂x

(

Dv
∂c
∂x

)

– v
∂c
∂x

, (2.24)

where Dv
�= DL/θ is the convection dispersion coefficient, and v �= Jw/θ is the mean pore

water velocity. The finite point algorithm is shown for the migration equation of non-
volatile, non-reactive, non-adsorptive soil water and salt:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂c
∂t = ∂

∂x (Dv
∂c
∂x ) – v ∂c

∂x , (x, t) ∈ (0, L) × (0, T),

c(x, 0) = c0(x), x ∈ [0, L],

c(0, t) = ψ1(t), t ∈ [0, T],

c(L, t) = ψ2(t), t ∈ [0, T].

(2.25)

where c is the salt concentration, c0(x) is the initial value, ψ1(t), ψ2(t) are boundary values.
Step 1: Construct the approximation function

ch(xp) =
n∑

i=1

ϕip(xp)c(xi), (2.26)

where ϕip(x) is the shape function of the point xi, obtained for xp in the support domain,
ϕip(xp) is the value of ϕip(x) at point xp, and n is the number of nodes in the local support
domain for the shape function at point xp.
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Step 2: Discretize the control equation

r = –v
∂c
∂x

+
∂

∂x

(

Dv
∂c
∂x

)

. (2.27)

A stability term is applied to governing Eq. (2.25) as follows:

L(x, t) =
∂c
∂t

– r +
h

2|v|v · ∂r
∂x

= 0. (2.28)

The space variables in the equation are semi-discrete and the interval I = [0, L] has the
number of N nodes with the x = xi (i = 1, 2, . . . , N ) distribution. Discretization at the node
xp is as follows:

L(c|x=xp ) =
∂c
∂t

∣
∣
∣
∣
x=xp

+ v
∂c
∂x

∣
∣
∣
∣
x=xp

–
∂Dv

∂x
∂c
∂x

∣
∣
∣
∣
x=xp

– Dv
∂2c
∂x2

∣
∣
∣
∣
x=xp

+
h

2|v| · v ·
[

–
∂v
∂x

∂c
∂x

∣
∣
∣
∣
x=xp

– v
∂2c
∂x2

∣
∣
∣
∣
x=xp

+
∂2Dv

∂x2
∂c
∂x

∣
∣
∣
∣
x=xp

+
∂Dv

∂x
∂2c
∂x2

∣
∣
∣
∣
x=xp

+
∂Dv

∂x
∂2c
∂x2

∣
∣
∣
∣
x=xp

+ Dv
∂3c
∂x3

∣
∣
∣
∣
x=xp

]

= 0. (2.29)

We can remove the term ∂c
∂t |x=xp at the time layer m�t in Eq. (2.29) by using the forward

difference method,

L(c|t=m�t,x=xp )

=
c|t=(m+1)�t,x=xp – c|t=m�t,x=xp

�t
+ v

∂c
∂x

∣
∣
∣
∣
t=m�t,x=xp

–
∂Dv

∂x
∂c
∂x

∣
∣
∣
∣
t=m�t,x=xp

– Dv
∂2c
∂x2

∣
∣
∣
∣
t=m�t,x=xp

+
h

2|v| · v ·
[

–
∂v
∂x

∂c
∂x

∣
∣
∣
∣
t=m�t,x=xp

– v
∂2c
∂x2

∣
∣
∣
∣
t=m�t,x=xp

+
∂2Dv

∂x2
∂c
∂x

∣
∣
∣
∣
t=m�t,x=xp

+
∂Dv

∂x
∂2c
∂x2

∣
∣
∣
∣
t=m�t,x=xp

+
∂Dv

∂x
∂2c
∂x2

∣
∣
∣
∣
t=m�t,x=xp

+ Dv
∂3c
∂x3

∣
∣
∣
∣
t=m�t,x=xp

]

= 0. (2.30)

