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Abstract
In this work, we propose a new dynamic mathematical model framework governed
by a system of differential equations that integrates both COVID-19 and cholera
outbreaks. The estimations of the model parameters are based on the outbreaks of
COVID-19 and cholera in Yemen from January 1, 2020 to May 30, 2020. Moreover, we
present an optimal control model for minimizing both the number of infected people
and the cost associated with each control. Four preventive measures are to be taken
to control the outbreaks: social distancing, lockdown, the number of tests, and the
number of chlorine water tablets (CWTs). Under the current conditions and resources
available in Yemen, various policies are simulated to evaluate the optimal policy. The
results obtained confirm that the policy of providing resources for the distribution of
CWTs, providing sufficient resources for testing with an average social distancing, and
quarantining of infected individuals has significant effects on flattening the epidemic
curves.
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1 Introduction
Recently, Yemen has suffered from many disasters and fierce armed conflicts. It is reported
by the UN that Yemen is going through one of the worst humanitarian crises all over the
world. The political armed conflict has led to a humanitarian crisis in all fields of life, i.e.,
more than 85% of the population are suffering from the lack of basic essentials such as
food, water, electricity, and medicines. The scarcity of drinkable water has resulted in the
spread of infectious diseases such as cholera.

In Yemen, cholera has become the largest epidemic in the modern-day world. Accord-
ing to the World Health Organization (WHO), the cumulative total number of suspected
infected individuals from January 2018 to May 2020 is (1,371,819) with 1566 deaths [1].
Cholera is a water-borne bacterial disease which can be transmitted to humans either
through humans or water. Several works have investigated the epidemic model of cholera
infections, such as Tian and Wang in [2], which implemented some epidemic models for
cholera through mathematical analysis. Moreover, the endemic global stability was inves-
tigated using three techniques: monotonic dynamical systems, geometric approach, and
Lyapunov functions, up to July 17, 2020. Another study is that by Dangbé et al. [3] which
identified climatic factors and human behavior parameters that minimize the spread of
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cholera tangibly or intangibly. The equilibria stabilities of ordinary differential equations
in the proposed model were investigated. This work was also applied to some localities of
Cameroon and Chad. Likewise, Kobe et al. in [4] suggested a game model of cholera that
allows individuals to select one of two programs: vaccinations or clean water consumption.
Another related study is that of NKDO Opoku, and Afriyie, C. in [5]. They developed a
mathematical model of cholera transmission dynamics of cholera and investigated the fol-
lowing two control measures: education campaign and treatment of water bodies. Berhe
in [6] provided a theoretical study of the optimally controlled model of cholera dynamics.
The model’s parameters are estimated using cholera data taken from the Oromia region,
Ethiopia. Sensitivity analyses were then given for the rate of the infected humans and that
of the recovery, as they are the most important parameters. In addition, several techniques
were proposed to reduce the number of infected persons and the overall cost associated
with each control either separately or both by monitoring the treatment and sanitation
parameters.

Furthermore, some studies have discussed the cholera epidemic in Yemen. Based on
2017 real data, Nishiura et al. in [7] predicted the peak of cholera epidemic in Yemen.
To estimate the final epidemic size, they used logistic and generalized logistic models. In
the same manner, Yang and Wang in [8] updated the susceptible-infected-recovered (SIR)
model to include a parameter measuring the availability of medical resources and facil-
ities. They also provided a mathematical analysis of the proposed model. The proposed
model was implemented on the real data taken from a cholera epidemic in Yemen from
April 2017 to May 2018. Enhancing the same study, Lemos-Paião et al. in [9] introduced
vaccination to the SIR model as a parameter for optimal control. This model was applied
to the cholera outbreak in Yemen from April 27, 2017 to April 15, 2018. Based on the same
data taken in the same period, Lemos-Paião et al. in [10] updated the SIR model to require
quarantining during the treatment period. Also, one parameter measure was used for op-
timal control, corresponding to the ratio of susceptible individuals receiving the chlorine
water tablets (CWTs) for water purification. The next related study concering cholera out-
break in Yemen in the same period was carried by Carfora and Torcicollo in [11]. In their
study, the SIR model considered parameters that reflect direct (human-to-human) and in-
direct (environment-to-human) spread. The approximation approach of the least squares
was also used to estimate the epidemiological parameters.

All the above studies have to do with cholera, on the other side; there are some that
appeared with the outbreak of COVID-19. The first confirmed case of COVID-19 in
Yemen was discovered in April 2020. Since then, the cumulative total number of in-
fected cases and deaths due to COVID-19 up to June 17, 2020 are 902 and 244 cases,
respectively. It should be noted that the announced cases are much less than the ac-
tual number of cases in Yemen due to many reasons (e.g., political or technical). Dozens
of mathematical models have been proposed to control the dynamics of the COVID-19
pandemic. Madubueze in [12] updated the SEQIHR (susceptible-exposed-quarantined-
infected-hospitalized-recovered) model to include new parameters reflecting the impact
of health education, quarantine, and isolation. These parameters were used to determine
the optimal control and to find the minimum cost associated with each control. As to Kha-
jji et al. in [13], the proposed mathematical model included the dynamic transmission of
COVID-19 between humans and animals in a region or in several regions at discrete times.
They presented some control strategies to protect the maximum number of individuals.
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Hence, the least cost and most effective strategy to be determined. Perkins and Espana
in [14] presented an optimal control analysis of the susceptible-exposed-asymptomatic-
infected-hospitalized-vaccinated (SEAIHV) model of COVID-19 dynamic transmission.
They also added a parameter representing non-pharmaceutical interventions. The op-
timal control priority was to minimize the total number of deaths versus reduced time
under control. The validity of the model was tested based on the real data taken from
US, from May 2020 through December 2021. Likewise, Wickramaarachchi and Perera
in 2020 [15] expanded the susceptible-exposed-infected-recovered (SEIR) model. They
classified the infected people into four groups: asymptomatic patients, patients with mild
symptoms, hospitalized patients, and critical patients. They also used two parameters
to reflect personal protection rate: asymptomatic people identification rate and track-
ing rate. The proposed model was implemented to fight the COVID-19 outbreak in Sri
Lanka. Yousefpour et al. [16] proposed the susceptible-exposed-asymptomatic-infected-
hospitalized-recovered (SEAIHR) model. They designed a multi-objective genetic algo-
rithm for optimal control of economic consequence strategies. Tsay et al. in [17] expanded
the susceptible-exposed-asymptomatic-infected-removed (SEAIHR) model to include the
perished class due to COVID-19 infection. Besides, an analytical comparison was pre-
sented to estimate the system parameters for USA, Italy, Spain, and Germany. Social dis-
tancing, extensive testing, and quarantining were used for dynamic optimal control. The
model aimed at minimizing social and economic costs so as to maintain the size of the
epidemic below its specific peak value. Also, the authors in [18–21] presented interest-
ing mathematical models that discussed controlling the spread of COVID-19 and allo-
cation of COVID-19 vaccines to priority groups using the MCDM approach. Besides,
several studies have provided mathematical analyses of other infectious diseases such as
TB [22–24], Ebola [25], HBV [26], HIV [27], Lassa hemorrhagic fever [28], dengue [29],
etc.

