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Abstract
In this paper, we construct a new Halpern-type subgradient extragradient iterative
algorithm. The sequence generated by this algorithm converges strongly to a
common solution of a variational inequality, an equilibrium problem, and a J-fixed
point of a continuous J-pseudo-contractive map in a uniformly smooth and
two-uniformly convex real Banach space. Also, the theorem is applied to approximate
a common solution of a variational inequality, an equilibrium problem, and a convex
minimization problem. Moreover, a numerical example is given to illustrate the
implementability of our algorithm. Finally, the theorem proved complements,
improves, and unifies some related recent results in the literature.
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1 Introduction
Let Q∗ be the dual space of a real normed linear space Q and D be a nonempty, closed, and
convex subset of Q. In this paper, we study the classical variational inequality of Fichera
[1] and Stampacchia [2], the equilibrium problem of Blum and Otelli [3], and some fixed
point problems.

Let A : D →Q∗ be a given map. A variational inequality problem is the following:

find x ∈D such that 〈y – x, Ax〉 ≥ 0 for all y ∈D. (1.1)

Variational inequality was first developed to solve equilibrium problems, precisely the Sig-
norini problem posed by Antonio [4] in the year 1959. This problem was later solved by
Fichera [1] in the year 1963. In 1964, Stampacchia [2] studied the regularity problem for
partial differential equations and thereby coined the name “variational inequality”, stating
nothing but the principle of complementary virtual work in its inequality form. Variational
inequality has been found to have numerous applications in many areas of sciences; see,
for example, [5–7].
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For earlier and more recent results on the existence of solutions and iterative methods
for solving variational inequalities; see, for example, [8–19].

Let � : D ×D →R be a bifunctional. An equilibrium problem is to find

x ∈D such that �(x, y) ≥ 0 for all y ∈D. (1.2)

Numerous problems in physics, optimization, and economics reduce to a problem of find-
ing solutions of inequality (1.2). Some methods have been proposed to solve equilibrium
problems in Hilbert spaces and more general Banach spaces; see, for example, [20–25].

We remark that the following conditions will be needed in solving the equilibrium prob-
lem (1.2):

(A1) �(x, x) = 0 for all x ∈D;
(A2) � is monotone, i.e., �(x, y) + �(y, x) ≤ 0 for all x, y ∈D;
(A3) lim supt↓0 �(x + t(z – x), y) ≤ �(x, y) for all x, y, z ∈D;
(A4) for all x ∈D, �(x, ·) is convex and lower semi-continuous.

A map A : Q→Q is called accretive if, for each x, y ∈Q, there exists j(x – y) ∈ J(x – y) such
that

〈
Ax – Ay, j(x – y)

〉 ≥ 0, (1.3)

where J : Q → 2Q∗ is the normalized duality map. In Hilbert spaces, accretive maps are
called monotone.

Accretive maps were introduced independently in the year 1967 by Browder [9] and
Kato [26]. Interest in this class of maps stems mainly from their firm connection with the
existence theory for nonlinear equations of evolution in Banach spaces, i.e., equations of
the form

⎧
⎨

⎩
x′(s) + Ax(s) = v(x(s)), s ≥ 0,

x(0) = x0.
(1.4)

At equilibrium state, and setting v ≡ 0 in equation (1.4), we obtain the following equation:

Ax = 0. (1.5)

In many cases, where the map A is accretive, solutions of equation (1.5) represent the
equilibrium state of the system described by equation (1.4).

For solving equation (1.5), Browder [9] in the year 1967 introduced a self-map S := I – A
on a real Banach space, which he called a pseudo-contractive map. Approximating zeros
of accretive maps is equivalent to approximating fixed points of pseudo-contractive maps,
assuming existence of such zeros. For earlier and more recent results on the approximation
of fixed points of pseudo-contractive maps, the reader may consult any of the following:
[27–36].

A map A : Q→Q∗ is called monotone if, for each x, y ∈Q, the following inequality holds:

〈x – y, Ax – Ay〉 ≥ 0.
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The sub-differential of a convex and proper function h, defined on a real Banach space
and denoted by ∂h, is a monotone map, and for each x in the domain of h, 0 ∈ ∂h(x) if
and only if x minimizes the function h; see, for example, [37]. In particular, setting the
sub-differential equivalently as A, we have 0 ∈ Ax, which reduces to Ax = 0 for the case
where ∂h ≡ A is single-valued. Therefore, approximating zeros of such monotone maps is
equivalent to finding a minimizer of some convex function.

