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Abstract
Novel switched HIV/AIDS (human immunodeficiency virus/acquired immune
deficiency syndrome) epidemic models with distributed time delay and bounded
noise and Gaussian white noise are developed and investigated using stochastic Itô’s
lemma and the Lyapunov–Razumikhin method. New criteria depending on these
factors are established to confirm that the disease-free equilibrium of the model is
stochastically asymptotically stable as the threshold parameter is less than unity,
which implies that the disease eventually disappears theoretically. Otherwise, the
disease persists weakly. Further, the main results show that the threshold values are
related to two types of noise and time delay. Pulse control strategies are then applied
to two types of the infected population, the susceptible population, and the infected
population, respectively. More precisely, the effects of each control strategy on the
stochastic solution of the model are evaluated to justify the relation between control
parameters and threshold parameters of the model. In comparison with the basic
reproduction number of the model with pulse control, it is easily found that the main
results in these references are improved and extended. Finally, four examples are
presented to support the main results, and one future research direction is suggested.
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1 Introduction
It is well known that the HIV/AIDS epidemic is still one of the major global public health
issues. It is reported by the World Health Organization that millions of people die of the
AIDS disease every year. Most people are at higher risk of acquiring HIV infection when
they keep sexual contacts with the AIDS patients [1]. Thus, it is an extremely complex
issue to prevent or control AIDS effectively.

In epidemic dynamics modeling, mathematical models play a significant role in research
into spreading and controlling the disease [2–6]. In particular, since the initial HIV/AIDS
models were proposed by May and Anderson [7], many various refinements have been
added to modify these models [8–10]. For instance, Saha et al. [11] modeled a compart-
ment HIV/AIDS model including treatment and pre-exposure prophylaxis, and analyzed

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03269-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03269-0&domain=pdf
http://orcid.org/0000-0003-3312-9612
mailto:wangxiying668@163.com


Wang Advances in Difference Equations        (2021) 2021:150 Page 2 of 20

local and global stability of equilibrium points. Hsieh et al. [12] developed new HIV/AIDS
models with commercial sex workers and sexually active male customers, and discussed
the global asymptotic stability of the disease-free equilibrium. Naresh et al. [13] incorpo-
rated both horizontal and vertical transmission into an AIDS epidemic model and studied
the dynamics of the model. By establishing the optimal control equations, condoms and
treatment regime have an important influence on the dynamics of HIV/AIDS models [14].

Traditionally, infectious disease model coefficients are assumed to be constant in time.
However, a more realistic approach is to suppose that these parameters are time-varying.
This is because the alteration of environment often leads to great changes in the host popu-
lation behavior, which causes the model parameters no longer to be constant. For instance,
researchers [15, 16] assumed that the epidemic model parameters could be abruptly vary-
ing in time and developed epidemic models with the term-time forcing. Besides, Liu and
Wang [17] incorporated switching into epidemic models and investigated their global sta-
bility. These models may be called switched systems. One main feature of a switched sys-
tem with unstable subsystems is that the system may be stable due to the included switch-
ing rule impact [18, 19]. We will utilize this technique to investigate the dynamics of epi-
demic models.

Moreover, in some practical models, their development trend is relevant to not only
current but past state. This phenomenon is usually called delay. Population dynamics is
inevitably influenced by time delay. The emergence of time delay could affect the stability
of equilibria, and delay systems exhibit more complicated dynamics behavior such as oscil-
lation, bifurcation, and other phenomena [20–23]. For instance, Cai et al. [24] introduced
a discrete time delay to an HIV/AIDS model and discussed the effect of the time delay on
the stability of the endemically infected equilibrium. Bera et al. [25] studied the dynamics
of a delay HIV infection model and described the influence of the delay on the stability of
the model. Muhammad et al. [26] considered a delay model for immune system–tumor in-
teraction and analyzed the stability of the tumor-free steady state and the tumor-persistent
steady state. To the best of our knowledge, there have been few works done to study the
global asymptotic stability of switched HIV/AIDS epidemic models with delay. Therefore,
it is urgent to incorporate delay parameters and switching parameters into HIV/AIDS epi-
demic models and investigate their dynamics.

On the other hand, the environmental factors and the immunological state of the host
have great influence on population dynamics, which causes that the disease-free equilib-
rium or endemic equilibrium is not a fixed status. Recently, stochastic epidemic models
have received increasing attention [27–29]. In stochastic AIDS models, noise is assumed
to be Gaussian noise [30]. However, in epidemic models, different populations vary enor-
mously in terms of growth and decay processes. Thus, it is very necessary to introduce
the combined Gaussian white noise and bounded noise into the HIV/AIDS models by
assuming that models’ parameters are replaced by different random excitation in this pa-
per. Furthermore, some diseases (for instance, small pox and measles) can be prevented
or contained by pulse vaccination. Thus, pulse vaccination is becoming a significant issue
in the study of epidemic models [31]. Samanta et al. [32] considered a stochastic chlamy-
dia epidemic model with pulse vaccination strategy. They found that the disease could be
eradicated when impulse vaccination rate is larger than some critical value. The research
results show that pulse vaccination strategy with high values of vaccination has gained
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more prominence than conventional continuous vaccination [33]. There has been a focus
in the literature on studying pulse vaccination epidemic models [34].

Motivated by the above discussion, we aim in this paper to formulate and investigate
new HIV/AIDS models including switching parameters, distributed time delay, and two
types of noise. More specifically, stability results ensuring the disease eradication or per-
sistence under new threshold conditions are developed by using stochastic Itô’s lemma
and the Lyapunov–Razumikhin method. Pulse vaccination strategies are applied to two
types of the infected population, the susceptible population, and the infected population,
respectively. Compared with the existing models without pulse vaccination strategy, our
proposed models take into account the efficiency of vaccine and are more useful in eradi-
cating the disease. Therefore, this paper will improve the existing HIV/AIDS models and
will further extend current knowledge on HIV/AIDS model methods.

This paper is organized as follows. In Sect. 2, a new switched HIV/AIDS epidemic model
with two types of noise and distributed time delay is formulated. Stability theorems for the
disease extinction or persistence are given in Sect. 3. In Sect. 4, pulse vaccination schemes
are added into the above model. Threshold criteria involving pulse parameters are de-
rived by redefining similar basic reproduction numbers. Some examples are presented to
demonstrate the obtained results in Sect. 5.

2 Formulation of the model
In this section, we develop a switched HIV/AIDS epidemic model with distributed time
delay and bounded noise and Gaussian white noise. The total number of high-risk indi-
viduals N(t) at time t are partitioned into the following compartments: the susceptible
individuals S(t) who are uninfected, the asymptomatic infected individuals I1(t) who have
been infected but have no symptoms of the disease, the symptomatic infected individ-
uals I2(t) who have been infected and have symptoms of the disease, and the full AIDS
individuals A(t), i.e., N(t) = S(t) + I1(t) + I2(t) + A(t).