Recently, some studies on co-infection models have been carried out. Co-infection is
simultaneous infection of an individual due to the outbreak of more than one infectious
disease in the same place. The first related study to be indicated here is that of Li et al.
[30]. They proposed an epidemiological model concerned with co-infection with two dis-
eases where one of them is chronic, the other is acute. Similarly, Gao et al. [31] devel-
oped and analyzed a simple susceptible-infected-susceptible (SIS) model of co-infections.
Similarly, Tang et al. [32] proposed a mathematical model of dual-infection of dengue
and Zika virus. Again, Ghersheen et al. [33, 34] proposed SIR models to describe dual
infection in the same area. Also, Khan et al. [35] proposed a co-infection model that
includes the Atangana–Baleanu fractional derivative, which is a combination of the hu-
man immunodeficiency virus (HIV) and tuberculosis (TB). Besides, Mushayabasa and
Bhunu [36] proposed a mathematical model concerning the relationship between HIV
and cholera outbreaks. Further, Okosun and Makinde in [37] formulated an SIR model
for the concurrent infection of malaria and cholera. The authors discussed five param-
eters for optimal control: two of them were for preventing both diseases, the other two
were for controlling the treatment of each disease, and the last one for controlling the
co-infection treatment. Equally important, Okosun et al. [38] proposed a compartmental
model to address the co-infection dynamics of cholera and schistosomiasis diseases. In
the same way, Marimuthu et al. [39] investigated the impact of COVID-19 on TB patients
using the SEIR model in India. According to public health interventions, two policies were
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studied to estimate the basic reproduction number. Lam et al. [40] wrote a letter for con-
trolling the simultaneous outbreak of dengue and COVID-19 in Singapore. Doungmo et
al. in [41] discussed the coinfection of HIV with the COVID-19 based on a mathemat-
ical model, and Hezam in [42] combined the COVID-19 model and the unemployment
problem, while Zhang and Jain in [43] investigated the transmission of the Ebola and the
Covid-19 viruses.

However, studies on mathematical models of cholera infection with other infectious dis-
eases are rare. At the time of writing this paper, mathematical model studies of COVID-19
infection with other diseases are almost scarce. Besides, there is no epidemiological model
in the literature so far that implements the co-infection dynamics of cholera and COVID-
19. On the other hand, the simultaneous outbreak of both diseases in Yemen overwhelms
the fragile health care system. In fact, the control variables used to encounter any infec-
tion contribute indirectly to fighting another infection. Filling swamps, purifying water
along with pure environment and personal hygiene, for example, assist to curb cholera
outbreak, on one hand, and on the other they are significant factors in fighting COVID-19.
Likewise, social distancing leads to curbing COVID-19 and helps also to control cholera
outbreak. Therefore, we need to propose an optimal control model that combines two si-
multaneous epidemics in the same region. Hence, this is the founding motivation of this
study.

In this study, we present a formulation consisting of dynamic ordinary differential equa-
tions of an epidemiological co-infection model. This work provides the following signif-
icant contributions. Firstly, we propose a framework for mathematical model that inte-
grates COVID-19 and cholera diseases. Secondly, based on the actual data about both
infections from January 1, 2020 to May 30, 2020, we estimate parameters so as to predict
the trajectories of both outbreaks for 100 weeks. Thirdly, we propose an optimal control
model to minimize both the expected cumulative number of people infected with COVID-
19 and cholera, and the total cost associated with each control. Fourthly, by testing a novel
set of policies, we examine the responsiveness of the optimum of control inputs. We give
special emphasis on inputs related to social distancing, lockdown, number of tests, and
chlorine availability in order to determine the optimal policies that lead to infection mit-
igation. Fifthly, all the policies that have to do with COVID-19 and cholera outbreaks in
Yemen are carried out. Ultimately, under the current conditions and available resources
in Yemen, we determine the optimal policy.

What follows in this work is organized as follows. Section 2 discusses the co-infection
model formulation. Section 3 discusses the estimated parameters problem. In Sect. 4, the
optimal control model and its analysis are provided. In Sect. 5, numerical simulations are
presented. Finally, in Sect. 6, the work is summarized and concluded.

2 Model formulation
This study builds upon the models presented in [10, 11, 17]. Tsay et al. in [17] discussed
dynamic models of COVID-19, and other studies addressed cholera outbreak in Yemen.
To investigate the co-infection dynamics of COVID-19 and cholera, we subdivide the to-
tal human population into fourteen different epidemiological classes whose descriptions
are found in Table 1. Furthermore, Table 2 summarizes the parameters used in the co-
infection model.
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Table 1 Descriptions and initial values of model variables

Variables Description Initial conditions Source

N Total population size 29,825,964 [44]
S Susceptible to both COVID-19 and cholera N Assumed
E Number of exposed to COVID-19 [0,N× 10–6] [17]
A Number of asymptomatic COVID-19 individuals 0 Assumed
I1 Number of COVID-19- infected individuals 0 Assumed
R1 Recovered from COVID-19 0 Assumed
P1 Perished by COVID-19 0 Assumed
IR2 Infected with cholera after recovery from COVID-19 0 Assumed
I2 Infected with cholera I0 = 750 person [10]
R2 Recovered from cholera 0 Assumed
P2 Perished by cholera 0 Assumed
I1R Infected with COVID-19 after recovery from cholera 0 Assumed
I12 Co-infected with both cholera and COVID-19 0 Assumed
R12 Recovered from both cholera and COVID-19 0 Assumed
P12 Perished by both COVID-19 and cholera 0 Assumed
B Bacterial concentration in the environment (free

bacteria population living in the environment)
275× 103 (cell/ml) [10]

Table 2 Descriptions and values of model parameters

Parameters Description Value (range) Source

Ipeak
1 Peak limit of COVID-19 [104, 105] Assumed

Ipeak
2 Peak limit of cholera [105, 5× 105] Assumed
u1(t) Time-dynamic function to measure the social distancing

rate
[0.05, 0.5] [17]

u2(t) Time-dynamic function to measure the quarantining
rate

[0.01, 0.3] [17]

u3(t) Time-dynamic function to measure the testing rate [0.1, 0.3] [17]
u4(t) Time-dynamic function to measure the fraction of

susceptible individuals who have access to CWT for
water purification

[0.2, 1] [10]

t–1latent Latent period of the virus 0.5 days–1 [17]
αc(t) Direct transmission rate of cholera 5.5e–7 [11]
β Indirect transmission rate of cholera 0.02325/week Estimated
KB Half saturation constant 106 (cell/ml) [11]
μ1 Susceptible to COVID-19 after recovering 0, [17]
μ2 Susceptible to cholera after recovering 0.0003/week, [11]
μ12 Susceptible to both COVID-19 and cholera after

recovering
0 Assumed

ρ Infectious period for subjects with unconfirmed
infections

0.1 days–1 [17]