It is obvious that the fixed point technique introduced by Browder in the year 1967 for
approximating zeros of accretive maps is not applicable in this case, where A from a real
Banach space to its dual space is monotone.

Hence, there is the need to develop techniques for approximating zeros of monotone
maps.

To approximate zeros of monotone maps, Zegeye [38] in the year 2008 introduced a
map S := J – A from a real Banach space to its dual space. He called the map semi-pseudo
mapping, where A : Q → 2Q∗ is a monotone map. Also, in the year 2016, Chidume and
Idu [39] studied this class of maps and called it J-pseudo-contractive.

An element x in D is called a semi-fixed point (J-fixed point) of S from D to Q∗ if

Sx = Jx, (1.6)

where J is the normalized duality map and single-valued in this case; see, for example,
[38, 39].

Approximating zeros of these monotone maps is equivalent to approximating J-fixed
points of J-pseudo-contractive maps, assuming the existence of such zeros, which is also
equivalent to finding a minimizer of some convex functions.

We remark that in real Hilbert spaces, and also smooth and strictly convex real Banach
spaces, the notion of J-fixed points coincides with the classical definition of fixed points.
However, if the space is not strictly convex, J may fail to be one-to-one. Thus, the inverse
of J may not exist. For more recent works on J-fixed points, see, for example, [40–48].

In 2014, Zegeye and Shazard [49] studied the problem of finding a common solution
in the set of fixed points of a Lipschitz pseudo-contractive map S and solution sets of a
variational inequality for a γ -inverse strongly monotone map A in a real Hilbert space H
by considering the following iterative algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

xo ∈ C ⊂ H ,

yn = (1 – βn)xn + βnSxn,

xn+1 = PC[(1 – αn)(δnxn + θnSyn + γnPC[I – γnA]xn)],

(1.7)

where PC is the metric projection from H onto C and {δn}, {γn}, {θn}, {αn}, {βn} are se-
quences in ]0, 1[ satisfying appropriate conditions. They proved that the sequence gener-
ated by the algorithm converges strongly to an element in the solution set of the problem.

Also, in the year 2015, Alghamdi et al. [17] studied a Halpern-type extragradient
method, to approximate a common solution of a variational inequality and a fixed point
problem of a continuous pseudo-contractive map in a real Hilbert space. They proved the
following theorem.

Theorem 1.1 Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let S : C → C be a continuous pseudo-contractive map. Let A : C → H be an L-Lipschitz
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monotone map. Assume that F := F(S) ∩ VI(A, C) �= ∅, where F(S) is a fixed point set of S
and VI(A, C) is the solution set of a variational inequality. Let {xn} be a sequence generated
by

⎧
⎪⎪⎨

⎪⎪⎩

xo, u ∈ C,

zn = PC[xn – γnAxn],

xn+1 := αnu + (1 – αn)(anxn + bnKS
rn xn + cnPC[xn – γnAzn]),

where {γn} ⊂ [a, b[ ⊂ ]0, 1
L [, and {an}, {bn}, {cn} ⊂ (a, b) ⊂ ]0, 1[, {αn} ⊂ ]0, c[ ⊂ ]0, 1[ satis-

fying the following conditions: (i) an + bn + cn = 1, (ii) limαn = 0,
∑

αn = ∞, and KS
rn is a

resolvent map for S from H unto C. Then {xn} converges strongly to the point x∗ of F nearest
to u.

Motivated by the results in [17, 39, 49], we present in this paper a Halpern-type
subgradient-extragradient algorithm for which the sequence generated by the algorithm
converges strongly to a common solution of a variational inequality, an equilibrium prob-
lem, and J-fixed points of a continuous J-pseudo-contractive map in a uniformly smooth
and two-uniformly convex real Banach space. Also, the theorem is applied to approxi-
mate a common solution of a variational inequality, an equilibrium problem, and a convex
minimization problem. Moreover, a numerical example is given to illustrate the imple-
mentability of our algorithm. Finally, the theorem proved complements, improves, and
unifies some related recent results in the literature.

