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Abstract
The main aim of this paper is to define and investigate more general multiple Charlier
polynomials on the linear lattice ωN = {0,ω, 2ω, . . .}, ω ∈R. We call these
polynomials ω-multiple Charlier polynomials. Some of their properties, such as the
raising operator, the Rodrigues formula, an explicit representation and a generating
function are obtained. Also an (r + 1)th order difference equation is given. As an
example we consider the case ω = 3

2 and define 3
2 -multiple Charlier polynomials. It is

also mentioned that, in the case ω = 1, the obtained results coincide with the existing
results of multiple Charlier polynomials.
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1 Introduction
In [3] the authors introduced the δω-Appell polynomial sets which are defined by

δωPn+1(x) = (n + 1)Pn(x), n ≥ 0,

where

δω

(
f (x)

)
:=

�ω(f (x))
ω

:=
f (x + ω) – f (x)

ω
, ω �= 0.

They proved an equivalent definition in terms of the generating function:

A(t)(1 + ωt)
x
ω =

∞∑

n=0

Pn(ω; x)
n!

tn,

where

A(t) =
∞∑

k=0

aktk , a0 �= 0.
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It has also been shown in [3] that among all the δω- Appell polynomials, d-orthogonal
polynomial sets should have the generating function of the form

G(x, t) = exp
(
Hd(t)

)
(1 + ωt)

x
ω =

∞∑

n=0

Pn(x)
n!

tn,

where Hd is a polynomial of degree d. In the special case

Hd(t) = –at, a �= 0,

we have the polynomials generated as follows:

exp(–at)(1 + ωt)
x
ω =

∞∑

n=0

Pn(x)
n!

tn, a �= 0.

These polynomials can be called ω-Charlier polynomials, since the case ω = 1 gives the
usual Charlier polynomials.

On the other hand, in a recent paper, the multiple �ω-Appell polynomials were defined
[8] by the generating function

A(t1, t2, . . . , tn)
(
1 + ω(t1 + t2 + · · · + tr)

) x
ω

=
∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nr=0

P−→n (x)
tn1
1 tn2

2 · · · tnr
r

n1!n2! · · ·nr !
. (1)

Inspired by these observations, in this paper we aim to introduce the ω-multiple Charlier
polynomials starting from the multiple orthogonality relations with respect to the weight
function of the form

wi(x) =
ax

i
�ω(x + ω)

, x ∈R
+, i = 1, . . . r,

and investigate certain of their properties such as raising operator, Rodrigues formula,
explicit representation and generating function. We also obtain an (r + 1)th order differ-
ence equation and give some special examples for certain choices of ω. So it can be eas-
ily observed from the generating function of ω-multiple Charlier polynomials that these
polynomials are examples of �ω-multiple Appell polynomials.

We will start by recalling some basic knowledge about the discrete orthogonal and dis-
crete multiple orthogonal polynomials.

The nth degree monic orthogonal polynomial pn is defined by

∫
pn(x)xk dμ(x) = 0, k = 0, 1, 2, . . . , n – 1,

where μ is a positive measure on the real line. In general, in the case of discrete orthogonal
polynomials, the term xk is replaced by (–x)k , since �(–x)k = –k(–x)k–1, where

(a)k = a(a + 1) . . . (a + k – 1)
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is the Pochhammer symbol and

�f (x) = f (x + 1) – f (x),

is the forward difference operator.
The classical orthogonal polynomials (on a linear lattice) of a discrete variable are the

Hahn, Meixner, Kravchuk and Charlier polynomials. The main concern of this paper is
the Charlier polynomials.

The orthogonality measure (Poisson distribution) for Charlier polynomials is

μ =
∞∑

k=0

ak

k!
δk ,

with k ∈N (N := {0, 1, 2, . . .}) and a > 0.
The type II multiple orthogonal polynomials p−→n of degree ≤ |−→n | := n1 + · · · + nr (r ≥ 2)

with respect to r non-negative measures μ1, . . . ,μr on R, are defined by
∫

Ii

p−→n (x)xk dμi(x) = 0, k = 0, 1, . . . , ni – 1 (i = 1, . . . , r). (2)

Here

supp(μi) =
{

x ∈R : μi
(
(x – ε, x + ε)

)
> 0 for all ε > 0

}

and Ii (i = 1, 2, . . . , r) is the smallest interval containing supp(μi). Conditions (2) give |−→n |
linear equations for the |−→n | + 1 unknown coefficients of p−→n . If p−→n is unique (up to a
multiplicative factor) and has degree |−→n |, then −→n is said to be normal. In general, the
monic polynomials are considered.