Moreover, the vital dynamic and epidemiological assumptions are made as follows [35–
37]. Since different individuals experience different growth and decay processes, assume
that bounded noise and Gaussian white noise are incorporated into an HIV/AIDS model
based on the parameter perturbation method. Suppose that the incubation time is a dis-
tributed parameter over the interval [0, τ ], in which τ > 0 is called an upper bound of
the incubation time in the infective individuals. Assume that the nonnegative and contin-
uous function f is a distribution function of incubation times and satisfies the following:
(1) f : [0, τ ) → [0,∞) is nondecreasing; (2)

∫ τ

0 f (h) dh = 1,
∫ τ

0 hf (h) dh < ∞. Noting that the
spread of AIDS changes over time, the model parameters are assumed to be switching pa-
rameters which could switch their functional forms. Suppose that a switching signal σ (t)
controls these switching parameters and satisfies the following conditions: (1) It is a piece-
wise continuous (from the left) function; (2) σ (t) : (tk–1, tk] → {1, 2, . . . , m}, k = 1, 2, . . . , in
which m is the number of subsystems, tk > tk–1, and tk → ∞ as k → ∞. The set of all
switching rules is represented by I .

In this paper, λ denotes a recruitment rate of the susceptible individuals from the larger
embedding population. The switched parameter pσ is a transmission rate between the
susceptible individuals and the asymptomatic infected individuals, and the force of infec-
tion is pσ S(t)

∫ τ

0 I1(t – h) dh; The switched parameter qσ is a transmission rate between
the susceptible individuals and the symptomatic infected individuals, and the force of in-
fection is qσ S(t)

∫ τ

0 I2(t – h) dh. Denote the natural death ratio of all human classes by a.



Wang Advances in Difference Equations        (2021) 2021:150 Page 4 of 20

The asymptomatic infected individuals become the symptomatic infected individuals at
a rate of eσ rσ by a screening method. The asymptomatic infected individuals become the
full blown AIDS individuals at a rate of (1 – eσ )rσ ; ρ1

σ denotes a disease-caused death ratio
of the asymptomatic infected individuals; bσ is a disease-caused death rate of the symp-
tomatic infected individuals; and cσ is a disease-caused death ratio of the full blown AIDS
individuals. The symptomatic infected individuals become the full blown AIDS individu-
als at a rate of ρ2

σ .
Under the above assumptions, a switched HIV/AIDS epidemic model with distributed

time delay and bounded noise and Gaussian white noise is presented as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = {λ – pσ S(t)
∫ τ

0 I1(t – h) dh – qσ S(t)
∫ τ

0 I2(t – h) dh – aS(t)}dt

– S(t) dM(t),

dI1(t) = {pσ S(t)
∫ τ

0 I1(t – h) dh + qσ S(t)
∫ τ

0 I2(t – h) dh – (rσ + a + ρ1
σ )I1(t)}dt

– ϕ1I1(t) dW1(t),

dI2(t) = {eσ rσ I1(t) – (a + bσ + ρ2
σ )I2(t)}dt – ϕ2I2(t) dW2(t),

dA(t) = {(1 – eσ )rσ I1(t) + ρ2
σ I2(t) – cσ A(t) – aA(t)}dt – ϕ3A(t) dW3(t),

(1)

in which the initial conditions satisfy

S(t0) > 0, I1(t0) ≥ 0, I2(t0) ≥ 0, A(t0) ≥ 0. (2)

From physical considerations, all quantities λ, pσ , qσ , a, rσ , ρ1
σ , eσ , bσ , ρ2

σ , and cσ are
positive and continuous functions of time for σ ∈ {1, 2, . . . , m}.

In system (1), bounded noise dM(t)
dt is of the form dM(t)

dt = � sin(�t + ϕW0(t) + U), in
which �, �, and ϕ are positive constants; � is an amplitude of bounded noise and � is its
center frequency; U is distributed in [0, 2π ] as a random phase uniformly. The standard
Brownian motions W0(t), W1(t), W2(t), and W3(t) are defined on the probability space
(�,F ,P), in which {Ft}t≥0 satisfies the following conditions: (1) It is increasing; (2) It is
right-continuous as F0 contains all P-null sets. Moreover, ηi = dWi(t)

dt (i = 0, 1, 2, 3) is in-
dependent Gaussian white noise with the intensity of noise ϕi (i = 0, 1, 2, 3) characterized
by

〈
ηi(t)

〉
= 0,

〈
ηi(t1)ηi(t2)

〉
= δ(t1 – t2), and

〈
ηi(t1)ηj(t2)

〉
= 0 (i �= j),

in which 〈·〉 denotes the average over the ensemble of the stochastic process, and δ(t) is the
dirac delta function. Note that Q0 = (λ/a, 0, 0, 0, 0) is a disease-free equilibrium of system
(1) without noise compartments. Since system (1) is affected by a fluctuating environ-
ment, it is necessary to investigate that Q0 is stochastically asymptotically stable to exhibit
whether the disease dies out or not.

As the expected number of secondary cases produced by a typical infective individual
in entirely susceptible population, the basic reproduction number can be computed by
defining the spectral radius of the matrix FV –1 [38, 39]. In the following section, we derive
the basic reproduction number of system (1) and then investigate stochastic asymptotic
stability of the system.
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3 Global dynamics of system (1)
In this section, we first extend some notations and propositions of system (1) and then
investigate its global asymptotic stability.

Definition 1 ([40]) The population Z(t) will go to extinction with probability 1 if
lim supt→∞ Z(t) = 0.

Definition 2 ([40]) The population Z(t) is weakly persistent with probability 1 if
lim supt→∞ Z(t) > 0.

Proposition 1 If (T(t0), I1(t0), I2(t0), A(t0)) ∈ R4
+ is any initial value of system (1), then there

exists a unique solution (T(t), I1(t), I2(t), A(t)) on t ≥ t0 and the solution will remain in R4
+

with probability 1, where R4
+ = {x ∈ R4

+ | xi > 0, i = 1, 2, 3, 4}.

Proof The proof is similar to Dalal et al. [27] and hence is omitted. �

Proposition 2 Assume that a > �. The solution (T(t), I1(t), I2(t), A(t)) of system (1) with
initial conditions (2) satisfies

lim sup
t→∞

N(t) ≤ λ

�
with probability 1, (3)

in which N(t) = S(t) + I1(t) + I2(t) + A(t) and � = minσ∈{1,2,...,m}{a – �, a + ρ1
σ , a + bσ , a + cσ }.