2 Preliminaries
Let Q∗ be the dual space of a real normed linear space Q and D be a nonempty, closed,
and convex subset of Q. We denote xn ⇀ x∗ and xn → x∗ to indicate that the sequence {xn}
converges weakly to x∗ and converges strongly to x∗, respectively. Also, VI(A,D), EP(�),
and FJ (S) denote the set of solutions of variational inequalities, the set of solutions of equi-
librium problems, and the set of J-fixed points of S, respectively.

Let Q be a smooth real normed linear space and φ : Q×Q→R be a map defined by

φ(x, y) := ‖x‖2 – 2〈x, Jy〉 + ‖y‖2 for all x, y ∈Q, (2.1)

where J : Q→ 2Q∗ is the normalized duality map defined by

J(x) :=
{

x∗ ∈Q∗ :
〈
x, x∗〉 = ‖x‖∥∥x∗∥∥,‖x‖ =

∥∥x∗∥∥}
.

The map φ was introduced by Alber [7] and has been studied extensively by a host of other
authors.

For any x, y, z ∈Q and α ∈ ]0, 1[, the following properties are true:
(P1) (‖x‖ – ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2,
(P2) φ(x, J–1(αJy + (1 – α)Jz)) ≤ αφ(x, y) + (1 – α)φ(x, z),
(P3) φ(x, z) = φ(x, y) + φ(y, z) + 2〈y – x, Jz – Jy〉,
(P4) φ(x, y) ≤ ‖x‖‖Jx – Jy‖ + ‖y‖‖x – y‖.
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Definition 2.1 ([7]) Let Q be a smooth, strictly convex, and reflexive real Banach space,
and let D be a nonempty, closed, and convex subset of Q. The map �D : Q → D defined
by x̃ = �D(x) ∈D such that φ(x̃, x) = infy∈D φ(y, x) is called the generalized projection of Q
onto D.

Definition 2.2 ([9]) A map S : Q→Q is called a pseudo-contractive map if, for all x, y ∈Q,
there exists j(x – y) in J(x – y) such that

〈
Sx – Sy, j(x – y)

〉 ≤ ‖x – y‖2,

where J is the normalized duality map on Q.

Definition 2.3 ([39]) A map S : Q → Q∗ is called a J-pseudo-contractive map if, for all
x, y ∈Q, the following inequality holds:

〈x – y, Sx – Sy〉 ≤ 〈x – y, Jx – Jy〉.

In real Hilbert spaces, the of notion pseudo-contractive maps coincides with that of J-
pseudo-contractive maps.

Definition 2.4 ([37]) The sub-differential of a convex function h is a map ∂h : Q → 2Q∗ ,
defined by

∂h(x) =
{

x∗ ∈Q∗ : h(y) – h(x) ≥ 〈
y – x, x∗〉,∀y ∈Q

}
.

Lemma 2.5 ([7]) Let D be a nonempty, closed, and convex subset of a smooth, strictly con-
vex, and reflexive real Banach space Q. Then:

1. If x ∈Q and y ∈D, then x̃ = �Dx if and only if 〈x̃ – y, Jx – Jx̃〉 ≥ 0 for all y ∈D, where
�D is a generalized projection of Q onto D in Definition 2.1;

2. φ(y, x̃) + φ(x̃, x) ≤ φ(y, x) for all x ∈Q, y ∈D.

Lemma 2.6 ([50]) Let Q be a two-uniformly convex and smooth real Banach space. Then
there exists a positive constant c such that

φ(x, y) ≥ c‖x – y‖2, ∀x, y ∈Q.

Remark 1 Without loss of generality, we may assume c ∈ ]0, 1[.

Lemma 2.7 ([51]) Let {xn} and {yn} be two sequences of a uniformly convex and smooth
real Banach space. If either {xn} or {yn} is bounded and limn→∞ φ(xn, yn) = 0, then
limn→∞ ‖xn – yn‖ = 0.

Remark 2 Using Condition (P4), the converse of Lemma 2.7 is also true whenever {xn} and
{yn} are bounded.