In the case where we have r non-negative discrete measures on R:

μi =
Ni∑

m=0

ρi,mδxi,m , ρi,m > 0, xi,m ∈R, Ni ∈N∪ {∞}, i = 1, . . . , r,

where all xi,m are different for each m = 0, 1, . . . , Ni (i = 1, 2, . . . , r), we have the discrete
multiple orthogonal polynomials (on the linear lattice), and the above orthogonality con-
ditions can be written as

∞∑

j=0

p−→n (j)(–j)kρi,j = 0, k = 0, 1, . . . , ni – 1, i = 1, . . . , r, (3)

where p−→n is a polynomial of degree ≤ |−→n |.
In this paper, we pay attention to the AT system of r non-negative discrete measures;

we recall its definition.

Definition 1.1 ([1]) An AT system of r non-negative discrete measures is a system of
measures

μi =
N∑

m=0

ρi,mδxm , ρi,m > 0, xm ∈ R, N ∈N∪ {+∞}, i = 1, . . . , r,
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where supp(μi) (i = 1, . . . , r) is the closure of xm and the orthogonality intervals (2) are the
same, namely I . It is also assumed that there exist r continuous functions w1, . . . , wr on I
with wi(xm) = ρi,m (m = 1, . . . , N , i = 1, . . . , r) such that the |−→n | functions

{
w1, xw1, . . . , xn1–1w1, w2, xw2, . . . , xn2–1w2, . . . , wr , xwr , . . . , xnr–1wr

}
,

form a Chebyshev system on I for each multi-index |−→n | < N + 1. This means that all the
linear combinations of the form

r∑

i=1

Qni–1wi(x),

where Qni–1 is a polynomial of degree ≤ ni – 1, has at most |−→n | – 1 zeros on I .

Remark 1.1 If we have r continuous functions w1, . . . , wr on I with wi(xm) = ρi,m, then the
orthogonality conditions (3) can be written as

∞∑

j=0

p−→n (j)(–j)kwi(j) = 0, k = 0, 1, . . . , ni – 1, i = 1, . . . , r.

As is pointed out in [1], in an AT system every discrete multiple orthogonal polynomials
of type II corresponding to the multi-index −→n has exact degree |−→n |, and every multi-
index −→n with |−→n | < N + 1 is normal.

Recently, some discrete multiple orthogonal polynomials and their structural properties
have been studied in [1]. Difference equations for discrete classical multiple orthogonal
polynomials have been studied in [5]. In [7], the ratio asymptotics and the zeros of multiple
Charlier polynomials have been investigated. Nearest neighbor recurrence relations for
multiple orthogonal polynomials were investigated in [10]. The (r + 1)th order difference
equations for the multiple Charlier and Meixner polynomials have been studied in [9].
Furthermore, in [2], the q-Charlier multiple orthogonal polynomials and some of their
structural properties were studied.

The main aim of this paper is to extend the idea of discrete multiple orthogonality to
more general linear lattice ωN = {0,ω, 2ω, . . .} for the ω-multiple Charlier polynomials. We
note that in a recent paper this type of discrete orthogonality is used to define ω-multiple
Meixner polynomials [11].

We organize the paper as follows: In Sect. 2, we define ω-multiple Charlier polynomials
and obtain a raising operator and the Rodrigues formula for them. In Sect. 3, the explicit
representation and generating function are given for the ω-multiple Charlier polynomials.
In Sect. 4, recurrence relations are given. In Sect. 5, we obtain (r + 1)th order difference
equations satisfied by ω-multiple Charlier polynomials. In Sect. 6, as an illustrative exam-
ple, we consider the case ω = 3

2 and exhibit our main results for this particular case. In the
last section, it is shown that the special cases of the results obtained in Sects. 2, 3, 4 and
5 coincide with the corresponding results for multiple Charlier polynomials obtained in
the earlier papers. Some concluding remarks are also stated.
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2 Discrete ω-multiple Charlier orthogonal polynomials
In this section, we define ω-multiple Charlier polynomials. We present a raising operator
and the Rodrigues formula for them. We start by defining the discrete multiple orthogo-
nality on the linear lattice ωN = {0,ω, 2ω, . . .} (ω > 0) and call them ω-multiple orthogonal
polynomials.