Proof By Proposition 1, we can compute the derivative of N(t) along system (1) as follows:

dN(t) = dS(t) + dI1(t) + dI2(t) + dA(t)

≤ {
λ – (a + �)S(t) –

(
a + ρ1

σ

)
I1(t) – (a + bσ )I2(t) – (cσ + a)A(t)

}
dt

–
{
ϕ1I1(t) dW1(t) + ϕ2I2(t) dW2(t) + ϕ3A(t) dW3(t)

}
.

(4)

We take the expectation of N(t) for Eq. (4), then

lim sup
t→∞

N(t) ≤ λ

�
with probability 1, (5)

in which � = minσ∈{1,2,...,m}{a –�, a +ρ1
σ , a + bσ , a + cσ }. This completes the proof of Propo-

sition 2. �

Denote p1 = minσ∈{1,2,...,m}{pσ }, and q1 = minσ∈{1,2,...,m}{qσ }. Then we have the following
proposition.

Proposition 3 Assume that a > �. For any ε > 0, the solution (T(t), I1(t), I2(t), A(t)) of sys-
tem (1) with initial conditions (2) with probability 1 satisfies

G =
λ

(p1 + q1) λ
�

τ + a + �
≤ lim inf

t→∞ S(t) ≤ lim sup
t→∞

S(t) ≤ λ

a – �
, (6)

where � is given in Proposition 2.
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Proof From the first equation of system(1), we have

dS(t) =
{

λ – pσ S(t)
∫ τ

0
I1(t – h) dh – qσ S(t)

∫ τ

0
I2(t – h) dh – aS(t)

}

dt

– S(t) dM(t)

≤ λ – (a – �)S(t) dt.

(7)

It follows that lim supt→∞ S(t) ≤ λ
a–�

.
On the other hand, from Proposition 2, for any ε > 0, there exist large sufficient t1 > 0

and t ≥ t1 such that I1(t) ≤ λ
�

+ ε and I2(t) ≤ λ
�

+ ε. Hence, based on the first equation of
system(1), we obtain that

dS(t) ≥
{

λ –
[
(
p1 + q1)

(
λ

�
+ ε

)

τ + a + �

]

S(t)
}

dt. (8)

It follows that lim inft→∞ S(t) ≥ λ

(p1+q1)( λ
�

+ε)τ+a+�
. Since ε can be sufficiently small, the re-

sult is valid. This completes the proof. �

In the following, an approximate basic reproduction number of system (1) is presented,
and then it is shown that the disease will be cleared out with probability 1 when the ap-
proximate basic reproduction number is less than one; the disease will persist weakly with
probability 1 when the approximate basic reproduction number is greater than one.

Theorem 1 Assume that (T(t), I1(t), I2(t), A(t)) is any solution of system (1) with the initial
value (T(t0), I1(t0), I2(t0), A(t0)) ∈ R

4
+, and a > �. Assume that

R̄0 = sup
t≥l

1
t

∫ t

t0

λτqσ Bσ + eσ rσ (a – �)Dσ

a – �
ds (9)

for some l ≥ t0, Bσ = a–�

λτ (qσ –pσ )+(a–�)(rσ +a+ρ1
σ ) > 0, and Dσ = 1

eσ rσ +a–bσ –ρ2
σ

> 0. If R̄0 < 1, then
Q0 = (λ/a, 0, 0, 0, 0) is stochastically asymptotically stable, which implies that the disease in
system (1) will go to extinction with probability 1.

Proof Define the set of Lyapunov functions:

Vσ = Bσ I1(t) + Dσ I2(t) + Bσ pσ

∫ τ

0

∫ t

t–h
S(u + h)I1(u) du dh

+ Bσ qσ

∫ τ

0

∫ t

t–h
S(u + h)I2(u) du dh,

(10)

where Bσ and Dσ are defined in the theorem.
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According to Proposition 3 and taking the derivative of along system (1), we obtain the
following expression:

dVσ = Bσ dI1(t) + Dσ dI2(t) + Bσ pσ

∫ τ

0

{
S(t + h)I1(t) – S(t)I1(t – h)

}
dh dt

+ Bσ qσ

∫ τ

0

{
S(t + h)I2(t) – S(t)I2(t – h)

}
dh dt

= Bσ

{

–
(
rσ + a + ρ1

σ

)
I1(t) + pσ

∫ τ

0
S(t + h)I1(t) dh

+ qσ

∫ τ

0
S(t + h)I2(t) dh

}

dt + Dσ

{
eσ rσ I1(t) –

(
a + bσ + ρ2

σ

)
I2(t)

}
dt

– Bσ ϕ1I1(t) dW1(t) – Dσ ϕ2I2(t) dW2(t)

≤
{

Bσ

(

pσ

λτ

a – �
– rσ – a – ρ1

σ

)

I1(t) + Dσ eσ rσ

}

I1(t) dt

+
{

Bσ qσ

λτ

a – �
– Dσ

(
a + bσ + ρ2

σ

)
I2(t)

}

dt

– Bσ ϕ1I1(t) dW1(t) – Dσ ϕ2I2(t) dW2(t)

≤ (Rσ – 1)
(
I1(t) + I2(t)

)
dt – Bσ ϕ1I1(t) dW1(t) – Dσ ϕ2I2(t) dW2(t),

(11)

in which Rσ = λτqσ Bσ +eσ rσ (a–�)Dσ

a–�
.

Then integrating the above inequality over [tk–1, tk], we have

Vσ (t) ≤ Vσ (tk–1) +
∫ t

tk–1

{(
Rσ (s) – 1

)
I1(s) ds – Bσ (s)ϕ1I1(s) dW1(s)

}

+
∫ t

tk–1

{(
Rσ (s) – 1

)
I2(s) ds – Dσ ϕ2I2(s) dW2(t)

}
.

(12)

Taking the expectation for Eq. (12), we have that

E
[
Vσ (t)

] ≤ E
[
Vσ (tk–1)

]
+ E

[∫ t

tk–1

{(
Rσ (s) – 1

)
I1(s) ds – Bσ (s)ϕ1I1(s) dW1(s)

}
]

+ E
[∫ t

tk–1

{(
Rσ (s) – 1

)
I2(s) ds – Dσ ϕ2I2(s) dW2(t)

}
]

≤ E
[
Vσ (tk–1)

]
+

∫ t

tk–1

(
Rσ (s) – 1

)
E
[
I1(s) + I2(s)

]
ds.