δ1 Infection rate with cholera from COVID-19 patient 0 Estimated
β1, β2 Recovery rate from COVID-19 and cholera 0.005, 1.5 Estimated
λ1 Infected rate of cholera after recovery from COVID-19 0 Estimated
υ1 Recovery rate from COVID-19 and cholera sequentially 0 Estimated
ω1, ω2, ω12 Death rate by COVID-19, cholera, and both 0.0447, 0.0002, 0 Estimated
α12 Infected rate by both cholera and COVID-19

simultaneously
0 Estimated

δ2 Infected rate with COVID-19 from cholera patient. 0 Estimated
ξ Shedding rate (infected) 70 (cell/ml week–1

person–1)
[11]

τ Bacteria death rate 0.233 /week [11]
λ2 Infected rate by COVID-19 after recovering from cholera 0 Estimated
υ2 Recovery rate from cholera and COVID-19 sequentially 0 Estimated
υ12 Recovery rate from both COVID-19 and cholera

simultaneously
0 Estimated

k Bacteria carrying capacity KB/2 [11]
b Allee threshold when τ = 0 KB/10 [11]
r Bacterial intrinsic growth rate 1 [11]
� A constant rate of the total population 0.3 Assumed
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Figure 1 Schematic diagram of the compartmental cholera-COVID-19 co-infection model. Please note that
f1 = (1 – u1(t))A(t) + (1 – u2(t))I1(t), f2 = αc(t)I2(t) +

βB
KB+B

(1 – u4(t)) and f3 = rB(B – b)(1 – B
k ) in the flow chart

The variables S(t), E(t), A(t), I1(t), R1(t), P1(t), IR2(t), I2(t), R2(t), P2(t), I1R(t), I12(t),
R12(t), and P12(t) correspond to the numbers of individuals in the fourteen epidemio-
logical classes at time t. The total human population at time t, denoted by X(t), is given
by

X(t) = S(t) + E(t) + A(t) + I1(t) + R1(t) + P1(t) + IR2(t) + I2(t) + R2(t) + P2(t)

+ I1R(t) + I12(t) + R12(t) + P12(t).

Moreover, the total human population is combined with the pathogen population B(t)
in the environment, where B(t) reflects the bacterial concentration for cholera infection
dynamics at time t.

The schematic diagram of the compartmental COVID-19-cholera co-infection model is
shown in Fig. 1.

The proposed co-infection model is described by the following system of equations:

dS(t)
dt

= –
(

(1 – u1(t))
N

A(t) +
(1 – u2(t))

N
I1(t) + αc(t)I2(t)

+
βB

KB + B
(
1 – u4(t)

)
+ α12

)
S(t) + μ1R1(t) + μ2R2(t) + μ12R12(t) + �, (1)

dE(t)
dt

=
(

(1 – u1(t))
N

A(t) +
(1 – u2(t))

N
I1(t)

)
S(t) – t–1

latentE(t), (2)

dA(t)
dt

= t–1
latentE(t) –

(
u3(t) + ρ

)
A(t), (3)

dI1(t)
dt

= u3(t)A(t) – (δ1 + β1 + ω1)I1(t), (4)

dR1(t)
dt

= ρA(t) + β1I1(t) – (μ1 + λ1)R1(t), (5)
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dP1(t)
dt

= ω1I1(t), (6)

dIR2(t)
dt

= λ1R1(t) – υ1IR2(t), (7)

dI12(t)
dt

= α12S(t) + δ1I1(t) + δ2I2(t) – (υ12 + ω12)I12(t), (8)

dR12(t)
dt

= υ1IR2(t) + υ2I1R(t) + υ12I12(t) – μ12R12(t), (9)

dP12(t)
dt

= ω12I12(t), (10)

dI2(t)
dt

=
(

αc(t)I2(t) +
βB

KB + B
(
1 – u4(t)

))
S(t) – (δ2 + β2 + ω2 + ξ )I2(t), (11)

dB(t)
dt

= rB(B – b)
(

1 –
B
k

)
– τB + ξ I2(t), (12)

dR2(t)
dt

= β2I2(t) – (μ2 + λ2)R2(t), (13)

dP2(t)
dt

= ω2I2(t), (14)

dI1R(t)
dt

= λ2R2(t) – υ2I1R(t). (15)

Equation (1) describes individuals susceptible to both COVID-19 and cholera. Inputs for
this epidemiological class are the fraction of the total population at a constant rate of �

and the fraction of recovered individuals from COVID-19, cholera, and both diseases with
rates of μ1, μ2, and μ12, respectively, minus individuals newly exposed to COVID-19 and
cholera. The rates of exposure to COVID-19 are governed by the time-dependent inputs
u1(t) and u2(t), which correspond to the social measures taken during the course of the
COVID-19 pandemic. While u1(t) refers to the rate of social distancing of asymptomatic
carriers (A), u2(t) refers to the rate of quarantining of infected people (I1). On the other
hand, the rate of incidence of cholera is governed by direct and indirect transmission rates.
While human-to-human interaction forms the direct transmission αc(t), the environment-
to-human transmission forms the indirect transmission βB

KB+B . The time-dependent input
u4(t) corresponds to the fraction of susceptible individuals who have access to CWT for
water purification.

Equation (2) describes individuals exposed to COVID-19. This epidemiological class
includes a fraction of susceptible individuals minus individuals exposed during the latent
period. Equation (3) describes individuals infected with COVID-19 but still asymptomatic
or unconfirmed. The individuals of this epidemiological class come from the exposed class
at a rate of t–1

latent. This class will be left either by confirmation of COVID-19 infection or
by direct recovery. Equation (4) describes confirmed infected individuals that have been
tested. The screening level is measured by a time-dependent parameter u3(t). Thus, u3(t)
is added to the other control variables u1(t), u2(t), u3(t) that will be used to verify the var-
ious measures taken during the COVID-19 epidemic. This epidemiological class will be
left either for recovery at a rate of β1, or for death at a rate of ω1, or for co-infection at a
rate of δ1. Equation (5) describes individuals recovered from COVID-19 with or without
symptoms. This class is increased due to the recovery of infected people in both classes
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from COVID-19 at rates of β1 and ρ , respectively. On the other hand, this class is de-
creased due to infection with cholera or reinfection with COVID-19 at rate of λ1 or μ1

respectively. Equation (6) describes individuals perished by COVID-19 at a rate of ω1.
Equation (7) describes infected individuals with cholera after recovering from COVID-
19. This class is increased when the COVID-19 recovered individuals get infected with
cholera at a rate of λ1. It is reduced by recovering from COVID-19 and cholera respec-
tively at a rate of υ1. Equation (8) describes individuals infected with both COVID-19 and
cholera, either consecutively or simultaneously. The inputs to this class are either the in-
fection of susceptible individuals or because a patient with one infection is infected with
the other one at rates of α12, δ1, and δ2, respectively. It is decreased by the individuals’ re-
covery at a rate of υ12 or individuals’ death at rate of ω12. Equation (9) describes individuals
recovered from both COVID-19 and cholera, either consecutively or simultaneously. It is
increased when infected individuals recover from cholera, COVID-19, or both at rates of
υ1, υ2, and υ12, respectively. It is decreased by natural death or becoming susceptible to
both infections at a rate of μ12. Equation (10) describes individuals perished due to both
COVID-19 and cholera at a rate of ω12. Equation (11) describes individuals infected with
cholera. Cholera can be transmitted either directly through human’s interaction at a rate
of αc(t) or by indirectly through bacteria ingestion with per capita contact rate of β . The
probability of transmission from the environment is represented by βB

KB+B , where KB is the
level of pathogen concentration whereabouts half of all contacts with impure water pro-
duce infection and is related to bacteria concentration B in the water. Therefore, the risk
of infection increases as long as B increases; and it decreases as u4(t) increases. People
in this class have three options for leaving this class either to get dual infection at a rate
of δ2, or to get recovered from cholera at a rate of β2, or die due to cholera at a rate of
ω2.