Definition 2.1 The ω-multiple orthogonal polynomials are defined as

∞∑

k=0

p−→n (ωk)(–ωk)j,ωwi(ωk) = 0, j = 0, . . . , ni – 1, i = 1, 2, . . . , r,

where ω is a fixed positive real number, −→n = (n1, . . . , nr) and p−→n is a polynomial of degree
|−→n | and

(–ωk)j,ω = (–ωk)(–ωk + ω) . . .
(
–ωk + ω(j – 1)

)

= ωj(–k)j.

Now we choose the orthogonality measures as

μi =
+∞∑

k=0

aωk
i

�ω(ωk + ω)
δωk , ai > 0, i = 1, . . . , r,

where a1, . . . , ar are different parameters and

�k(x) =
∫ ∞

0
tx–1e– tk

k dt, x > 0

is the k-gamma function [6].
For each measure the weights form an extended Poisson distribution on ωN (ωN =

{0,ω, 2ω, . . .}). It is easily seen from Example 2.1 in [1] that these r measures form a
Chebyshev system on R

+ for every −→n = (n1, . . . , nr) ∈ ωNr since the weight functions,

wi(x) =
ax

i
�ω(x + ω)

, x ∈R
+, i = 1, . . . , r,

are continuous and they have no zeros on R
+. So every multi-index is normal and the

monic solution is unique.
The corresponding multiple orthogonality conditions are given on ωN as

∞∑

k=0

C
−→a−→n (ωk)(–ωk)j,ω

aωk
i

�ω(ωk + ω)
= 0, j = 0, . . . , ni – 1, i = 1, 2, . . . , r, (4)

where −→n = (n1, . . . , nr) and −→a = (a1, . . . , ar). We represent these polynomials by C
−→a−→n and

call them ω-multiple Charlier orthogonal polynomials.
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Theorem 2.2 The raising relation for the ω-multiple Charlier polynomials is given as

aω
i

wi(x)
∇ω

[
wi(x)C

−→a−→n (x)
]

= –C
−→a−→n +−→ei

(x), i = 1, . . . , r. (5)

where ∇ωf (x) = f (x) – f (x – ω) and −→e i = (0, . . . , 0, 1, . . . , 0).

Proof Applying the product rule ∇ω[f (x)g(x)] = f (x)∇ωg(x) + g(x – ω)∇ωf (x), we have

∇ω

[
wi(x)C

−→a−→n (x)
]

= wi(x)∇ωC
−→a−→n (x) + C

−→a−→n (x – ω)∇ωwi(x). (6)

Since ∇ωwi(x) = wi(x)[1 – x
aω

i
], we get by using (6)

∇ω

[
wi(x)C

−→a−→n (x)
]

= wi(x)
[
∇ωC

−→a−→n (x) + C
−→a−→n (x – ω)

[
1 –

x
aω

i

]]

= –
wi(x)

aω
i

P
−→
α−→n +−→ei

(x). (7)

Hence

∞∑

x=0

(–x)j,ω∇ω

[
wi(x)C

−→a−→n (x)
]

= –
1

aω
i

∞∑

x=0

wi(x)(–x)j,ωP
−→a−→n +−→e i

(x).

Applying the ω-summation by parts formula, which is

∞∑

x=0

�ω

[
f (ωx)

]
g(ωx) = –

∞∑

x=0

∇ω

[
g(ωx)

]
f (ωx), g(–ω) = 0,

we get

∞∑

x=0

(–ωx)j,ω∇ω

[
wi(ωx)C

−→a−→n (ωx)
]

= –
∞∑

x=0

�ω

[
(–ωx)j,ω

]
wi(ωx)C

−→a−→n (ωx).

Since �ω(–ωx)j,ω = –ωj(–ωx)j–1,ω , we have

∞∑

x=0

ωj(–ωx)j–1,ωwi(ωx)C
−→a−→n (ωx) = –

1
aω

i

∞∑

x=0

wi(ωx)(–ωx)j,ωP
−→a−→n +−→ei

(ωx).

Then, for j = 0, . . . , n, the summation on the left will be zero from the ω-multiple orthog-
onality conditions. Hence

–
1

aω
i

∞∑

x=0

wi(ωx)(–ωx)j,ωP
−→a−→n +−→ei

(ωx) = 0. (8)

By the uniqueness of the ω-multiple orthogonal polynomials, we have

P
−→a−→n +−→ei

(x) = C
−→a−→n +−→ei

(x).