Lemma 2.8 ([52]) Let D be a nonempty, closed, and convex subset of a reflexive space Q
and A be a monotone and hemi-continuous map from D into Q∗. Let R ⊂ Q × Q∗ be a
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map defined by

Rx =

⎧
⎨

⎩
Ax + ND(x), if x ∈D,

∅, if x /∈D,

where ND(x) is defined as follows: ND(x) = {w∗ ∈ Q∗ : 〈x – z, w∗〉 ≥ 0,∀z ∈ D}. Then R is
maximal monotone and R–1(0) = VI(A,D).

Lemma 2.9 ([53]) Let {an} be a sequence of nonnegative numbers satisfying the condition

an+1 ≤ (1 – αn)an + αnβn, n ≥ 0,

where {αn} and {βn} are sequences of real numbers such that (i) {αn} ⊂ [0, 1] and
∑

αn = ∞;
(ii) lim supβn ≤ 0. Then liman = 0.

Lemma 2.10 ([54]) Let {an} be a sequence of real numbers such that there exists a subse-
quence {amj} of {an} such that amj < amj+1 for all j ∈ N. Then there exists a nondecreasing
sequence {nk} of N such that limk→∞ nk = ∞, and the following properties are satisfied by
all (sufficiently large) number k ∈N:

ank ≤ ank +1 and ak ≤ ank +1.

In fact, nk is the largest number n in the set {1, . . . , k} such that an < an+1 holds.

Lemma 2.11 ([55]) Let Q∗ be the dual space of a reflexive, strictly convex, and smooth
Banach space Q. Then

V
(
x, x∗) + 2

〈
J–1x∗ – x, y∗〉 ≤ V

(
x, x∗ + y∗) for all x ∈Q and x∗, y∗ ∈Q∗.

Lemma 2.12 ([47]) Let Q∗ be the dual space of a uniformly smooth and strictly convex real
Banach space Q. Let D be a nonempty, closed, and convex subset of Q and S : D → Q∗ be
a continuous J-pseudo-contractive map. Let r > 0 and x ∈Q. Then the following conditions
hold:

1. There exists z ∈D such that 〈w – z, Sz〉 – 1
r 〈w – z, (1 + r)Jz – Jx〉 ≤ 0, ∀w ∈D.

2. Define a map TS
r : Q→D by

TS
r (x) :=

{
z ∈D : 〈w – z, Sz〉 –

1
r
〈
w – z, (1 + r)Jz – Jx

〉 ≤ 0,∀w ∈D
}

, x ∈Q.

Then:
(a) TS

r is single-valued;
(b) TS

r is a firmly nonexpansive-type map, i.e.,

〈
TS

r x – TS
r y, JTS

r x – JTS
r y

〉 ≤ 〈
TS

r x – TS
r y, Jx – Jy

〉
, ∀x, y ∈Q;

(c) F(TS
r ) = FJ (S), where F(TS

r ) denotes the fixed point set of the map TS
r ;

(d) FJ (S) is closed and convex;
(e) φ(q, TS

r x) + φ(TS
r x, x) ≤ φ(q, x), ∀q ∈ F(TS

r ), x ∈Q.
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3 Main results
In the sequel, c ∈ ]0, 1[ is the constant appearing in Lemma 2.6.

Theorem 3.1 Let Q∗ be the dual space of a uniformly smooth and two-uniformly con-
vex real Banach space Q. Let D be a nonempty, closed, and convex subset of Q. Let
A : D →Q∗ be a monotone and L-Lipschitz map, � : D×D →R be a bi-functional satis-
fying conditions A1 to A4, and S : D →Q∗ be a continuous J-pseudo-contractive map with
� := FJ (S) ∩ VI(A,D) ∩ EP(�) �= ∅. Let the sequence {xn} be generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0 ∈D,

zn = �DJ–1(Jxn – τAxn),

Tn = {w ∈Q : 〈w – zn, Jxn – τAxn – Jzn〉 ≤ 0},
xn+1 = J–1(αnJx0 + (1 – αn)[βJvn + (1 – β)Jwn]),

(3.1)

where vn = K�
rn TS

rn xn with K�
rn and TS

rn as the resolvent maps for � and S, respectively, {rn} ⊂
[a,∞[ for some a > 0, wn = �Tn J–1(Jxn – τAzn), τ ∈ ]0, 1[ with τ < c

L and {αn} ⊂ ]0, 1[ with
limαn = 0 and

∑
αn = ∞. Then the sequence {xn} converges strongly to a point ��x0.