(13)

Thus, it can be calculated

E
[

dVσ

dt

]

≤ (Rσ – 1)E
[
I1(t) + I2(t)

]
. (14)

Letting θ = minσ∈{1,2,...,m}{Bσ , Dσ }, it follows that

θ
d
dt

E
[
I1(t) + I2(t)

] ≤ E
[

dVσ

dt

]

≤ (Rσ – 1)E
[
I1(t) + I2(t)

]
, (15)
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i.e.,

θ
d
dt

E
[
I1(t) + I2(t)

] ≤ (Rσ – 1)E
[
I1(t) + I2(t)

]
. (16)

For t ∈ (tk–1, tk], we obtain that E[I1(t) + I2(t)] ≤ 1
θ

E[I1(tk–1) + I2(tk–1)] exp[
∫ t

tk–1
(Rσ (s) –

1) ds]. Then it follows that, for t ∈ (0, t1], E[I1(t) + I2(t)] ≤ 1
θ

(I1(t0) + I2(t0)) exp[
∫ t

t0
(Rσ (s) –

1) ds]. Similarly, it can be shown that t ∈ (t1, t2], E[I1(t) + I2(t)] ≤ 1
θ

(I1(t0) + I2(t0)) ×
exp[

∫ t1
t0

(Rσ (s) – 1) ds +
∫ t

t1
(Rσ (s) – 1) ds]. Generally, for t ∈ (tk–1, tk], it can be shown that

E
[
I1(t) + I2(t)

]

≤ 1
θ

(
I1(t0) + I2(t0)

)
exp

{[∫ t1

t0

(
Rσ (s) – 1

)
ds + · · · +

∫ t

tk–1

(
Rσ (s) – 1

)
ds

]}

.
(17)

Since R̄0 < 1, it can be obtained that ζ = exp{[∫ t1
t0

(Rσ (s)–1) ds+ · · ·+
∫ t

tk–1
(Rσ (s)–1) ds]} < 1.

Note that I1, I2 ≥ 0, and hence I1 and I2 converge to zero exponentially. Furthermore, we
can get that A converges to zero. As a consequence, Q0 = (λ/a, 0, 0, 0, 0) is stochastically
asymptotically stable, which implies that the disease in system (1) will go to extinction
with probability 1. �

Remark 1 From Theorem 1, it can be shown that if I1 and I2 approach zero exponentially
with probability 1, then A converges to zero with probability 1, and S converges to λ

a with
probability 1, which implies that Q0 = (λ/a, 0, 0, 0) is stochastically asymptotically stable
even if some subsystems are unstable.

Remark 2 In the special case that two types of noise and distributed time delay are absent
and all coefficients are constants, system (1) degenerates into the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t) = {λ – pS(t)I1(t) – qS(t)I2(t) – aS(t)}dt,

dI1(t) = {pS(t)I1(t) + qS(t)I2(t) – (r + a + ρ1)I1(t)}dt,

dI2(t) = {erI1(t) – (a + b + ρ2)I2(t)}dt,

dA(t) = {(1 – e)rI1(t) + ρ2I2(t) – cA(t) – aA(t)}dt.

(18)

Obviously, the basic reproduction number R̄0 of system (1) is reduced to R0 given in some
references (see [14, 24, 35]). From Theorem 1, it is easily found that the main results in
these references are improved and extended in this paper.

Next, we study the eradication of the disease with probability 1 when a switching signal
for system (1) is periodic. Assume that the periodic switching signal is constructed the
same as that of ref. [41]: (1) tk – tk–1 = ωk with ωk+m = ωk , in which ω = ω1 + · · · + ωm is
one period of the switching signal; (2) zσ (z = p, q, r,ρ1,ρ2, e, b, c) is a switching parameter
which satisfies zi = zk for t ∈ (tk–1, tk], zk+m = zk ; and zk(t) = zk(t + ω). Iperiodic is the set of
periodic switching rules and Iperiodic ⊂ I . Hence, we obtain the following theorem.

Theorem 2 Suppose that the switching signal σ is periodic, and a > �. Suppose that

R̂0 =

∫ t0+ω

t0
[λτqσ Bσ + eσ rσ (a – �)Dσ ] ds

(a – �)ω
, (19)
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with Bσ = a–�

λτ (qσ –pσ )+(a–�)(rσ +a+ρ1
σ ) > 0, and Dσ = 1

eσ rσ +a–bσ –ρ2
σ

> 0. If R̂0 < 1, then Q0 =
(λ/a, 0, 0, 0, 0) is stochastically asymptotically stable, which implies that the disease will
go to extinction with probability 1.

Proof By the proof preceding Theorem 1, it suffices to show that, for t = t0 + ω,

E
[
I1(t0 + ω) + I2(t0 + ω)

]

≤ 1
θ

E
[
I1(t0) + I2(t0)

]
exp

{[∫ t1

t0

(R1 – 1) ds + · · · +
∫ tm

tm–1

(Rm – 1) ds
]}

≤ 1
θ

I1(t0) + I2(t0)ζ ,

(20)

in which ζ = exp{[∫ t1
t0

(R1 – 1) ds + · · · +
∫ tm

tm–1
(Rm – 1) ds]}. Taking integer h = 1, 2, . . . , it

follows that E[I1(t0 + hω) + I2(t0 + hω)] ≤ 1
θ
ζE[I1(t0 + (h – 1)ω) + I2(t0 + (h – 1)ω)] ≤ · · · ≤

1
θ
ζ hE[I1(t0) + I2(t0)]. Thus, when h approaches infinity, the sequence {E[I1(t0 + hω) + I2(t0 +

hω)]} converges to zero. In general, for t ∈ (tk–1, tk] and t0 + hω < tk ≤ t0 + (h + 1)ω, we
can obtain that E[I1(t) + I2(t)] ≤ 1

θ
E[I1(t0 + hω) + I2(t0 + hω)] exp[

∫ t
t0+hω

(Rσ (s) – 1) ds] ≤
1
θ

ME[I1(t0 +hω)+I2(t0 +hω)], where M = maxt0+hω<t≤t0+(h+1)ω exp[
∫ t

t0+hω
(Rσ (s)–1) ds]. Note

that I1, I2 ≥ 0, and hence I1 and I2 approach zero exponentially, which implies that A con-
verges to zero, S converges to λ/a. Therefore, Q0 = (λ/a, 0, 0, 0, 0) is stochastically asymp-
totically stable. In other words, the disease will die out with probability 1. �

Remark 3 Given an amplitude of bounded noise �, the condition R̂0 < 1 in Eq. (19) defines
a time delay τc such that τ > τc guarantees the disappearance of the disease. Similarly, given
a time delay τ , the condition R̂0 < 1 in Eq. (19) defines an amplitude of bounded noise �c.

Next, we present some threshold conditions to show that the disease is weakly persistent
in system (1).

Theorem 3 Assume that

R̃0 = sup
t≥l

∫ t

t0

(Xσ qσ Gτ + eσ rσ Yσ ) ds (21)

for some l ≥ t0, in which G is given in Proposition 3, Xσ = 1
Gτ (qσ –pσ )+(a+rσ +ρ1

σ ) > 0, and Yσ =
1

eσ rσ +a–bσ +ρ2
σ

> 0. If R̃0 > 1, then the disease is weakly persistent with probability 1.