Considering the above equality in (7), the proof is completed. �
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Theorem 2.3 The Rodrigues formula for the ω-multiple Charlier polynomials is given by

C
−→a−→n (x) =

[ r∏

j=1

(
–aω

j
)nj

]

�ω(x + ω)

[ r∏

i=1

(
1
ax

i
∇ni

ω

(
ax

i
))

](
1

�ω(x + ω)

)
. (9)

Proof We will give the proof for the case r = 2. The proof of the general case is similar.
Repeatedly using the raising operators, we find, since Ca1,a2

0,0 (x) = 1, that

Ca1,a2
n1,n2 (x) =

(–aω
1 )n1 (–aω

2 )n2

ax
1ax

2
�ω(x + ω)∇n1

ω

[
(
ax

1
)∇n2

ω

[
(
ax

2
) 1
�ω(x + ω)

]]

=

[ 2∏

j=1

(
–aω

j
)nj

]

�ω(x + ω)

[ 2∏

i=1

(
1
ax

i
∇ni

ω

(
ax

i
))

](
1

�ω(x + ω)

)
.

Hence, we get (9) for r = 2. �

3 Explicit representation and generating function
In this section, we use the Rodrigues type formula (9) to give the explicit representation
of the multiple ω-Charlier polynomials. Furthermore, we obtain the generating function
for these polynomials.

Theorem 3.1 The explicit representation for the ω-multiple Charlier polynomials is given
by

C
−→a−→n (x) =

(
–aω

1
)n1(–aω

2
)n2 . . .

(
–aω

r
)nr

n1∑

k1=0

n2∑

k2=0

· · ·
nr∑

kr=0

(–n1)k1 (–n2)k2 . . . (–nr)kr

k1!k2! . . . kr !

×
(

–
x
ω

)

k1+k2+···+kr

((
–

1
a1

)ω

ω

)k1

· · ·
((

–
1
ar

)ω

ω

)kr

. (10)

Proof We will give the proof for r = 2. The general case (10) can be proved in a similar
manner. Using (9) for r = 2, we write

Ca1,a2
n1,n2 (x) =

(
–aω

1
)n1(–aω

2
)n2

�ω(x + ω)
1
ax

1
∇n1

ω

(
ax

1
)( 1

ax
2
∇n2

ω

ax
2

�ω(x + ω)

)
.

Since ∇n
ωf (x) =

∑n
i=1(–1)i(n

i
)
f (x – iω), we have

Ca1,a2
n1,n2 (x) =

(
–aω

1
)n1(–aω

2
)n2

�ω(x + ω)
n2∑

k=0

1
ax

2

(
n2

k

)
(–1)kax–kω

2

×
(

1
ax

1
∇n1

ω

(
ax

1
�ω(x + ω – kω)

))

=
(
–aω

1
)n1(–aω

2
)n2

�ω(x + ω)
n2∑

k=0

(
n2

k

)
a–kω

2

n1∑

m=0

(
n1

m

)
(–1)k+m

× a–mω
1

�ω(x + ω – kω – mω)
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=
(
–aω

1
)n1(–aω

2
)n2

n1∑

m=0

n2∑

k=0

(–n1)m(–n2)k
a–mω

1
m!

a–kω
2
k!

× �ω(x + ω)
�ω(x + ω – kω – mω)

(11)

=
(
–aω

1
)n1(–aω

2
)n2

n1∑

m=0

n2∑

k=0

(–n1)m(–n2)k(– x
ω

)k+m

m!k!

×
((

–
1
a1

)ω

ω

)m((
–

1
a2

)ω

ω

)k

.

Whence the result. �

Corollary 3.2 Equation (11) can be written as

Ca1,a2
n1,n2 (x) =

(
–aω

1
)n1(–aω

2
)n2 lim

γ→+∞ F2

(
–

x
ω

, –n1, –n2;γ ,γ ;
(

–
1
a1

)ω

γω,
(

–
1
a2

)ω

γω

)

where

F2
(
α,β ,β ′;γ ,γ ′; x, y

)
=

+∞∑

m=0

+∞∑

n=0

(α)m+n(β)m(β ′)n

(γ )m(γ ′)nm!n!
xmyn

is the second Appell hypergeometric functions of two variables [4].

Theorem 3.3 The ω-multiple Charlier polynomials have the following generating function

∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nr=0

C
−→a−→n (x)

tn1
1 tn2

2 . . . tnr
r

n1!n2! . . . nr !

= (1 + ωt1 + ωt2 + · · · + ωtr)
x
ω exp

(
–aω

1 t1 – · · · – aω
r tr

)
(12)

( r∑

i=1

|ti| < ω–r

)

.

Proof Using the explicit form of the polynomials given in Theorem 3.1, we can write

∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nr=0

C
−→a−→n (x)

tn1
1 tn2

2 . . . tnr
r

n1!n2! . . . nr !