Putting Eq. (2.26) into Eq. (2.30) gives the equation after discretization,

cm+1
p = cm

p – �t
N∑

i=1

[(

vm
p –

∂Dv

∂x

∣
∣
∣
∣
t=m�t,x=xp

–
h
2

∂v
∂x

∣
∣
∣
∣
t=m�t,x=xp

+
h
2

∂2Dv

∂x2

∣
∣
∣
∣
t=m�t,x=xp

)
dϕpi

dx

∣
∣
∣
∣
x=xp

+
(

–Dm
vp –

h
2

vm
p +

h
2

∂Dv

∂x

∣
∣
∣
∣
t=m�t,x=xp

+
h
2

∂Dv

∂x

∣
∣
∣
∣
t=m�t,x=xp

)
d2ϕpi

dx2

∣
∣
∣
∣
x=xp

+
h
2

Dm
vp

d3ϕpi

dx3

∣
∣
∣
∣
x=xp

]

cm
i . (2.31)
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Let

αpi = –�t ·
{(

vm
p –

∂Dv

∂x

∣
∣
∣
∣
t=m�t,x=xp

–
h
2

∂v
∂x

∣
∣
∣
∣
t=m�t,x=xp

+
h
2

∂2Dv

∂x2

∣
∣
∣
∣
t=m�t,x=xp

)
dϕpi

dx

∣
∣
∣
∣
x=xp

+
(

–Dm
vp –

h
2

vm
p +

h
2

∂Dv

∂x

∣
∣
∣
∣
t=m�t,x=xp

+
h
2

∂Dv

∂x

∣
∣
∣
∣
t=m�t,x=xp

)
d2ϕpi

dx2

∣
∣
∣
∣
x=xp

+
h
2

Dm
vp

d3ϕpi

dx3

∣
∣
∣
∣
x=xp

}

. (2.32)

Equation (2.31) can be written as

Cm+1 = ACm, (2.33)

where

Cm =
(
c1(tm), c2(tm), . . . , cN (tm)

)T ,

A =

⎡

⎢
⎢
⎢
⎢
⎣

α11 + 1 α12 · · · α1N

α21 α22 + 1 · · · α2N
...

...
. . .

...
αN1 αN2 · · · αNN + 1

⎤

⎥
⎥
⎥
⎥
⎦

.

3 Numerical simulation
3.1 Linear soil salt transport equation
Example 1 The one-dimensional steady-state salt transport is

⎧
⎨

⎩

v ∂c
∂z – ∂

∂z (Dv
∂c
∂z ) = f , (x, t) ∈ (0, 1) × (0, T),

c(0) = c(1) = 0, t ∈ [0, T].
(3.1)

Let v = 1, Dv = 0.01. Then the exact solution of the equation is c(z) = z – (1 – e100z)/(1 –
e100). The right-hand term can be obtained by putting the exact solution into the control
equation. In this paper, we discuss the error of L2-norm: ‖c – ch‖L2 = (

∫
�

(c – ch)2 d�)1/2,
and choose the Gauss function as the weight function. The Reynolds number is Re =
vdc/2Dv,where dc is the distance between nodes.

Table 1 shows that the finite point computation error with the stability term only, the
finite point error of the adaptive upwind scheme and the error of finite element method
are given, respectively, in the case of convection dominance.

As can be seen from Table 1, the proposed method is very good at eliminating error
when convection prevails. Numerical simulation results of the FPM are better than that

Table 1 The comparison of calculation accuracy for different algorithms when v = 1, Dv = 0.01

The number of nodes FPM error UFPM error FEM error

scale = 3 scale = 4

11 9.8060 × 10–2 5.6762 × 10–2 3.1391 × 10–2 8.4812 × 10–1

21 6.8497 × 10–2 7.9601 × 10–2 7.4891 × 10–2 8.3266 × 10–1

51 7.0516 × 10–2 4.0711 × 10–3 2.8583 × 10–3 8.3195 × 10–1
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Table 2 The convergence order of the proposed algorithm when number of nodes is 11, 21, 51,
respectively

The number of nodes max |ch – c| Convergence order

11 7.3093 × 10–2

21 8.3941 × 10–3 2.7194
51 2.5913 × 10–3 1.0362

Figure 3 Comparison between exact solutions and UFPM numerical solutions when the node number is 11
(left) and 51 (right) and scale = 3

of the FEM. The proposed method is not only simple and easy to implement, but can also
achieve good numerical results in solving the convection-dominated partial differential
equations.

The calculation of convergence order is

e1 = max
∣
∣ch1

EXA – ch1
FPM

∣
∣, the space step size is h1,

e2 = max
∣
∣ch2

EXA – ch2
FPM

∣
∣, the space step size is h2,

p =
log e2/e1

log h2/h1
.

where e1, e2 are the maximum errors between the exact solution and the numerical solu-
tion at the nodes, and p indicates the convergence order.