Equation (12) describes the environmental free bacteria. It is increased by the infected
individuals at a rate of ξ , where humans can release bacteria into the open environment.
This epidemiological class is increased by bacterial growth, which can be described by
the logistic equation rB(B – b)(1 – B

k ), where r is the intrinsic growth, k is the capacity
of bacteria carrier, and b is the Allee threshold when τ = 0. This epidemiological class is
decreased by the death of bacteria with a mortality rate of τ . Equation (13) describes indi-
viduals recovered from cholera at a rate of β2. This epidemiological class is decreased by
returning to being susceptible to both diseases or COVID-19 at rates of μ2 and λ2, respec-
tively. Equation (14) describes individuals dying due to cholera at a rate of ω2. Equation
(15) describes individuals infected with COVID-19 after recovery from cholera at a rate
of λ2. The input of this class comes when the cholera recovered individuals are infected
with COVID-19 at a rate of λ2. Also, this class will be left by recovering from cholera and
COVID-19 respectively at a rate of υ2. It is worth noting that the parameters in this work
are classified into three categories. The first category includes time-varying inputs that
reflect different rates of social distancing, quarantine, COVID-19 testing kit, and CWT
for water purification. The second one includes values to be estimated from the real data
obtained from Yemen such as transmission rate, recovery rate, and death rate. The third
category includes literature-based values.

Furthermore, we can prove that the system is well defined as the classes’ population are
positive and bounded.



Hezam et al. Advances in Difference Equations        (2021) 2021:108 Page 9 of 30

Lemma 1 (Positivity of the solution) Let the initial conditions of model system (1)–(15) be
nonnegative. Then the solutions of the proposed system are also nonnegative for all t > 0

S(t) ≥ 0, E(t) ≥ 0, A(t) ≥ 0, I1(t) ≥ 0, R1(t) ≥ 0,

P1(t) ≥ 0, IR2(t) ≥ 0, I2(t) ≥ 0, R2(t) ≥ 0, P2(t) ≥ 0,

I1R(t) ≥ 0, I12(t) ≥ 0, R12(t) ≥ 0, P12(t) ≥ 0 ∀t > 0.

Proof Let us take t1 as

t1 = sup
{

t > 0 : S(τ ) > 0, E(τ ) > 0, A(τ ) > 0, I1(τ ) > 0, R1(τ ) > 0, P1(τ ) > 0,

IR2(τ ) > 0, I2(τ ) > 0, R2(τ ) > 0, P2(τ ) > 0, I1R(τ ) > 0, I12(τ ) > 0,

R12(τ ) > 0, P12(τ ) > 0 ∀τ ∈ [0, t]
}

.

Consider S(0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I1(0) ≥ 0, R1(0) ≥ 0, P1(0) ≥ 0, IR2(0) ≥ 0, I2(0) ≥
0, R2(0) ≥ 0, P2(0) ≥ 0, I1R(0) ≥ 0, I12(0) ≥ 0, R12(0) ≥ 0, P12(0) ≥ 0.

Now, let us take Eq. (1) as an example:

dS(t)
dt

= –
(

(1 – u1(t))
N

A(t) +
(1 – u2(t))

N
I1(t) + αc(t)I2(t)

+
βB

KB + B
(
1 – u4(t)

)
+ α12

)
S(t) + μ1R1(t) + μ2R2(t) + μ12R12(t) + �.

For simplicity, we are assuming that

f4(s) =
(

(1 – u1(t))
N

A(t) +
(1 – u2(t))

N
I1(t) + αc(t)I2(t) +

βB
KB + B

(
1 – u4(t)

)
+ α12

)
.

Thus, dS(t)
dt + f4(s)S(t) = μ1R1(t) + μ2R2(t) + μ12R12(t) + �.

This leads to

d
dt

(
S(t) exp

(∫ t1

0
f4(s) ds

))
=

(
μ1R1(t) + μ2R2(t) + μ12R12(t) + �

)
exp

(∫ t1

0
f4(s) ds

)
.

Hence, we get on

S(t) = exp

(
–

∫ t1

0
f4(s) ds

)[∫ t1

0

(
μ1R1(t)+μ2R2(t)+μ12R12(t)+�

)
exp

(∫ t1

0
f4(s) ds

)]
.

This proves that S(t) > 0 for all t > 0. In the same manner, we can prove that for all fifteen
epidemiological classes. �

Lemma 2 The solutions of system (1)–(15) are bounded.

In the proposed system (1)–(15), we have two different populations, the human and the
bacteria population.
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Using the fact that the total human population at time t is X(t) and the reduced system
of system (1)–(15) except (12), we obtain:

dX(t)
dt

= � – ξ I2(t) ⇒ dX(t)
dt

≤ �.

By integrating both sides of the above equation, we have

⇒ X(t) ≤ � + X0.

Since each human epidemiological class is less than X(t), all human classes are bounded.
Hence all the solutions of system (1)–(15) related to the human and that initiating in

{R14
+ \0} are confined in the region

� =
{(

S(t), E(t), A(t), I1(t), R1(t), P1(t), IR2(t), I2(t), R2(t), P2(t),

I1R(t), I12(t), R12(t), P12(t)
) ∈R

14
+ : X < � + ε, |ε > 0, t → ∞}

.

Now, we have some cases for the bacteria class B(t).
From (12), we have

dB(t)
dt

= rB(B – b)
(

1 –
B
k

)
– τB + ξ I2(t).

Since I2(t) ≤ � + ε for all t, we obtain

dB(t)
dt

≤ rB(B – b)
(

1 –
B
k

)
– τB + ξ (� + ε).

In the absence of an infected case [11], we set

f (B) = rB(B – b)
(

1 –
B
k

)
– τB.