Proof Let us consider the following set of Lyapunov functions:

Vσ = Xσ I1(t) + Yσ I2(t) + Xσ pσ

∫ τ

0

∫ t

t–h
S(u + h)I1(u) du dh

+ Xσ qσ

∫ τ

0

∫ t

t–h
S(u + h)I2(u) du dh,

(22)

where Xσ and Yσ are defined in the theorem.
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Then we can compute the time derivative of Vσ (t) along system (1) as follows:

dVσ = Xσ dI1(t) + Yσ dI2(t) + Xσ pσ

∫ τ

0

{
S(t + h)I1(t) – S(t)I1(t – h)

}
dh dt

+ Xσ qσ

∫ τ

0

{
S(t + h)I2(t) – S(t)I2(t – h)

}
dh dt

= Xσ

{

–
(
rσ + a + ρ1

σ

)
I1(t) + pσ

∫ τ

0
S(t + h)I1(t) dh

+ qσ

∫ τ

0
S(t + h)I2(t) dh

}

dt + Yσ

{
eσ rσ I1(t)

–
(
a + bσ + ρ2

σ

)
I2(t)

}
dt – Xσ ϕ1I1(t) dW1(t) – Yσ ϕ2I2(t) dW2(t)

≥ {
Xσ

(
pσ Gτ – rσ – a – ρ1

σ

)
I1(t) + Yσ eσ rσ

}
I1(t) dt +

{
Xσ qσ Gτ

– Yσ

(
a + bσ + ρ2

σ

)
I2(t)

}
dt – Xσ ϕ1I1(t) dW1(t) – Yσ ϕ2I2(t) dW2(t)

≥ (R̃σ – 1)
(
I1(t) + I2(t)

)
dt – Xσ ϕ1I1(t) dW1(t) – Yσ ϕ2I2(t) dW2(t),

(23)

where R̃σ = Xσ qσ Gτ + eσ rσ Yσ . Then, integrating Eq. (23) over [tk–1, tk], it can be calculated
that

V (t) ≥ V (tk–1) +
∫ t

tk–1

{(
R̃σ (s) – 1

)
I1(s) ds – Xσ (s)ϕ1I1(s) dW1(s)

}

+
∫ t

tk–1

{(
R̃σ (s) – 1

)
I2(s) ds – Yσ ϕ2I2(s) dW2(t)

}
.

(24)

Taking the expectation for Eq. (24), it follows that

E
[
V (t)

] ≥ E
[
V (tk–1)

]
+ E

[∫ t

tk–1

{(
R̃σ (s) – 1

)
I1(s) ds – Xσ (s)ϕ1I1(s) dW1(s)

}
]

+ E
[∫ t

tk–1

{(
R̃σ (s) – 1

)
I2(s) ds – Yσ ϕ2I2(s) dW2(t)

}
]

≥ E
[
V (tk–1)

]
+

∫ t

tk–1

(
R̃σ (s) – 1

)
E
[
I1(s) + I2(s)

]
ds.

(25)

Hence, we obtain the following results:

E
[

dV (t)
dt

]

≥ (R̃σ – 1)E
[
I1(t) + I2(t)

]
. (26)

Letting δ = maxσ∈{1,2,...,m}{Xσ ( λτ
a–�

pσ – rσ – a – ρ1
σ ) + Yσ eσ rσ , Xσ qσ

λτ
a–�

– Yσ (a + bσ + ρ2
σ )}, it

follows that

(R̃σ – 1)E
[
I1(t) + I2(t)

] ≤ E
[

dV (t)
dt

]

≤ δ
d
dt

E
[
I1(t) + I2(t)

]
, (27)

i.e.,

δ
d
dt

E
[
I1(t) + I2(t)

] ≥ (Rσ – 1)E
[
I1(t) + I2(t)

]
. (28)
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Moreover, we have that E[I1(t)+ I2(t)] ≥ E[I1(tk–1)+ I2(tk–1)] exp[
∫ t

tk–1
1
δ
(R̃σ (s)–1) ds]. Then

we obtain that, for t ∈ (0, t1], E[I1(t) + I2(t)] ≥ (I1(t0) + I2(t0)) exp[
∫ t

t0
1
δ
(R̃σ (s) – 1) ds]. For

t ∈ (t1, t2], it can be derived that E[I1(t) + I2(t)] ≥ (I1(t0) + I2(t0)) exp[
∫ t1

t0
1
δ
(R̃σ (s) – 1) ds +

∫ t
t1

1
δ
(R̃σ (s) – 1) ds]. In general, for t ∈ (tk–1, tk], it can be shown that

E
[
I1(t) + I2(t)

]

≥ (
I1(t0) + I2(t0)

)
exp

{
1
δ

[∫ t1

t0

(
R̃σ (s) – 1

)
ds + · · · +

∫ t

tk–1

(
R̃σ (s) – 1

)
ds

]}

.
(29)

On the other hand, R̃0 > 1 implies that ς = exp{ 1
θ

[
∫ t1

t0
(Rσ (s) – 1) ds + · · · +

∫ t
tk–1

(Rσ (s) –
1) ds]} > 1 such that limt→∞ E(I1(t) + I2(t)) → ∞ as t → ∞. Therefore, the disease weakly
persists with probability 1. �

Remark 4 It is worthy to point out from Theorem 3 that the disease is weakly persistent
with R̃0 > 1.

Theorem 4 Suppose that the switching signal σ is periodic. Suppose that

R̃0 =
∫ t0+ω

t0

(Xσ qσ Gτ + eσ rσ Yσ ) ds, (30)

with G given in Proposition 3, Xσ = 1
Gτ (qσ –pσ )+(a+rσ +ρ1

σ ) > 0, and Yσ = 1
eσ rσ +a–bσ +ρ2

σ
> 0. If

R∗
0 > 1, then the disease is weakly persistent with probability 1.

Proof From the proof preceding to Theorem 3, we have that, for t = t0 + ω,

E
[
I1(t0 + ω) + I2(t0 + ω)

]

≥ E
[
I1(t0) + I2(t0)

]
exp

{
1
δ

[∫ t1

t0

(R̃1 – 1) ds + · · · +
∫ tm

tm–1

(R̃m – 1) ds
]}

≥ I1(t0) + I2(t0)ς .