=
∞∑

n1=0

· · ·
∞∑

nr=0

n1∑

k1=0

· · ·
nr∑

kr=0

(–aω
1 )n1 . . . (–aω

r )nr (–n1)k1 . . . (–nr)kr

k1!k2! . . . kr !

(
–

x
ω

)

|−→k |

×
((

–
1
a1

)ω

ω

)k1((
–

1
a2

)ω

ω

)k2

· · ·
((

–
1
ar

)ω

ω

)kr tn1
1 tn2

2 . . . tnr
r

n1!n2! . . . nr !
.
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Using the Cauchy product of the series, we get for
∑r

i=1 |ti| < ω–r

∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nr=0

C
−→a−→n (x)

tn1
1 tn2

2 . . . tnr
r

n1!n2! . . . nr !

=
∞∑

k1=0

· · ·
∞∑

kr=0

(–ωt1)k1 . . . (–ωtr)kr

k1! . . . kr !

(
–

x
ω

)

|−→k |

∞∑

l1=0

· · ·
∞∑

lr=0

(–aω
1 t1)l1 . . . (–aω

r tr)lr

l1! . . . lr !

= (1 + ωt1 + ωt2 + · · · + ωtr)
x
ω exp

(
–aω

1 t1 – · · · – aω
r tr

)
.

Whence the result. �

Remark 3.1 It can be easily seen from (1) and (12) that ω-multiple Charlier polynomials
are an example of the �ω-multiple Appell polynomials.

4 Recurrence relations
The main aim of this section is to obtain some recurrence relations for ω-multiple Charlier
polynomials. Throughout this section, we concentrate on the case r = 2, since the proof
techniques for the general r will be similar.

Proposition 4.1 Let G(x, t1, t2) = (1 + ωt1 + ωt2) x
ω e–(aω

1 t1+aω
2 t2). We have the properties

∂

∂t1
G(x, t1, t2) –

∂

∂t2
G(x, t1, t2) =

(
aω

2 – aω
1
)
G(x, t1, t2) (13)

and

(1 + ωt1 + ωt2)
∂

∂t1
G(x, t1, t2) =

(
x – aω

1 (1 + ωt1 + ωt2)
)
G(x, t1, t2). (14)

Proof The proofs can be given by elementary calculations. �

Theorem 4.2 The recurrence relations

(
aω

2 – aω
1
)
Ca1,a2

n1,n2 (x) = Ca1,a2
n1+1,n2 (x) – Ca1,a2

n1,n2+1(x), (15)

xCa1,a2
n1,n2 (x) = Ca1,a2

n1+1,n2 (x) +
(
aω

1 + ωn1 + ωn2
)
Ca1,a2

n1,n2 (x)

+
(
ωaω

1 n1 + ωaω
2 n2

)
Ca1,a2

n1,n2–1(x) + n1aω
1 ω

(
aω

1 – aω
2
)
Ca1,a2

n1–1,n2–1(x), (16)

and

xCa1,a2
n1,n2 (x) = Ca1,a2

n1+1,n2 (x) +
(
aω

1 + ωn1 + ωn2
)
Ca1,a2

n1,n2 (x)

+ ωaω
2 n2Ca1,a2

n1,n2–1(x) + ωaω
1 n1Ca1,a2

n1–1,n2 (x), (17)

hold for the ω-multiple Charlier polynomials.
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Proof Using (13), we get

∞∑

n1=0

∞∑

n2=0

[(
aω

2 – aω
1
)
Ca1,a2

n1,n2 (x)
] tn1

1
n1!

tn2
2

n2!

=
∞∑

n1=0

∞∑

n2=0

[
Ca1,a2

n1+1,n2 (x) – Ca1,a2
n1,n2+1(x)

] tn1
1

n1!
tn2
2

n2!
.

Comparing the coefficients of tn1
1

n1!
tn2
2

n2! , (15) follows.
The left hand side of (14) can be written as

(1 + ωt1 + ωt2)
∂

∂t1
G(x, t1, t2)

= (1 + ωt1 + ωt2)
∞∑

n1=0

∞∑

n2=0

Ca1,a2
n1,n2 (x)

tn1–1
1

(n1 – 1)!
tn2
2

n2!

=
∞∑

n1=0

∞∑

n2=0

[
Ca1,a2

n1+1,n2 (x) + ωn1Ca1,a2
n1,n2 (x) + ωn2Ca1,a2

n1+1,n2–1(x)
] tn1

1
n1!

tn2
2

n2!
. (18)

The right hand side of (14) will be

(
x – aω

1 (1 + ωt1 + ωt2)
)
G(x, t1, t2)

=
(
x – aω

1 (1 + ωt1 + ωt2)
) ∞∑

n1=0

∞∑

n2=0

Ca1,a2
n1,n2 (x)

tn1
1

n1!
tn2
2

n2!