As can be seen from Table 2, the higher number of nodes, the higher the calculation
precision. As the convergence order is positive, the proposed algorithm in this paper is
convergent.

According to Fig. 3 and Fig. 4, the gradient change is relatively large in the vicinity of
x = 1. This is because the diffusion term is ignored. A thin boundary layer is formed at the
downstream boundary where x = 1, which is difficult to replicate using a standard numer-
ical algorithm. So it can lead to the shocked solution in the boundary layer. To solve this
kind of problem, several methods can be adopted including encrypting the node, expand-
ing the local support domain, and using an adaptive upwind scheme. The method adopted
in this paper is the adaptive upwind scheme. As the Reynolds number (Re) increases, the
support field gradually inclines to the upwind side, so that the solution can capture more
upstream information. It can get the numerical solution close to the exact solution, which
shows the effectiveness of this method.
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Figure 4 Comparison between exact solutions and UFPM numerical solutions when the node number is 11
(left) and 51 (right) at scale = 3

Table 3 Comparison of calculation results of UFPM and FEM

Nodes Time step Time UFPM error FEM error

11 0.1 0.1 6.1231 × 10–4 9.8443 × 10–3

0.5 2.7573 × 10–3 6.0572 × 10–2

1.0 6.5432 × 10–3 1.3996 × 10–1

0.01 0.1 6.0982 × 10–4 1.0059 × 10–3

0.5 2.8516 × 10–3 6.4227 × 10–3

1.0 7.2553 × 10–3 1.4586 × 10–2

Table 4 Comparison of calculation results of UFPM and FEM

Nodes Time step Time UFPM error FEM error

21 0.1 0.1 1.6307 × 10–4 9.8516 × 10–3

0.5 1.0268 × 10–3 5.2944 × 10–2

1.0 1.0844 × 10–3 1.0131 × 10–1

0.01 0.1 1.5432 × 10–4 1.0313 × 10–3

0.5 1.5568 × 10–3 5.6588 × 10–3

1.0 3.8016 × 10–3 1.0672 × 10–2

Example 2 The one-dimensional non-steady-state salt transport is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂c
∂t = Dv

∂2c
∂x2 – v ∂c

∂x , (x, t) ∈ (0, 1) × (0, T),

c(x, 0) = e–x, x ∈ [0, 1],

c(0, t) = e(Dv+v)t , t ∈ [0, T],

c(1, t) = e–1+(Dv+v)t , t ∈ [0, T].

(3.2)

The exact solution is c(x, t) = (e–x + x – x
e – 1)e(Dv+v)t – (x – x

e – 1)e(Dv+v)t .
Let v = 0.1, Dv = 0.001, and use a Gauss function as the weight function.
According to Table 3, Table 4 and Table 5, the comparison of the proposed method

with FEM shows that UFPM is highly accurate. As can be seen from Table 6, the higher
the number of nodes, the higher the calculation precision when time step and time are
determined. As the convergence order is positive, UFPM in this paper is convergent.

According to Fig. 5 and Fig. 6, by changing the time step, the number of nodes and using
the Gauss function, numerical solutions of the proposed algorithm fit well with the exact
solution.



Li et al. Advances in Difference Equations        (2021) 2021:179 Page 13 of 19

Table 5 Comparison of calculation results of UFPM and FEM

Nodes Time step Time UFPM error FEM error

51 0.1 0.1 4.6744 × 10–5 9.3930 × 10–3

0.5 2.2183 × 10–4 4.4196 × 10–2

1.0 4.2643 × 10–4 4.4196 × 10–2

0.01 0.1 9.0657 × 10–6 1.0053 × 10–3

0.5 2.1202 × 10–5 1.0053 × 10–3

1.0 2.5579 × 10–5 7.6178 × 10–3

Table 6 The convergence order of the UFPM with T = 1 time steps when �t = 0.1

Nodes max |ch – c| Convergence order

11 9.8846 × 10–4

21 4.2433 × 10–4 1.2199
51 6.1623 × 10–5 2.1059

Figure 5 The numerical solution and the exact solution of each layer are compared when the node number
is 11 (left) and 21 (right) at �t = 0.1, T = 1