Proof We divide the proof into two steps.
Step 1. We show that {xn} is bounded.
Let p ∈ �. Setting tn := J–1(Jxn – τAzn) and yn = TS

rn xn, then vn = K�
rn yn.

Applying the definition of A, Lemma 2.5, and property P3, we compute as follows:

φ(p, wn) ≤ φ(p, tn) – φ(wn, tn)

= ‖p‖2 – 2〈p, Jxn – τAzn〉 – ‖wn‖2 + 2〈wn, Jxn – τAzn〉
= φ(p, xn) – φ(wn, xn) + 2τ 〈p – wn, Azn〉
= φ(p, xn) – φ(wn, xn) + 2τ

[〈p – zn, Azn – Ap〉 + 〈p – zn, Ap〉 + 〈zn – wn, Azn〉
]

≤ φ(p, xn) – φ(wn, xn) + 2τ 〈zn – wn, Azn〉
= φ(p, xn) –

[
φ(wn, zn) + φ(zn, xn) + 2〈zn – wn, Jxn – Jzn〉

]
+ 2τ 〈zn – wn, Azn〉

= φ(p, xn) – φ(wn, zn) – φ(zn, xn) + 2〈wn – zn, Jxn – τAzn – Jzn〉. (3.2)

Since wn ∈ Tn, we have that 〈wn – zn, Jxn – τAxn – Jzn〉 ≤ 0. Thus,

〈wn – zn, Jxn – τAzn – Jzn〉 = 〈wn – zn, Jxn – τAxn – Jzn〉 + τ 〈wn – zn, Axn – Azn〉
≤ τ 〈wn – zn, Axn – Azn〉. (3.3)

Substituting inequality (3.3) in inequality (3.2) and using the Lipschitz condition of A and
Lemma 2.6, we have

φ(p, wn) ≤ φ(p, xn) – φ(wn, zn) – φ(zn, xn) + 2τ 〈wn – zn, Axn – Azn〉
≤ φ(p, xn) – φ(wn, zn) – φ(zn, xn) + 2τL‖wn – zn‖‖xn – zn‖
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≤ φ(p, xn) – φ(wn, zn) – φ(zn, xn) +
τL
c

(
φ(wn, zn) + φ(zn, xn)

)

= φ(p, xn) –
(

1 –
τL
c

)(
φ(wn, zn) + φ(zn, xn)

)
. (3.4)

Also, by a result of Blum and Otelli [3], and also by Lemma 2.12(2(e)), we have

φ(p, vn) ≤ φ(p, yn) – φ(vn, yn)

≤ φ(p, xn) – φ(yn, xn) – φ(vn, yn). (3.5)

Now, using the recursion formula (3.1), property P2, inequalities (3.4) and (3.5), we have

φ(p, xn+1) = φ
(
p, J–1(αnJx0 + (1 – αn)

[
βJvn + (1 – β)Jwn

]))

≤ αnφ(p, x0) + (1 – αn)
[
βφ(p, vn) + (1 – β)φ(p, wn)

]

≤ αnφ(p, x0) + (1 – αn)β
[
φ(p, xn) – φ(yn, xn) – φ(vn, yn)

]

+ (1 – αn)(1 – β)
[
φ(p, xn) –

(
1 –

τL
c

)(
φ(wn, zn) + φ(zn, xn)

)]

≤ αnφ(p, x0) + (1 – αn)φ(p, xn) – (1 – αn)β
[
φ(yn, xn) + φ(vn, yn)

]

– (1 – αn)(1 – β)
(

1 –
τL
c

)[
φ(wn, zn) + φ(zn, xn)

]
(3.6)

≤ αnφ(p, x0) + (1 – αn)φ(p, xn)

≤ max
{
φ(p, x0),φ(p, xn)

}
. (3.7)

Hence, by induction, we have that φ(p, xn) ≤ φ(p, x0), ∀n ≥ 0, which implies that {φ(p, xn)}
is bounded. By property P1, {xn} is bounded. Consequently, {wn}, {vn}, {yn}, and {zn} are
bounded.