=
∞∑

n1=0

∞∑

n2=0

[(
x – aω

1
)
Ca1,a2

n1,n2 (x) – aω
1 ωn1Ca1,a2

n1–1,n2 (x) – aω
1 ωn2Ca1,a2

n1,n2–1(x)
]

× tn1
1

n1!
tn2
2

n2!
. (19)

Combining (18) and (19), we get

Ca1,a2
n1+1,n2 (x) + ωn1Ca1,a2

n1,n2 (x) + ωn2Ca1,a2
n1+1,n2–1(x)

=
(
x – aω

1
)
Ca1,a2

n1,n2 (x) – aω
1 ωn1Ca1,a2

n1–1,n2 (x) – aω
1 ωn2Ca1,a2

n1,n2–1(x). (20)

From (15), replacing n2 by n2 – 1 and n1 by n1 – 1, we have

Ca1,a2
n1+1,n2–1(x) = Ca1,a2

n1,n2 (x) +
(
aω

2 – aω
1
)
Ca1,a2

n1,n2–1(x) (21)

and

Ca1,a2
n1–1,n2 (x) = Ca1,a2

n1,n2–1(x) –
(
aω

2 – aω
1
)
Ca1,a2

n1–1,n2–1(x), (22)

respectively.
Using (21) and (22), we get (16).
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Using (22), we have

(
aω

1 – aω
2
)
Ca1,a2

n1–1,n2–1(x) = Ca1,a2
n1–1,n2 (x) – Ca1,a2

n1,n2–1(x). (23)

Comparing (23) and (16), we get (17). �

5 Difference equations for ω-multiple Charlier polynomials
In this section, we obtain the (r + 1)th difference equation for ω-multiple Charlier poly-
nomials. As a corollary, we give the third order difference equation for the case r = 2. We
start with the following theorem which will be needed for the main result.

Theorem 5.1 The raising operator can be rewritten as

Lai

[
C

−→a−→n (x)
]

= –C
−→a−→n +−→ei

(x), i = 1, 2, . . . , r, (24)

where −→ei = (0, . . . , 0, 1, . . . , 0) and Lai [·] is defined by

Lai [y] = x∇ωy +
(
aω

i – x
)
y.

Proof From the raising relation (5), we have

aω
i ∇ω

[
wi(x)C

−→a−→n (x)
]

= –wi(x)C
−→a−→n +−→ei

(x).

Applying the ω-product rule, we can write

aω
i
[
C

−→a−→n (x)∇ωwi(x) + wi(x – ω)∇ωC
−→a−→n (x)

]
= –wi(x)C

−→a−→n +−→ei
(x). (25)

Since ∇ωwi(x) = wi(x)[1 – x
aiω

], we get by using (25)

aω
i

[
C

−→a−→n (x)wi(x)
[

1 –
x

aω
i

]
+

ax–ω
i

�ω(x)
∇ωC

−→a−→n (x)
]

= –wi(x)C
−→a−→n +−→ei

(x).

Hence

x∇ωC
−→a−→n (x) +

(
aω

i – x
)
C

−→a−→n (x) = –C
−→a−→n +−→ei

(x),

and therefore

Lai

[
C

−→a−→n (x)
]

= x∇ωC
−→a−→n (x) +

(
aω

i – x
)
C

−→a−→n (x),

where

Lai

[
C

−→a−→n (x)
]

= –C
−→a−→n +−→ei

(x).

This completes the proof. �
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Theorem 5.2 The lowering operator of the polynomials is determined from the following
relation:

�ωC
−→a−→n (x) =

r∑

i=1

ωniC
−→a−→n –−→ei

(x), (26)

where −→ei = (0, . . . , 1, . . . , 0).

Proof Applying �ω on both sides of (12), we get

∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nr=0

�ωC
−→a−→n (x)

tn1
1 tn2

2 . . . tnr
r

n1!n2! . . . nr !

= �ω

[
(1 + ωt1 + ωt2 + · · · + ωtr)

x
ω exp

(
–aω

1 t1 – · · · – aω
r tr

)]

= exp
(
–aω

1 t1 – · · · – aω
r tr

)
�ω

[
(1 + ωt1 + ωt2 + · · · + ωtr)

x
ω
]

=
∞∑

n1=0

· · ·
∞∑

nr=0

(
ωn1C

−→a
n1–1,...,nr (x) + · · · + ωnrC

−→a
n1,...,nr–1(x)

) tn1
1 tn2

2 . . . tnr
r

n1!n2! . . . nr !
.