If

τ ≥ r(b – k)2

4k
,

then f (B) = 0 ⇔ B = 0; limB→∞ f (B) = –∞. In this case, the bacteria will become extinct.
If

τ <
r(b – k)2

4k
,

then we have two positive constants a1 > b and a2 > k given by

a1 =
r(b + k) –

√
r2(b – k)2 – 4krτ

2r
and a2 =

r(b + k) +
√

r2(b – k)2 – 4krτ
2r

such that:
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• if B(t) < a1, then the bacteria will become extinct;
• if a1 < B(t) < a2, then the bacteria will exponentially increase up to a2

• if B(t) > a2, then the bacteria will exponentially decrease up to a2,
where a1 is the Allee threshold and a2 is the carrying capacity. Hence Lemma 2.

Thus, for system (1)–(15), the population classes are positive and bounded. Hence, sys-
tem (1)–(15) is well defined.

3 Parameter estimation
Based on the real data collected from Yemen (January 1, 2020 to May 30, 2020), this work
aims to study the outbreaks of COVID-19 and cholera in the same country. The COVID-
19 data was obtained from the Center for Systems Science and Engineering (CSSE) at John
Hopkins University (https://github.com/CSSEGISandData/COVID-19). The cholera data
was obtained from the WHO and some data was taken from the health officials in Yemen.
While the cholera data was taken weekly, that of COVID-19 was taken daily. Then the
weekly data for both diseases was considered. Since the simultaneous data is required to
compare and to determine the optimal policy, the data was standardized into weekly as
that is more accurate than converting it into daily data.

To estimate the parameters, we used the least-squares regression approach, where we
minimized the mean squared error (MSE) between prediction states and their available
observation values derived from Yemen data according to Eq. (16):

min E0 =
N∑

l=0

wl
∥∥xl – x̂l(t)

∥∥2, (16)

in which wl are normalization weights and xl and x̂l represent the number of each epi-
demiological class and its predictions, respectively. Pyomo optimization modelling im-
plemented in Python is employed to solve the least-squares regression problem. The or-
thogonal collocation method is used to discretize the dynamic differential equations sys-
tem (1)–(15) taking into consideration the time domain which consists of weekly finite
elements. The means of the estimated parameters are the following: E0 = 0.28499, μ1 = 0,
μ2 = 0.00030, μ12 = 0, β = 0.02325, αc(t) = 0.25, δ1 = 0, δ2 = 0, β1 = 0.005, β2 = 1.5, λ1 = 0,
λ2 = 0, υ1 = 0, υ2 = 0, υ12 = 0, ω1 = 0.04470, ω12 = 0, ω2 = 0.0002, ξ = 40, τ = 0.333, and
α12 = 0. These estimated values of the parameters were obtained from historical data
for both infections in Yemen (January 1, 2020 to May 30, 2020), and they will be used
to solve the optimal control model in the next section. As the confirmed infected cases
of co-infection simultaneously or consecutively in Yemen are still nonexistent, the pa-
rameter values of the dual infection equal zero. By comparing the estimated values of
the parameters with the parameters estimated in [17], we find that the death rate due to
COVID-19 in Yemen is so high at the rate of 0.0447, while the death rate due to COVID-
19 in Germany is lower than other at the rate of 0.0024. According to [17] in some other
countries, as the USA, the death rate is 0.0044, in Italy it is 0.010619, and in Spain it is
0.011871. Regarding the recovered cases, Germany occupies the first position at the rate
of (0.046838), then comes Spain at the rate of 0.040129. In the third place comes Italy at
the rate of 0.016644. The USA occupies the fourth position at the rate of 0.007467, and
Yemen comes in the last position at the rate 0.005. According to [11] in 2017, while the
death and recovery rates of cholera were 0.0003 and 1.4, respectively, in this study there

https://github.com/CSSEGISandData/COVID-19
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Figure 2 Analysis and week-wise prediction using the proposed model. The black dotted lines represent the
real data, the red dotted lines represent the fitting line from the proposed model, and the red solid lines
represent the predicted data (results) using the system

is a slight improvement as the death and recovery rates of cholera are 0.0002 and 1.5, re-
spectively.

Furthermore, the predicted values of the infected, recovered, and deaths of both dis-
eases were obtained, as illustrated in Fig. 2. Note that the mortality rate due to COVID-19
is very high compared to the mortality rate due to cholera even though the number of
infected individuals with cholera is much higher than the number of infected individuals
with COVID-19.
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4 Optimal control problem
Both epidemics are optimally controlled by minimizing the total number of infected indi-
viduals and this is done by controlling time-dynamic parameters appropriate for Yemen.
The control policy that we propose aims at minimizing the number of exposed individu-
als to COVID-19 by controlling the parameters related to lockdown, social distancing, and
the number of tests. The number of infected individuals with cholera can be minimized by
increasing the distribution of CWTs for water purification for all susceptible individuals.
This helps to minimize the number of infected individuals with COVID-19 or cholera or
co-infections.

In our model, we consider four control functions u1(t), u2(t), u3(t), and u4(t). The first
u1(t) represents the social distancing rate. This is an important parameter because it can
be applied in Yemen by requiring people to distance socially, to wear masks, and to im-
prove their personal hygiene. Therefore, u1(t) assists us in examining its impact on reduc-
ing the COVID-19 outbreak. The second control function u2(t) represents the quarantine
and isolation rates. Most people in Yemen live on daily wages, which means that it is diffi-
cult to implement a complete lockdown on cities. Hence, only small values of this param-
eter are used. u2(t) allows us to investigate its impact on curbing the COVID-19 outbreak.
The third control function u3(t) represents the number of COVID-19 test kits. By increas-
ing the number of test kits, infected individuals can be discovered quickly, which means
that they can be isolated and treated promptly. Therefore, u3(t) allows us to investigate
its impact on mitigating the spread of the COVID-19 epidemic. The last control function
u4(t) represents the fraction of susceptible individuals who can get CWTs for water pu-
rification. By increasing u4(t), the water will be purer and the vector cholera and other
diseases will be eliminated. Therefore, u4(t) allows us to investigate its impact on curbing
the cholera outbreak.

The objective function of the proposed model is to minimize the total number of new
infected cases with both diseases as well as the cost associated with each control over a
particular period of time. The objective function is formulated as follows:

min
ui(t),i=1,..,4

∫ tf

t0

z1I1(t) + z2I2(t) + z3I12(t)

+ D1
(
u1(t)

)2 + D2
(
u2(t)

)2 + D3
(
u3(t)

)2 + D4
(
u4(t)

)2, (17)

(1–15),

max
t

(
Il(t)

) ≤ Ipeak
l , l = 1, 2, (18)

u1(t) ∈ [0.05, 0.5], (19)

u2(t) ∈ [0.01, 0.3], (20)

u3(t) ∈ [0.1, 0.3], (21)

u4(t) ∈ [0, 1]. (22)

The objective function in Eq. (17) minimizes the number of individuals infected with
COVID-19, cholera, and both. It also minimizes the total costs associated with the control
interventions. The constraints of the optimal control model are incorporated in Eqs. (1)–
(15). The bound of the time-dependent control variables and the infected individuals for
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each infection must be under the estimated peaks for each infection. Constraint (18) de-
termines the limit of the peak size for each epidemic. Constraints (19)–(22) determine the
ranges of the time-dynamic parameters, where z1, z2, z3, D1, D2, D3, and D4 are weight
coefficients. The optimal control model is assumed during the full-time horizon [t0, tf ],
where tf is 100 weeks.