Step 2. We show that {xn} converges strongly to a point u := ��x0.
Two cases arise.
Case 1. There exists N0 ∈N such that φ(u, xn) ≥ φ(u, xn+1), ∀n ≥ N0.
This implies that limn→∞ φ(u, xn) exists.
Claim 1. limn→∞ ‖yn – xn‖ = limn→∞ ‖vn – yn‖ = limn→∞ ‖wn – zn‖ = limn→∞ ‖zn – xn‖ =

limn→∞ ‖xn+1 – xn‖ = 0.
Setting σ := (1 – β)(1 – αn)(1 – τL

c ) > 0 and ξ := (1 – αn)β > 0, from inequality (3.6), we
have

φ(yn, xn) + φ(vn, yn) ≤ ξ–1(φ(u, xn) – φ(u, xn+1) + αnφ(u, x0)
)
, (3.8)

φ(wn, zn) + φ(zn, xn) ≤ σ –1(φ(u, xn) – φ(u, xn+1) + αnφ(u, x0)
)
. (3.9)

Using the condition on {αn} and taking limit on both sides of inequalities (3.8) and (3.9),
we have

lim
n→∞φ(yn, xn) = lim

n→∞φ(vn, yn) = lim
n→∞φ(wn, zn) = lim

n→∞φ(zn, xn) = 0. (3.10)
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By Lemma 2.7 and equation (3.10), we obtain that

lim
n→∞‖yn – xn‖ = lim

n→∞‖vn – yn‖ = lim
n→∞‖wn – zn‖ = lim

n→∞‖zn – xn‖ = 0. (3.11)

Combining equation (3.11), recursion formula (3.1) and applying the triangle inequality,
we have

lim
n→∞‖vn – xn‖ = lim

n→∞‖wn – xn‖ = lim
n→∞‖xn+1 – xn‖ = 0. (3.12)

Claim 2. We show that �w(xn) ⊂ �; �ω(xn) is the set of weak sub-sequential limits of
{xn}.

First, we show that �w(xn) ⊂ VI(A,D).
Let x∗ ∈ �ω(xn) and {xnj} be a subsequence of {xn} such that xnj ⇀ x∗ as j → ∞.
Applying the weak convergence of {xn} and equation (3.11), we have that ynj ⇀ x∗ as

j → ∞.
Let

Rx =

⎧
⎨

⎩
Ax + ND(x) if x ∈D,

∅ if x /∈D,

be as defined in Lemma 2.8. ThenR is maximal monotone, and 0 ∈Rx ⇐⇒ x ∈ VI(A,D).
It is known that if R is maximal monotone, then given (x, v∗) ∈ Q × Q∗ such that if 〈x –
y, v∗ – y∗〉 ≥ 0, ∀(y, y∗) ∈ G(R), where G(R) denotes the graph of R, one has v∗ ∈Rx.

Claim. (x∗, 0) ∈ G(R).
Let (x, z∗) ∈ G(R). It suffices to show that 〈x – x∗, z∗〉 ≥ 0.
Now, (x, z∗) ∈ G(R) �⇒ z∗ ∈Rx = Ax + ND(x), ⇒ z∗ – Ax ∈ ND(x).
This implies that 〈x – t, z∗ – Ax〉 ≥ 0, ∀t ∈D. In particular, 〈x – zn, z∗ – Ax〉 ≥ 0.
But zn = �DJ–1(Jxn –τAxn), ∀n ≥ 0, and x ∈D. By the characterization of the generalized

projection, we have

〈zn – x, Jxn – τAxn – Jzn〉 ≥ 0.

This implies that
〈
x – zn,

Jzn – Jxn

τ
+ Axn

〉
≥ 0, ∀n ≥ 0. (3.13)

Using inequality (3.13) and the fact that 〈x – zn, z∗ – Ax〉 ≥ 0, we get that

〈
x – znj , z∗〉 ≥ 〈x – znj , Ax〉 ≥ 〈x – znj , Ax〉 –

〈
x – znj ,

Jznj – Jxnj

τ
+ Axnj

〉

= 〈x – znj , Aznj – Axnj〉 –
〈
x – znj ,

Jznj – Jxnj

τ

〉
.