Comparing the coefficients of tn1
1 tn2

2 ...tnr
r

n1!n2!...nr ! , we get the result. �

Corollary 5.3 In particular, if r = 2,

�ωCa1,a2
n1,n2 (x) = ωn1Ca1,a2

n1–1,n2 + ωn2Ca1,a2
n1,n2–1(x).

Theorem 5.4 The ω-multiple Charlier polynomial {C−→a−→n (x)}∞|n|=0 satisfies the following (r +
1) order difference equation:

La1 La2 · · ·Lar

[
�ωC

−→a−→n (x)
]

+
r∑

i=1

ωniLa1 La2 . . . Lai–1Lai+1 . . . Lar

[
C

−→a−→n (x)
]

= 0,

where Lai [·] is the raising operator (i = 1, . . . , r) given in Theorem 5.1..

Proof Applying La1 . . . Lar to both sides of (26), we get

La1 . . . Lar

[
�ωC

−→a−→n (x)
]

=
r∑

i=1

ωniLa1 . . . Lar C
−→a−→n –−→ei

(x).

Since Laj Lak (y) = Lak Laj (y) for aj, ak ∈R, we obtain for i = 1, 2, . . . , r

La1 . . . Lar = La1 . . . Lai–1 Lai Lai+1 Lai+2 . . . Lar

= La1 . . . Lai–1 Lai+1 Lai Lai+2 . . . Lar

...

= La1 . . . Lai–1 Lai+1 . . . Lar Lai .
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Hence

La1 . . . Lar

[
�ωC

−→a−→n (x)
]

=
r∑

i=1

ωniLa1 . . . Lai–1 Lai+1 . . . Lar Lai

[
C

−→a−→n –−→ei
(x)

]
.

Using (24) with −→n replaced by −→n – −→ei , we get the result. �

Corollary 5.5 The ω-multiple Charlier polynomial {Ca1,a2
n1,n2 (x)}∞n1+n2=0 satisfies the following

difference equation:

x(x – ω)�ω∇2
ωy + x

(
2ω + aω

1 + aω
2 – 2x

)
�ω∇ωy +

[(
aω

1 – x
)(

aω
2 – x

)
– xω

]
�ωy

+ (ωn1 + ωn2)x∇ωy +
(
n1

(
aω

2 – x
)

+ n2
(
aω

1 – x
))

ωy = 0. (27)

6 Special cases of the ω-multiple Charlier polynomials
In this section, as an illustrative example of our new definition and its main results, we
consider the case ω = 3

2 and define 3
2 -multiple Charlier polynomials. The corresponding

consequences of our main results for 3
2 -multiple Charlier polynomials are also given.

Taking the weight function as

wi(x) =
ax

i

x( 3
2 ) 2x–3

3 �( 2x
3 )

,

we can define the 3
2 -multiple Charlier polynomial by the following orthogonality condi-

tions:

∞∑

k=0

C
−→a−→n

(
3k
2

)(
3
2

)j

(–k)j
a

3k
2

i

( 3k
2 )� 3

2
( 3k

2 )
= 0, j = 0, . . . , ni – 1, i = 1, . . . r.

Their explicit representation can be written from Theorem 3.1 as

C
−→a−→n (x) = (–a1)

3n1
2 . . . (–ar)

3nr
2

n1∑

k1=0

n2∑

k2=0

· · ·
nr∑

kr=0

(–n1)k1 . . . (–nr)kr

k1! . . . kr !

×
(

–
2x
3

)

k1+···+kr

(
–

1
a1

) 3k1
2 · · ·

(
–

1
ar

) 3kr
2

(
3
2

)k1+k2+···+kr

.

The generating function of the 3
2 -multiple Charlier polynomials is written from Theo-

rem 3.3 as

∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nr=0

C
−→a−→n (x)

tn1
1 tn2

2 . . . tnr
r

n1!n2! . . . nr !