(31)

For some integer h = 1, 2, . . . , E[I1(t0 + hω) + I2(t0 + hω)] ≥ ςE[I1(t0 + (h – 1)ω) + I2(t0 + (h –
1)ω)] ≥ · · · ≥ ςhE[I1(t0) + I2(t0)], which implies that when h approaches ∞, the sequence
{E[I1(t0 + hω) + I2(t0 + hω)]} converges to ∞. Thus, for t ∈ (tk–1, tk] and t0 + hω < tk ≤
t0 + (h + 1)ω, we derive that E[I1(t) + I2(t)] ≥ E[I1(t0 + hω) + I2(t0 + hω)] exp[

∫ t
t0+hω

1
δ
(R̃σ (s) –

1) ds] ≥ ME[I1(t0 + hω) + I2(t0 + hω)], in which M = mint0+hω≤t≤t0+(h+1)ω exp[
∫ t

t0+hω
1
δ
(R̃σ (s) –

1) ds]. It can be derived that limt→∞ E(I1(t) + I2(t)) → ∞. Therefore, the disease is weakly
persistent with probability 1. �

Remark 5 It has been shown in Theorem 4 that the basic reproduction number R̃0 is re-
lated to the transmission mechanism of disease, and the disease is weakly persistent even
if the basic reproduction number of some subsystem is less than one.

Remark 6 We observe from the results of Theorem 2 and Theorem 4 that two types of
noise and time delay have an important effect on the dynamics of the proposed model.
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4 Pulse control schemes
In this section, we develop pulse control strategies to eliminate the disease. New thresh-
old conditions are established to guarantee that pulse control strategies are successful in
clearing up the disease.

4.1 Pulse treatment of two types of the infected individuals
In this subsection, we discuss the case that the pulse treatment strategy is applied to the
asymptomatic infected individuals and the symptomatic infected individuals in a relatively
short time period compared with the dynamics of the disease. Immediately after each
pulse treatment, the disease evolves from its new initial state without being further af-
fected by the treatment scheme until the next pulse is applied [17, 31]. At each treatment
time, assume that the asymptomatic infected individuals and the symptomatic infected
individuals are provided with pulse treatment at the same time, and ν (0 < ν < 1) is a frac-
tion of the asymptomatic infected individuals and the symptomatic infected individuals
who are in pulse therapy, respectively. And assume that two types of the treated popu-
lation can become died out. Suppose that we ignore the effect caused by drug to other
individuals. When pulse treatment strategies are incorporated into system (1), the system
may be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = {λ – pσ S(t)
∫ τ

0 I1(t – h) dh – qσ S(t)
∫ τ

0 I2(t – h) dh – aS(t)}dt

– S(t) dM(t), t �= t0 + nω,

dI1(t) = {pσ S(t)
∫ τ

0 I1(t – h) dh + qσ S(t)
∫ τ

0 I2(t – h) dh – (rσ + a + ρ1
σ )I1(t)}dt

– ϕ1I1(t) dW1(t),

dI2(t) = {eσ rσ I1(t) – (a + bσ + ρ2
σ )I2(t)}dt – ϕ2I2(t) dW2(t),

dA(t) = {(1 – eσ )rσ I1(t) + ρ2
σ I2(t) – cσ A(t) – aA(t)}dt – ϕ3A(t) dW3(t),

S(t+) = S(t), t = t0 + nω,

I1(t+) = (1 – ν)I1(t),

I2(t+) = (1 – ν)I2(t),

A(t+) = A(t),

(32)

in which all parameters λ, pσ , qσ , a, rσ , ρ1
σ , eσ , bσ , ρ2

σ , and cσ are defined the same as those
of system (1). The switching rule σ ∈ Iperiodic-pulse, where Iperiodic-pulse is the set of periodic
switching signals of the above model, and one period is denoted by ω = ω1 + · · · + ωm and
ωk = tk – tk–1. Suppose that S(t+

0 ) = S(t0), I1(t+
0 ) = I1(t0), I2(t+

0 ) = I2(t0), and A(t+
0 ) = A(t0) are

the initial condition of system (32). When there are no noise terms and pulse treatment
terms, system (32) has a disease-free equilibrium Q0 = (λ/a, 0, 0, 0, 0). In the following, we
investigate that the disease in system (32) will die out with probability 1. That is, if I1 = 0
and I2 = 0, then it is obtained that A approaches zero, which means that the disease could
be eradicated theoretically.

Theorem 5 Suppose that the switching rule σ ∈ Iperiodic-pulse, and a > �. Suppose that

Ř0 =
ln(1 – ν)

ω
+

∫ t0+ω

t0
[λτqσ Bσ + eσ rσ (a – �)Dσ ] ds

(a – �)ω
, (33)
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with Bσ = a–�

λτ (qσ –pσ )+(a–�)(rσ +a+ρ1
σ ) , and Dσ = 1

εσ rσ +a–bσ –ρ2
σ

. If Ř0 < 1, then Q0 = (λ/a, 0, 0, 0, 0)
is stochastically asymptotically stable. In other words, the disease will go to extinction with
probability 1.

Proof From the proof of Theorem 1, we have that, for t ∈ (tk–1, tk],

E
[
I1(t) + I2(t)

] ≤ 1
θ

E
[
I1(tk–1) + I2(tk–1)

]
exp

[∫ t

tk–1

(
Rσ (s) – 1

)
ds

]

, (34)

where θ = minσ∈{1,2,...,m}{Bσ , Dσ } and Rσ = λτqσ Bσ +eσ rσ (a–�)Dσ

a–�
. Then it can be shown that, for

t ∈ (0, t1], E[I1(t) + I2(t)] ≤ 1
θ

(I1(t0) + I2(t0)) exp[
∫ t

t0
(Rσ (s) – 1) ds]. Moreover, we can observe

that, for t ∈ (tk–1, tk], E[I1(t) + I2(t)] ≤ 1
θ

(I1(t0) + I2(t0)) exp{∫ t1
t0

(Rσ (s) – 1) ds +
∫ t2

t1
(Rσ (s) –

1) ds + · · · +
∫ t

tk–1
(Rσ (s) – 1) ds}.

Immediately after the pulse switch time t = t0 + ω, it follows that

E
[
I1(t0 + ω)+ + I2(t0 + ω)+]

= (1 – v)E
[
I1(t0 + ω) + I2(t0 + ω)

]

≤ 1
θ

(1 – v)
(
I1(t0) + I2(t0)

)
exp

{∫ t1

t0

(
Rσ (s) – 1

)
ds + · · · +

∫ tm

tm–1

(
Rσ (s) – 1

)
ds

}

≤ 1
θ

(
I1(t0) + I2(t0)

)
exp

{

ln(1 – v) +
∫ t0+ω

t0

(
Rσ (s) – 1

)
ds

}

.