Therefore, the solution of the optimal control model is (u∗
1(t), u∗

2(t), u∗
3(t), u∗

4(t)) in which

J
(
u∗

1(t), u∗
2(t), u∗

3(t), u∗
4(t)

)
= min

{
J
(
u1(t), u2(t), u3(t), u4(t)

)|ui(t) ∈ � , i = 1, . . . 4
}

, (23)

where � = (u1(t), u2(t), u3(t), u4(t)) and 0 ≤ u1(t) ≤ 0.5, 0 ≤ u2(t) ≤ 0.3, 0 ≤ u3(t) ≤ 0.3,
0 ≤ u4(t) ≤ 1

Pontryagin’s maximum principle is an indirect method to solve the optimal control
model through derivation of the Hamiltonian function and defining the necessary con-
ditions for the optimal control of the cholera-COVID-19 co-infection model. The Hamil-
tonian H is defined as follows:

H = z1I1(t) + z2I2(t) + z3I12(t) + D1
(
u1(t)

)2 + D2
(
u2(t)

)2 + D3
(
u3(t)

)2

+ D4
(
u4(t)

)2 + MS

(
μ1R1(t) + μ2R2(t) + μ12R12(t) + � –

(
(1 – u1(t))

N
A(t)

+
(1 – u2(t))

N
I1(t) + αc(t)I2(t) +

βB
KB + B

(
1 – u4(t)

)
+ α12

)
S(t)

)

+ ME

((
(1 – u1(t))

N
A(t) +

(1 – u2(t))
N

I1(t)
)

S(t) – t–1
latentE(t)

)

+ MA
(
t–1
latentE(t) –

(
u3(t) + ρ

)
A(t)

)
+ MI1

(
u3(t)A(t) – (δ1 + β1 + ω1)I1(t)

)
+ MR1

(
ρA(t) + β1I1(t) – (μ1 + λ1)R1(t)

)
+ MP1

(
ω1I1(t)

)
+ MIR2

(
λ1R1(t)

– υ1IR2(t)
)

+ MI12

(
α12S(t) + δ1I1(t) + δ2I2(t) – (υ12 + ω12)I12(t)

)
+ MR12

(
υ1IR2(t) + υ2I1R(t) + υ12I12(t) – μ12R12(t)

)
+ MP12

(
ω12I12(t)

)

+ MI2

((
αc(t)I2(t) +

βB
KB + B

(
1 – u4(t)

))
S(t) – (δ2 + β2 + ω2 + ξ )I2(t)

)

+ MB

(
rB(B – b)

(
1 –

B
k

)
– τB + ξ I2(t)

)
+ MR2

(
β2I2(t) – (μ2 + λ2)R2(t)

)

+ MP2

(
ω2I2(t)

)
+ MI1R

(
λ2R2(t) – υ2I1R(t)

)
,

(24)

where MS , ME , MA, MI1 , MR1 , MP1 , MIR2 , MI12 , MR12 , MP12 , MI2 , MB, MR2 , MP2 , and MI1R

are adjoint variables or co-state variables.

Theorem Given the optimal control u∗
1(t), u∗

2(t), u∗
3(t), u∗

4(t) and solutions S, E, A, I1, R1,
P1, IR2, I12, R12, P12, I2, B, R2, P2, and I1R of the corresponding state system (1)–(15) that
minimize J(u1(t), u2(t), u3(t), u4(t)) over � . There exist adjoint variables MS , ME , MA, MI1 ,
MR1 , MP1 , MIR2 , MI12 , MR12 , MP12 , MI2 , MB, MR2 , MP2 , and MI1R such that

–dMl

dt
=

∂H
∂l

, (25)
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where l = S, E, A, I1, R1, P1, IR2, I12, R12, P12, I2, B, R2, P2, and I1R with the transversality con-
ditions

MS(tf ) = ME(tf ) = MA(tf ) = MI1 (tf ) = MR1 (tf ) = MP1 (tf ) = MIR2 (tf ) = MI12 (tf )

= MR12 (tf ) = MP12 (tf ) = MI2 (tf ) = MB(tf ) = MR2 (tf ) = MP2 (tf ) = MI1R (tf ) = 0

and

u∗
1(t) = min

{
1, max

(
0,

(ME – MS)A(t)S(t)
2D1N

)}
,

u∗
2(t) = min

{
1, max

(
0,

(ME – MS)I1(t)S(t)
2D2N

)}
,

u∗
3(t) = min

{
1, max

(
0,

(MA – MI1 )A(t)
2D3

)}
,

u∗
4(t) = min

{
1, max

(
0,

(MI2 – MS)βBS(t)
2D4(KB + B)

)}
.

(26)

The proof of this theorem is in Appendix A.

5 Numerical simulations
In this section, we investigate and analyze the impact of the four dynamic control measures
and the peak limits, which will determine the best policy for curbing the rapid spread of
cholera and COVID-19 in Yemen in 2020. The policy approach is based on monotonous
declines over time for quarantine, social separation, and monotonic increases for both the
number of COVID-19 tests and the number of CWTs for water purification. Pyomo op-
timization modelling in Python was used to solve the optimal control model (16)–(21).
The orthogonal collocation method is again used to discretize the dynamic differential
equations system (1)–(15) taking into consideration the time domain which consists of
weekly finite elements. Parameter values obtained from the solution of the parameters es-
timation problem in Sect. 3 are used for solving the optimal control model. Moreover, the
other parameters and initial conditions in the optimal control model are fixed as indicated
in Table 1 and Table 2 for all the following simulations. Table 3 illustrates the range of the
time-dynamic functions for each policy. The following policies are discussed.

Policy 1: (No control) Baseline
In this policy, all coefficients of the time-dynamic variables in the objective function and

the constraints are assumed to be equal to zero. In addition, the limit of the peaks for both
outbreaks is equal to the maximum peaks indicated in Table 3.

Table 3 Ranges of control parameters and values of limit peaks for each policy

Policy ([αl
a ,α

u
a ], [α

l
i ,α

u
i ], [κ

l ,κu], [ul ,uu]) (Ipeak
1 , Ipeak

2 ) The associated cost

No control ([0, 0], [0, 0], [0, 0], [0, 0]) (105, 5× 105) –
Med control ([0.2, 0.4], [0.1, 0.2], [0.2, 0.25], [0.25, 0.75]) (104, 5× 105) 4.5349228133
Max control ([0.4, 0.5], [0.25, 0.3], [0.25, 0.3], [0.75, 1]) (104, 5× 105) 2.8707575932
Mix control ([0.2, 0.4], [0, 0.1], [0.2, 0.3], [0.7, 0.9]) (104, 5× 105) 1.9432928849
Min peaks ([0.4, 0.5], [0.1, 0.2], [0.15, 0.2], [025, 0.95]) (104, 5× 105) 0.16289408246
Max peaks ([0.4, 0.5], [0.1, 0.2], [0.15, 0.2], [0.25, 0.95]) (105, 5× 105) 13.678641590
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The obtained results of the numerical simulations show that this combination is not
good to curb both outbreaks. From the panels of the infected individuals with both epi-
demics in Fig. 4, Appendix B, we note that the peaks infected individuals with COVID-19
and cholera are high and their curves take too long to come down. Similarly, the panel of
the bacteria population shows that free bacteria growth is the highest in growth and the
slowest to decline over time.