Figure 6 The numerical solution and the exact solution of each layer are compared when the node number
is 51, T = 1 and �t = 0.1 (left), �t = 0.05 (right)
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3.2 Nonlinear soil water movement equation
Example 3 The one-dimensional soil water movement equation is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂θ
∂t = ∂

∂z (D(θ ) ∂θ
∂z ) + ∂K (θ )

∂z + f , (z, t) ∈ (0, 1) × (0, T),

θ (z, 0) = θ0(z), z ∈ [0, 1],

θ (0, t) = ψ1(t), t ∈ [0, T],

θ (1, t) = ψ2(t), t ∈ [0, T],

(3.3)

where K(θ ) = θ , D(θ ) = 0.001θ + 0.0001, the exact solution θ = (t + 1)(z – z2), the resource
item f , the initial value θ0(z) and the boundary value ψ1(t), ψ2(t) are determined by the
exact solution.

According to Table 7, the error between the numerical and exact solution is very small
when the time is calculated to be 6.0. As can be seen from Table 8, the comparison of the
proposed algorithm with CFEM shows that the proposed algorithm is highly accurate.

According to Fig. 7 and Fig. 8, the results of CFEM are not good when the number of
nodes is 51. CFEM needs to increase the number of nodes to improve accuracy. However,
the proposed algorithm can obtain good simulation results whether the number of nodes
is 51 or 71.

Table 7 Comparison of calculation results of FPM and CFEM

Nodes Time step Time FPM error CFEM error

21 0.005 T = 0.01 5.7854 × 10–4 9.1582 × 10–3

T = 0.1 5.5226 × 10–3 8.4067 × 10–2

T = 1.0 1.8345 × 10–2 4.6110 × 10–1

T = 6.0 2.5687 × 10–2 7.8642 × 10–1

Table 8 Comparison of calculation results of FPM and CFEM

Time step Time Nodes FPM error CFEM error

0.001 0.1 11 8.4977 × 10–4 8.9466 × 10–2

21 2.1892 × 10–3 8.4068 × 10–2

51 1.8458 × 10–3 4.5057 × 10–2

61 1.8463 × 10–3 2.3902 × 10–2

71 1.8516 × 10–3 1.7377 × 10–2

Figure 7 Comparison of results of FPM and CFEM in T = 0.1 and �t = 0.001
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Figure 8 Comparison of results of FPM and CFEM when the node number is 71, �t = 0.001 and T = 0.1

Table 9 The error and computing time of FPM

Time step Nodes FPM error CPU

scale = 2 scale = 3

0.01 11 × 11 8.9929 × 10–3 1.5175 × 10–2 2.6473 × 10
21 × 21 7.8850 × 10–3 1.2012 × 10–2 1.4678 × 102

31 × 31 4.6348 × 10–3 1.6127 × 10–2 1.5375 × 102

41 × 41 1.8824 × 10–2 1.8064 × 10–2 5.8794 × 102

Table 10 Comparison of calculation results of FPM and FEM at different times

Nodes Time step Time FPM error FEM

21× 21∗ 0.01 0.1 1.6183 × 10–2 5.3746 × 10–3

1.0 2.9284 × 10–2 4.9521 × 10–2

3.0 2.9268 × 10–2 2.3492 × 10–1

0.001 0.01 2.7731 × 10–4 2.3541 × 10–3

1.0 1.0432 × 10–2 1.5324 × 10–2

3.0 2.3723 × 10–2 4.5327 × 10–1

Example 4 The two-dimensional soil water movement equation is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ
∂t = ∂

∂x (D(θ ) ∂θ
∂x ) + ∂

∂z (D(θ ) ∂θ
∂z ) + ∂K (θ )

∂z + f , (x, z, t) ∈ (0, 1) × (0, 1) × (0, T),

θ (x, z, 0) = θ0(x, z), (x, z) ∈ [0, 1] × [0, 1],

θ (0, z, t) = ψ1(z, t), (z, t) ∈ [0, 1] × [0, T],

θ (1, z, t) = ψ2(z, t), (z, t) ∈ [0, 1] × [0, T],

θ (x, 0, t) = ψ3(x, t), (x, t) ∈ [0, 1] × [0, T],

θ (x, 1, t) = ψ4(x, t), (x, t) ∈ [0, 1] × [0, T],

(3.4)