(35)

Ř0 < 1 implies that ζ̃ = exp{ln(1 – v) +
∫ t0+ω

t0
(Rσ (s) – 1) ds} < 1. Since the switching signal σ

is periodic, we can derive that E[I1(t0 + hω)+ + I2(t0 + hω)+] ≤ · · · ≤ 1
θ

(I1(t0) + I2(t0))ζ̃ h for
some integer h = 1, 2, . . . . Thus, it can obtained that when h approaches ∞, the sequence
{E[I1(t0 + hω)+ + I2(t0 + hω)+]} approaches 0. In general, for t ∈ (tk–1, tk] and t0 + hω < tk ≤
t0 +(h+1)ω, it follows that E[I1(t)+ I2(t)] ≤ 1

θ
E[I1(t0 +hω)+ + I2(t0 +hω)+] exp[

∫ t
t0+hω

(Rσ (s)–
1) ds] ≤ 1

θ
ME[I1(t0 + hω)+ + I2(t0 + hω)+], where M = maxt0+hω<t≤t0+(h+1)ω exp[

∫ t
t0+hω

(Rσ (s) –
1) ds]. It can be shown that I1 and I2 approach zero with probability 1. Furthermore, we can
get that A approaches zero with probability 1. Therefore, Q0 = (λ/a, 0, 0, 0, 0) is stochasti-
cally asymptotically stable, i.e., the disease will go to extinction with probability 1. �

Remark 7 Theorem 5 shows that the disease can be eradicated when the basic reproduc-
tion number related to two types of noise, time delay, and pulse treatment is less than
one. Given an amplitude of bounded noise �, the condition Ř0 < 1 in Theorem 5 defines
a vaccination τc such that ν > νc guarantees eradication of the disease, where

νc = 1 – exp

{

ω –

∫ t0+ω

t0
[λτqσ Bσ + eσ rσ (a – �)Dσ ] ds

a – �

}

. (36)

4.2 Pulse vaccination of the susceptible individuals and the infected individuals
The subsection deals with pulse vaccination applied to the susceptible individuals and the
infected individuals at the same time. Suppose that the susceptible individuals are pro-
vided with pulse vaccination at each vaccination time, and a fraction θ̂ (0 < θ̂ < 1) of the
susceptible individuals are offered a pulse scheme. And suppose that the vaccinated sus-
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ceptible individuals have permanent immunity. Applied to system (32), the pulse vaccina-
tion system is modeled as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = {λ – pσ S(t)
∫ t

t–τ
I1(h) dh – qσ S(t)

∫ t
t–τ

I2(h) dh – aS(t)}dt

– S(t) dM(t), t �= t0 + nω,

dI1(t) = {pσ S(t)
∫ t

t–τ
I1(h) dh + qσ S(t)

∫ t
t–τ

I2(h) dh – (rσ + a + ρ1
σ )I1(t)}dt

– ϕ1I1(t) dW1(t),

dI2(t) = {eσ rσ I1(t) – (a + bσ + ρ2
σ )I2(t)}dt – ϕ2I2(t) dW2(t),

dA(t) = {(1 – eσ )rσ I1(t) + ρ2
σ I2(t) – cσ A(t) – aA(t)}dt – ϕ3A(t) dW3(t),

S(t+) = (1 – θ̂ )S(t), t = t0 + nω,

I1(t+) = (1 – ν)I1(t),

I2(t+) = (1 – ν)I2(t),

A(t+) = A(t),

(37)

where all parameters are defined the same as those of system (32) and are nonnegative. The
switching signal σ ∈ Iperiodic-pulse, where Iperiodic-pulse is the set of period switching signals
of (32), and the period is denoted by ω = ω1 + · · ·+ωm and ωk = tk –tk–1. Assume that S(t+

0 ) =
S(t0) > 0, I1(t+

0 ) = I1(t0) ≥ 0, I2(t+
0 ) = I2(t0) ≥ 0, and A(t+

0 ) = A(t0) ≥ 0 are initial conditions
of (32). When the average of oscillation for both the asymptomatic infected individuals
and the symptomatic infected individuals is zero, it is deduced that A approaches zero.
Then system (37) can be simplified to the following limit form:

⎧
⎨

⎩

dS(t) = {λ – aS(t)}dt – S(t) dM(t), t �= t0 + nω,

S(t+) = (1 – θ̂ )S(t), t = t0 + nω.
(38)

According to Lemma 2.2 of [42], Eq. (38) has a stochastic solution S̃. So that system (37) has
a stochastic solution Q̃ = (̃S, 0, 0, 0). Next, threshold conditions are derived to show that
system (37) is stochastically asymptotically stable, which means that the disease could be
cleared out theoretically.

Theorem 6 Suppose that the switching rule σ ∈ Iperiodic-pulse, and a > �. Suppose that

R̂0 =
ln(1 – ν)

ω
+

∫ t0+ω

t0
[λτqσ Bσ + eσ rσ (a – �)Dσ ] ds

(a – �)ω
, (39)

with Bσ = a–�

λτ (qσ –pσ )+(a–�)(rσ +a+ρ1
σ ) , and Dσ = 1

εσ rσ +a–bσ –ρ2
σ

. If R̂0 < 1, then the solution Q̃ =
(̃S, 0, 0, 0) is stochastically asymptotically stable, which means that the disease will go to
extinction with probability 1.

Proof Suppose that the switching rule σ ∈ Iperiodic-pulse. From the proof of Theorem 5, it
follows that I1(t) and I1(t) converge to zero with probability 1 in infinite time, respectively.
Moreover, A(t) converges to zero with probability 1 in infinite time. Thus, the limit sys-
tem with I1(t) = 0, I2(t) = 0 and A(t) = 0 is given by system (38). Therefore, the solution
Q̃ = (̃S, 0, 0, 0) is stochastically asymptotically stable. In other words, the disease will go to
extinction with probability 1. �
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5 Computer simulations
This section gives four examples to illustrate the effectiveness of the theoretical results.
Suppose that one period is ω = 1, the number of subsystems is m = 2, and t0 = 0, and most
of the values are taken from those in [7, 12, 14, 23, 24].

Example 1 Consider the dynamics of system (1) with the initial conditions S(0) = 10,000,
I1(0) = 1000, I2(0) = 10,000, and A(0) = 1000. Assume that the activity time in the 1st sub-
system is ω1 = 0.8 and the activity time in the 2nd subsystem is ω2 = 0.2. Choose constant
parameter values λ = 103 and a = 0.3. Take the switching parameters p1 = 0.01, q1 = 0.07,
r1 = 0.7, ρ1

1 = 0.7, e1 = 0.02, b1 = 10–4, ρ2
1 = 0.7, c1 = 0.02, p2 = 0.04, q2 = 0.05, r2 = 0.025,

ρ2
1 = 0.015, e2 = 0.4, b2 = 10–3, ρ2

2 = 0.5, and c2 = 0.05. We will investigate the dynamics of
the model, and show the effect of distributed time delay and two types of noise on system
(1).