Policy 2: (Med control) Sufficient resources for both CWT distribution and test kits with
average social distancing and quarantining

In this policy, we assume that test kits are in the range of 20%–25% and are sufficient
for the number of individuals susceptible to COVID-19. We also assume that CWTs are
distributed to 25%–75% of the individuals susceptible to cholera. Moreover, the average
values of the proportions of social distancing and quarantining are considered. Quaran-
tining is applied only with a ratio of less than 20% and social distancing is applied with a
ratio of less than 40%.

The results are shown in Fig. 5 in Appendix B. From the control time-dynamic func-
tions panel, we observe that all time-dynamic functions have changed dynamically in the
defined range referred to in Table 3. However, the results for this policy improve compared
to those for the baseline policy, especially in terms of the number of infected individuals
over time for both epidemics, the epidemic periods, and the bacteria growth.

Policy 3: (Max control) Abundant resources for both CWT distribution and test kits with
strict social distancing and quarantining

In this strategy, we assume that almost all individuals susceptible to cholera have ac-
cess to pure water and that test kits are available for almost all individuals susceptible to
COVID-19. Moreover, strict rules for social distancing and quarantining are assumed in
this policy.

The results are shown in Fig. 6 in Appendix B. From the control time-dynamic func-
tions panel, we observe that while u4(t) and u3(t) increase monotonically, u1(t) and u2(t)
decrease monotonically. Moreover, the fitted lines almost match the real data for both
infections. This policy can affect the curve peaks for both epidemics and can end the epi-
demic period. Also, this policy can inhibit the rapid growth of bacteria.

Policy 4: (Mix control) Abundant resources for CWT distribution and sufficient resources
for test kits with average social distancing and low quarantining

In this policy, we assume that almost all individuals susceptible to cholera have access to
pure water and that test kits are available for a sufficient number of individuals susceptible
to COVID-19. In addition, we assume that average social distancing is applied with less
quarantining. From Fig. 7, Appendix B, we note that there are slight changes in the re-
sults of this policy compared to those of the Max control policy in terms of the number of
cases for each epidemiological class, the peaks, and the speed of ending the epidemic. The
results indicate the importance of increasing u3(t) and u4(t) and imposing social distanc-
ing u1(t), and in return the lack of complete social quarantine u2(t), since it has negative
economic effects.

Policy 5: Min peaks
We assumed in all the aforementioned policies that the peak of COVID-19 does not

exceed 100,000 and that the peak of cholera does not exceed 300,000. In this policy, we
change the peak of COVID-19 to be less than 10,000 and the peak of cholera be less than
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100,000. The ranges of the time-dynamic measures used in this policy are shown in Table 3.
We can see from the results in Fig. 8, Appendix B that the number of infected individ-

uals for each epidemic is not high, while maintaining the same pattern of results with the
previous policies.

Policy 6: Max peaks
In this scenario, we investigate the effect of limit values of peaks on the numbers of each

epidemic class by increasing the limits of the peak values as indicated in Table 3.
In Fig. 9, Appendix B a significant increase in all the numbers of COVID-19 epidemic

classes and a slight increase in the cholera epidemic classes are noticed.
We summarize the range of the control parameters for each policy, the values of the

limit peaks, and the obtained cost of all simulations in Table 3. We can observe clearly that
policy 5 (Min peaks) has minimum cost with an objective function value of 0.16289408246.

Figure 3 shows the comparison of the simulation results of the different policies for
all the epidemiological classes. Having a glance at the panel of infected individuals with
COVID-19, it is clear that policy 3 (Max control) leads to a flatter epidemic curve and the
lowering in the number of infected individuals. In the second rank comes policy 4 (Mix
control), which corresponds to distributing CWTs to all individuals susceptible to cholera,
providing a sufficient number of test kits with a reasonable commitment to social distanc-
ing, and quarantining only for the infected individuals with COVID-19. Moreover, policy
1 (No control) leads to the highest peak size.

On the other side, having a look at the panel of perished individuals due to COVID-19, it
is shown that policy 1 (No control) is the worst among all the other policies. Nevertheless,
policy 3 with Max control leads to the lowest number of people lost due to COVID-19.
The panel of recovered individuals from COVID-19 shows that policy 1 (No control) leads
to the highest number of recovered individuals as compared to other policies. This was
expected due to the increase in the number of infected individuals with COVID-19.

The panel of the infected individuals with cholera shows that policy 3 (Max control) is
the best to reduce the number of infected individuals as well as the fastest in ending the
epidemic. Policy 1 (Baseline) is the worst in terms of the number of infected individuals
having the highest peak size. In addition, it has also the longest epidemic period. The panel
of the perished individuals due to cholera shows that while the first and second policies
(Baseline and Med control) lead to the highest numbers, the third and fourth policies
(Max and Mix control) lead to the lowest numbers. Conversely, the panel of the recovered
individuals from cholera shows that while the first and second policies (Baseline and Med
control) lead to the highest number of the recovered individuals, the third and fourth
policies (Max and Mix control) lead to the lowest number of the recovered individuals
due to the large numbers of infected individuals with cholera.

The panel of the bacteria population shows that policy 3 (Max control) has the lowest
peak and leads to the rapid decrease of the bacterial population growth. This contributes to
reducing the number of individuals susceptible to cholera. Policy 4 (Mix control) comes in
the second rank in terms of the peak and the return of the bacterial population curve. Our
results show that while some policies are efficient in reducing the number of individuals
infected with COVID-19, others are efficient in controlling the number of individuals in-
fected with cholera (the ranks of the policies according to epidemiological class are shown
in Table 4, Appendix C).
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Figure 3 Comparison of the simulation results of the policies for all epidemiological classes

To determine the optimal policy that can be applied in Yemen, we can combine the co-
infected cases of each policy. The results are shown in the panel of the infected individuals
with COVID-19 + cholera. The third policy (Max control) is shown as the best among
all the policies proposed to control and reduce the number of infected people with both
epidemics. As applying a complete quarantine in a poor country like Yemen is not possible
for its people earn their living on daily wage and lack awareness of the dangers of these
epidemics, it is concluded that the most effective policy that can be carried out in Yemen is
policy 4 (Mix control) since it seeks to increase the number of CWTs for water purification
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to almost all the individuals susceptible to cholera and to increase the number of test kits
for the exposed individuals to COVID-19. Besides, reasonable social distancing has to be
applied with quarantining for only infected cases.