where D(θ ) = 0.001θ + 0.001, K(θ ) = θ , the exact solution is θ = (t + 1)(x – x2)(z – z2).
Initial condition: θ0 = (x – x2)(y – y2), the resource item f , the initial value θ0(x, z) and

the boundary value ψ1(z, t), ψ2(z, t), ψ3(x, t), ψ4(x, t) are determined by exact solution.
Table 9 gives the relative error and calculation time for the proposed method when the

time step is 0.001 at time 0.1 under different scale and different number of nodes. Tables 3–
10 show the error for finite point method at different time steps. Figures 9–10 depict the
comparison of numerical solution and exact solution when T = 1, �t = 0.01 at different
node numbers.
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Figure 9 Comparison of numerical solution and exact solution when T = 1, �t = 0.01, node number is
21 × 21

Figure 10 Comparison of numerical solution and exact solution when T = 1, �t = 0.001, node number is
41 × 41

According to Table 9, the size of scale has an impact on the error. That is because the
size of support domain directly affects the number of nodes in the support domain. On
the whole, the error between the numerical and exact solutions is very small. From the
perspective of computing time, the computational efficiency of the proposed algorithm is
quite good. As can be seen from Table 10, the proposed algorithm is very stable. But FEM
becomes unstable with the increase of time.

Example 5 Simulation and analysis of soil water movement equation under the back-
ground of engineering water conservancy.

The one-dimensional soil water movement equation has the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂θ
∂t = ∂

∂z (D(θ ) ∂θ
∂z ) + ∂K (θ )

∂z cosα,

θ (z, 0) = θ0,

θ (0, t) = θs,

θ (L, t) = θ0.

(3.5)

Here K(θ ) is the unsaturated hydraulic conductivity, h is the soil-water suction, and x is
the horizontal position. θ is the soil water content, θs is the saturated soil water content,
and θ0 is the initial soil water content. D(θ ) is the diffusion rate. Equation (3.5) repre-
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Figure 11 The comparison of this paper solution and simulation solution of Hydrus software at t = 500 min
and �t = 1

sents the vertical infiltration when α = 0, and the horizontal infiltration when α = π/2.
The paper takes the Brooks–Corey [19] model as an example in engineering to discuss
the feasibility of this method. So the expressions of D(θ ) and K(θ ) are as follows:

K(θ ) = Ks
(

θ – θr

θs – θr

)m/n

, (3.6)

D(θ ) = Ks · hd ·
(

–
1
n

)

· (θs – θr)(1–m)/n · (θ – θr)(m–1–n)/n. (3.7)

Here n is an index parameter, m = 2 + 3n, hd is the bubbling pressure (cm). The physical
parameters of a given soil are as follows: θr = 0.015, θs = 0.486, θ0 = 0.2, Ks = 0.0113333,
n = 0.211, hd = 20.747.

Figure 11 shows the simulated results of the one-dimensional vertical (right) and hori-
zontal (left) infiltration for the given soil. The solid red line is the solution of this method,
the dotted line represents the solution of the Hydrus software [13, 14].

To be compared with other algorithms, the errors of vertical and horizontal infiltration
are 1.141% and 0.5% when the infiltration time is 500 min, respectively. As can be seen
from Table 9 and Fig. 11, to a certain degree, this method is not only suitable for numerical
examples, but also feasible for the actual background problem.

4 Conclusions
Through fully discussing the effects of support domain size, node number and time step
size on the simulation results, it can be concluded that the number of nodes has a direct
impact on the calculation accuracy. Under normal circumstances, the higher the number
of nodes, the higher the accuracy of the numerical results. In addition, the smaller the
time step, the smaller the calculation error. It can be seen from the convergence order
that the proposed method is feasible. The proposed method applies stability terms to the
governing equations before the discretization of the governing equations and makes its
support domain gradually tend to windward in the area of large gradient change so that
it can effectively avoid numerical shock and obtain good simulation results when dealing
with nonlinear water movement equation. Numerical examples with comparison between
the FEM and CFEM indicate that the proposed method has high precision. The numerical
examples and the problems of hydraulic engineering in the background indicate that this
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method can be used to solve the problem of alkaline areas. The accuracy and validity of
this method have been verified, which provides a reasonable scientific basis for reason-
able irrigation saline-alkali land. In addition, it has a certain positive effect on the devel-
opment of agriculture. We will focus on studying the finite point procedure for solving
three-dimensional problems in future work.
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