(I) Taking the time delay parameter τ = 0.01, the amplitude of bounded noise � = 0.1,
the center frequency of bounded noise � = 0.2, and the intensity of noises ϕ = ϕ1 = ϕ2 =
ϕ3 = 0.5. It can be calculated that the basic reproduction number of the first subsystem
is 0.7915; the basic reproduction number of the second subsystem is 1.5870. From The-
orem 2, we have R̂0 = 0.9506 < 1, then the disease in system (1) will go to extinction with
probability 1. It is worth noticing that the entire system (1) may be stochastically asymptot-
ically stable although some subsystem is stochastically asymptotically unstable. Figure 1
shows that the disease eventually disappears under the influence of distributed time delay,
switching, and two types of noise. Therefore, the simulation results of system (1) guarantee
the theoretical results.

(II) In the absence of two types of noise, and taking the time delay parameter τ = 0.01, it
can be derived that the basic reproduction number is 0.7769 (< 1), and solutions of system
(1) without two types of noise are plotted in Fig. 2. It can be shown from Fig. 1 and Fig. 2
that solutions of system (1) fluctuate randomly around the deterministic solutions of the
model without two types of noise.

Figure 1 Simulations of system (1) with τ = 0.01, � = 0.1, and ϕ = ϕ1 = ϕ2 = ϕ3 = 0.5
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Figure 2 Simulations of system (1) with τ = 0.01, � = 0, and ϕ = ϕ1 = ϕ2 = ϕ3 = 0

Figure 3 Simulations of system (1) with � = 0.1, ϕ = ϕ1 = ϕ2 = ϕ3 = 0.5, and τ = 0

(III) In the absence of time delay, the amplitude of bounded noise � = 0.1, the center
frequency of bounded noise � = 0.2, and the intensity of noises ϕ = ϕ1 = ϕ2 = ϕ3 = 0.5. It
can be derived that the basic reproduction number is 0.0270 (< 1), and numerical simula-
tion results are given in Fig. 3. From both Fig. 1 and Fig. 3, it can be shown that time delay
could affect the dynamic behavior of the disease.

Example 2 Consider the persistence of the disease in system (1) with the initial conditions
S(0) = 10,000, I1(0) = 1000, I2(0) = 1000, and A(0) = 1000. Assume that the activity time in
the 1st subsystem is ω1 = 0.2 and the activity time in the 2nd subsystem is ω2 = 0.8, and fix
constant values λ = 103 and a = 0.3. Take the switching parameters p1 = 0.01, q1 = 0.003,
r1 = 0.015, ρ1

1 = 0.0025, e1 = 0.3, b1 = 10–3, ρ2
1 = 0.0015, c1 = 0.002, p2 = 0.04, q2 = 0.05,

r2 = 0.025, ρ2
1 = 0.0015, e2 = 0.4, b2 = 10–4, ρ2

2 = 0.0025, and c2 = 0.005. Take the time delay
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Figure 4 Simulations of system (1) with τ = 0.01, � = 0.01, and ϕ = ϕ1 = ϕ2 = ϕ3 = 0.1

parameter τ = 0.01, � = 0.01, � = 0.2, and ϕ = ϕ1 = ϕ2 = ϕ3 = 0.1. It can be computed that
the basic reproduction number of the first subsystem is 0.1904; the basic reproduction
number of the second subsystem is 1.4706. From Theorem 3, it can be derived that R̃0 =
1.2146 > 1, which implies that the disease persists weakly with probability 1. It can be seen
from Fig. 4 that the disease in system (1) does not appear.

Example 3 Consider the dynamics of system (32) with the initial conditions S(0) = 10,000,
I1(0) = 1000, I2(0) = 10,000, and A(0) = 1000. Suppose that the other parameters are the
same as those of Fig. 4, and the pulse treatment ν = 0.8. It can be calculated Ř0 = 0.7460 < 1
by Theorem 5. In comparison with Fig. 4 without pulse treatment, it can be clearly shown
from Fig. 5 that the disease can be eradicated with probability 1 due to the effect of the
pulse treatment.

Example 4 Consider the dynamics of system (37) with the initial conditions S(0) = 10,000,
I1(0) = 1000, I2(0) = 10,000, and A(0) = 1000. Assume that the activity time in the 1st sub-
system is ω1 = 0.8 and the activity time in the 2nd subsystem is ω2 = 0.2, and fix con-
stant values to be λ = 103 and a = 0.3. Take the switching parameters p1 = 0.01, q1 = 0.07,
r1 = 0.7, ρ1

1 = 0.7, e1 = 0.02, b1 = 10–4, ρ2
1 = 0.7, c1 = 0.02, p2 = 0.04, q2 = 0.05, r2 = 0.025,

ρ2
1 = 0.015, e2 = 0.4, b2 = 10–3, ρ2

2 = 0.5, and c2 = 0.005. Take the time delay parameters
τ = 0.01, � = 0.1, � = 0.2, and ϕ = ϕ1 = ϕ2 = ϕ3 = 0.5. Assuming that the pulse vaccination
parameters θ = 0.1 and ν = 0.1, we can obtain that R̂0 = 0.8453 < 1 by Theorem 6. Figure 6
shows that the disease eventually disappears under the conditions of R̂0 < 1.
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Figure 5 Simulations of system (32) with pulse vaccination parameter ν = 0.8

Figure 6 Simulations of system (37) with pulse vaccination parameter θ = 0.1 and ν = 0.1

6 Conclusions
Pulse vaccination schemes for switched HIV/AIDS epidemic models with distributed time
delay and combined bounded noise and Gaussian white noise are developed and investi-
gated in this paper. The model parameters are assumed to be switching parameters, and
two types of noise are incorporated into the model on the basis of the method of stochastic
perturbation, a switched HIV/AIDS epidemic model with distributed time delay and two
types of noise is presented. Novel threshold criteria are developed to check the stochas-
tic asymptotic stability of the disease-free equilibrium of the models via stochastic Itô’s
lemma and the Lyapunov–Razumikhin method. The results show that the disease is elim-
inated theoretically under the condition of R̄0 < 1 (given by Theorem 1) or R̂0 < 1 (given
by Theorem 2), which implies that the system is stochastically asymptotically stable re-
gardless of the subsystems being stable or unstable. And the disease could be permanent
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weakly when R̃0 > 1 (given by Theorem 3) or R∗
0 > 1 (given by Theorem 4). Our mathe-

matical analysis suggests that switching parameters, two types of noise, and distributed
time delay have significant effect on the spread of the disease. Furthermore, pulse control
strategies are applied to two types of the infected population, the susceptible population,
and the infected population, respectively. New threshold conditions are derived to exam-
ine whether two types of control strategies succeed in the disease elimination or not, i.e.,
whether Q0 or Q̃ is stochastically asymptotically stable or not. More precisely, a vaccina-
tion τc is defined to guarantee eradication of the disease if ν > νc. These results extend the
existing work for the corresponding HIV/AIDS model. Simulation examples are provided
to verify these results. One future research direction is to study an optimal vaccination
strategy for the disease eradication.
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