6 Conclusions
In the present work, we formulated a compartmental cholera-COVID-19 co-infection
model that describes the dynamics of transmission of COVID-19 and cholera in Yemen.
Then, we estimated the parameters of the model and proposed an optimal control policy
to minimize the number of individuals infected with both infections and to minimize the
total cost associated with each control. Then, optimal control policies were investigated.
Those include four control functions: social distancing, lockdown, the number of test kits
to control the COVID-19 outbreak, and the number of susceptible individuals who can get
CWTs for water purification. We investigated the advantages of each policy by comparing
the results of the numerical simulations. We demonstrated that the optimal policy to be
applied in Yemen is based on social distancing to protect susceptible individuals from the
infections, increasing the number of test kits for infected individuals, and increasing the
number of CWTs for water purification. For future work, dual COVID-19 with other in-
fections can be considered and other time-dynamic functions for controlling the infection
outbreaks can be added.

Appendix A
In this appendix, we prove the theorem in Sect. 4.

Proof By applying Pontryagin’s maximum principle to the Hamiltonian H , we get the fol-
lowing adjoint systems:

dMS

dt
= –

∂H
∂S

= (MS – ME)
(

(1 – u1(t))
N

A(t) +
(1 – u2(t))

N
I1(t)

)

+ (MS – MI2 )
(

αc(t)I2(t) +
βB

KB + B
(
1 – u4(t)

))
+ α12(MS – MI12 ),

dME

dt
= –

∂H
∂E

= (ME – MA)t–1
latent,

dMA

dt
= –

∂H
∂A

= (MS – ME)
(

(1 – u1(t))
N

)
S(t) + u3(t)(MA – MI1 ) + ρ(MA – MR1 ),

dMI1

dt
= –

∂H
∂I1

= –z1 + (MS – ME)
(

u2(t)S(t)
N

)

+ β1(MI1 – MR1 ) + ω1(MI1 – MP1 ) + δ1(MI1 – MI12 ),

dMR1

dt
= –

∂H
∂R1

= (MR1 – MS)μ1 + (MR1 – MIR2 )λ1,

dMP1

dt
= –

∂H
∂P1

= 0,
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dMIR2

dt
= –

∂H
∂IR2

= (MIR2 – MR12 )ν1, (27)

dMI12

dt
= –

∂H
∂I12

= –z3 + (MI12 – MR12 )ν12 + (MI12 – MP12 )ω12,

dMR12

dt
= –

∂H
∂R12

= (MR12 – MS)μ12,

dMP12

dt
=

∂H
∂P12

= 0,

dMI2

dt
= –

∂H
∂I2

= –z2 + αc(t)S(t)(MS – MI2 ) + β2(MI2 – MR2 ) + ω2(MI2 – MP2 )

+ δ2(MI2 – MI12 ) + ξ (MI2 – MB),

dMB

dt
= –

∂H
∂B

= MBτ + MB

(
2Bb
KB

– 3rB2
)

+ (MB – MI2 )
(

KB

(KB + B)2

)(
1 – u4(t)

)
S(t),

dMR2

dt
= –

∂H
∂R2

= (MR2 – MS)μ2 + (MR1 – MI1R )λ2,

dMP2

dt
=

∂H
∂P2

= 0,

dMI1R

dt
= –

∂H
∂I1R

= (MI1R – MR12 )ν2.

We obtain the time-dependent function controls u∗
1(t), u∗

2(t), u∗
3(t), u∗

4(t) when ∂H
∂u1(t) =

∂H
∂u2(t) = ∂H

∂u3(t) = ∂H
∂u4(t) = 0. Then, we obtain the following:

∂H
∂u1(t)

= 2D1u1(t) +
A(t)S(t)

N
(MS – ME) = 0,

∂H
∂u2(t)

= 2D2u2(t) + MS
I1(t)S(t)

N
– ME

I1(t)S(t)
N

= 0,

∂H
∂u3(t)

= 2D3u3(t) – MAA(t) + MI1 A(t) = 0,

∂H
∂u4(t)

= 2D4u4(t) + MS
βBS(t)
KB + B

– MI2
βBS(t)
KB + B

= 0.

(28)

Hence, we obtain

u∗
1(t) =

(ME – MS)A(t)S(t)
2D1N

,

u∗
2(t) =

(ME – MS)I1(t)S(t)
2D2N

,

u∗
3(t) =

(MA – MI1 )A(t)
2D3

,

u∗
4(t) =

(MI2 – MS)βBS(t)
2D4(KB + B)

.

(29)
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By the standard control arguments involving the bounds on the controls, we conclude

u∗
1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if (ME–MS)A(t)S(t)
2D1N ≤ 0,

(ME–MS)A(t)S(t)
2D1N if 0 < (ME–MS)A(t)S(t)

2D1N < 1,

1 if (ME–MS)A(t)S(t)
2D1N ≥ 1,

u∗
2(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if (ME–MS)I1(t)S(t)
2D2N ≤ 0,

(ME–MS)I1(t)S(t)
2D2N if 0 < (ME–MS)I1(t)S(t)

2D2N < 1,

1 if (ME–MS)I1(t)S(t)
2D2N ≥ 1,

u∗
3(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if (MA–MI1 )A(t)
2D3

≤ 0,
(MA–MI1 )A(t)

2D3
if 0 < (MA–MI1 )A(t)

2D3
< 1,

1 if (MA–MI1 )A(t)
2D3

≥ 1,

u∗
4(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if (MI2 –MS)βBS(t)
2D4(KB+B) ≤ 0,

(MI2 –MS)βBS(t)
2D4(KB+B) if 0 < (MI2 –MS)βBS(t)

2D4(KB+B) < 1,

1 if (MI2 –MS)βBS(t)
2D4(KB+B) ≥ 1.

(30)

�

Appendix B
In this appendix, we show the graphical results of all of the policies investigated in the
study.
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Policy 1: (No control) Baseline

Figure 4 Results for policy 1
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Policy 2 (Med control)

Figure 5 Results for policy 2



Hezam et al. Advances in Difference Equations        (2021) 2021:108 Page 24 of 30

Policy 3: (Max control)

Figure 6 Results for policy 3
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Policy 4: (Mix control)

Figure 7 Results for policy 4
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Policy 5: Min peaks

Figure 8 Results for policy 5
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Policy 6: Max peaks

Figure 9 Results for policy 6
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Appendix C

Table 4 Ranks of the policies in various epidemiological classes

I1 P1 R1 I2 P2 R2 B2 I1 + I2

1 Max control Max control Baseline Max control Max control Baseline Max control Max control
2 Mix control Mix control Max peaks Mix control Mix control Med control Mix control Mix control
3 Med control Min peaks Med control Max peaks Max peaks Min peaks Max peaks Max peaks
4 Min peaks Med control Min peaks Min peaks Min peaks Max peaks Min peaks Min peaks
5 Max peaks Max peaks Mix control Med control Med control Mix control Med control Med control
6 Baseline Baseline Max control Baseline Baseline Max control Baseline Baseline
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