=
(

1 +
3
2

(t1 + t2 + · · · + tr)
) 2x

3
exp

(
–a

3
2
1 t1 – a

3
2
2 t2 – · · · – a

3
2
r tr

)

( r∑

i=1

|ti| <
(

2
3

)r
)

.
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Their recurrence relations can be written from Theorem 4.2 as

(
a

3
2
2 – a

3
2
1
)
Ca1,a2

n1,n2 (x) = Ca1,a2
n1+1,n2 (x) – Ca1,a2

n1,n2+1(x),

xCa1,a2
n1,n2 (x) = Ca1,a2

n1+1,n2 (x) +
(

a
3
2
1 +

3
2

(n1 + n2)
)

Ca1,a2
n1,n2 (x)

+
(

3
2
(
a

3
2
1 n1 + a

3
2
2 n2

)
)

Ca1,a2
n1,n2–1(x) +

3
2

n1a
3
2
1
(
a

3
2
1 – a

3
2
2
)
Ca1,a2

n1–1,n2–1(x),

and

xCa1,a2
n1,n2 (x) = Ca1,a2

n1+1,n2 (x) +
(

a
3
2
1 +

3
2

(n1 + n2)
)

Ca1,a2
n1,n2 (x)

+
3
2

a
3
2
2 n2Ca1,a2

n1,n2–1(x) +
3
2

a
3
2
1 n1Ca1,a2

n1–1,n2 (x).

The difference equation of the 3
2 -multiple Charlier polynomials for the case r = 2 is

x
(

x –
3
2

)
� 3

2
∇2

3
2

y + x
(
3 + a

3
2
1 + a

3
2
2 – 2x

)
� 3

2
∇ 3

2
y +

[(
a

3
2
1 – x

)(
a

3
2
2 – x

)
–

3x
2

]
� 3

2
y

+
3
2

(n1 + n2)x∇ 3
2

y +
(
n1

(
a

3
2
2 – x

)
+ n2

(
a

3
2
1 – x

))3y
2

= 0.

7 Concluding remarks and observations
The multiple Charlier polynomials C

−→a−→n were introduced in [1]. The raising operators and
Rodrigues formula were obtained. The explicit representation, recurrence relation and
generating function were investigated in [1] and [7]. Also an (r + 1)th order difference
equation was investigated in [5].

In this paper, we define the ω-multiple Charlier polynomials by the orthogonality condi-
tion (4). We obtain the raising relation, the Rodrigues formula, an explicit representation,
a recurrence relation and a generating function. Also an (r + 1)th order difference equation
was obtained. All our results coincide in the case ω = 1 with the corresponding versions
of the multiple Charlier polynomials. For instance, this is so in the case ω = 1.

The raising relation (5) coincides with the raising operators given in ([1], pp. 30). That
is

ai

wi(x)
∇(

wi(x)C
−→a−→n (x)

)
= –C−→n +−→ei

(x), i = 1, . . . , r,

where

wi(x) =
ax

i
�(x + 1)

, x ∈ R
+, i = 1, . . . , r.

The Rodrigues formula (9) coincides with the Rodrigues formula given in ([1], pp. 31).
That is,

C
−→a−→n (x) =

[ r∏

j=1

(–aj)nj

]

�(x + 1)

[ r∏

i=1

(
1
ax

i
∇ni ax

i

)](
1

�(x + 1)

)
.
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The explicit representation (10) coincides with the explicit representation given in ([7],
pp. 824). That is,

C
−→a−→n (x) =

n1∑

k1=0

· · ·
nr∑

kr=0

(–n1)k1 · · · (–nr)kr (–x)k1+···+kr
(–a1)n1–k1 . . . (–ar)nr–kr

k1! . . . kr !
.

The recurrence relation (r = 2) (16) coincides with the recurrence relation (r = 2) given
in ([1], pp. 32). That is,

xCa1,a2
n1,n2 (x) = Ca1,a2

n1+1,n2 (x) + (a1 + n1 + n2)Ca1,a2
n1,n2 (x)

+ (a1n1 + a2n2)Ca1,a2
n1,n2–1(x) + n1a1(a1 – a2)Ca1,a2

n1–1,n2–1.

The generating function (12) coincides with the generating function given in ([7], pp.
825). That is,

∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nr=0

C
−→a−→n (x)

tn1
1 tn2

2 . . . tnr
r

n1!n2! . . . nr !

= (1 + t1 + t2 + · · · + tr)x exp(–a1t1 – a2t2 – · · · – artr)
( r∑

j=1

|tj| < 1

)

.

The third order difference equation (27) coincides with the third order difference equa-
tion in ([5], pp. 137). That is,

x(x – 1)�∇2y + x(2 + a1 + a2 – 2x)�∇y +
[
(a1 – x)(a2 – x) – x

]
�y

+ (n1 + n2)x∇y +
[
n1(a2 – x) + n2(a1 – x)

]
y = 0.
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