Applying the monotonicity condition on A, equation (3.11), and the uniform continuity
of J on bounded subset sets of Q, we have

〈
x – x∗, z∗〉 ≥ 0,

which implies that �w(xn) ⊂ VI(A,D).
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Next, we show that �w(xn) ⊂ FJ (S).
Since limn→∞ ‖yn –xn‖ = 0 and J is uniformly continuous on bounded set, and also {rn} ⊂

[a,∞[ by assumption, we get that limn→∞ ‖Jyn–Jxn‖
rn

= 0. But yn = TS
rn xn. By Lemma 2.12(2),

we have

〈y – yn, Syn〉 –
1
rn

〈
y – yn, (1 + rn)Jyn – Jxn

〉 ≤ 0, ∀y ∈D. (3.14)

Let α ∈ ]0, 1] and y ∈D. Then yα = αy + (1 – α)x∗ ∈D. By inequality (3.14), Definition 2.3,
and for some constant M0 > 0, we get that

〈ynj – yα , Syα〉 ≥ 〈ynj – yα , Syα〉 + 〈yα – ynj , Synj〉 –
1

rnj

〈
yα – ynj , (1 + rnj )Jynj – Jxnj

〉

= 〈ynj – yα , Syα – Synj〉 –
1

rnj

〈
yα – ynj , (1 + rnj )Jynj – Jxnj

〉

≥ 〈ynj – yα , Jyα – Jynj〉 –
1

rnj

〈
yα – ynj , (1 + rnj )Jynj – Jxnj

〉

≥ 〈ynj – yα , Jyα〉 – M0
‖Jynj – Jxnj‖

rnj

. (3.15)

Taking limit on both sides of inequality (3.15), we have

〈
x∗ – yα , Syα

〉 ≥ 〈
x∗ – yα , Jyα

〉
. (3.16)

From inequality (3.16), we have

〈
x∗ – y, S

(
x∗ + α

(
y – x∗))〉 ≥ 〈

x∗ – y, J
(
x∗ + α

(
y – x∗))〉. (3.17)

Using the fact that S is continuous and J is uniformly continuous on bounded subsets of
Q, letting α ↓ 0, we get from inequality (3.17) that

〈
x∗ – y, Sx∗〉 ≥ 〈

x∗ – y, Jx∗〉, ∀y ∈D ⇐⇒ 0 ≥ 〈
x∗ – y, Jx∗ – Sx∗〉, ∀y ∈D.

Set y := J–1(Sx∗). Since Q∗ is strictly convex and J–1 is monotone, we get that

〈
x∗ – J–1(Sx∗), Jx∗ – Sx∗〉 = 0, (3.18)

which implies that Sx∗ = Jx∗. Thus, x∗ ∈ FJ (S), which implies that �w(xn) ⊂ FJ (S).
Finally, we show that �w(xn) ⊂ EP(�).
Since limn→∞ ‖vn – yn‖ = 0 and J is uniformly continuous on bounded sets, and also

{rn} ⊂ [a,∞[ by assumption, we get that limn→∞ ‖Jvn–Jyn‖
rn

= 0. But vn = K�
rn yn. By a result of

Blum and Otelli [3], we have

�(vn, y) +
1
rn

〈y – vn, Jvn – Jyn〉 ≥ 0, ∀y ∈D. (3.19)

By A2, we have that 1
rnj

〈y – vnj , Jvnj – Jynj〉 ≥ �(y, vnj ). Since y �→ �(v, y) is convex and lower
semi-continuous, we obtain from the above inequality that 0 ≥ �(y, x∗), ∀y ∈ D. For α ∈
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]0, 1] and y ∈ D, letting yα = αy + (1 – α)x∗, then yα ∈ D, since D is closed and convex.
Hence,

0 ≥ �
(
yα , x∗), ∀y ∈D.

By A1 and A4, we have

0 = �(yα , yα) ≤ α�(yα , y) + (1 – α)�
(
yα , x∗) ≤ α�(yα , y)

≤ �
(
x∗ + α

(
y – x∗), y

)
. (3.20)

Letting α ↓ 0, by A3, we obtain that �(x∗, y) ≥ 0. Hence, �w(xn) ⊂ EP(�). Using this and
the fact that �w(xn) ⊂ VI(A,D) and �w(xn) ⊂ FJ (S), we conclude that

x∗ ∈ � := FJ (S) ∩ VI(A,D) ∩ EP(�).

Claim 3. We show that {xn} converges strongly to the point u := ��x0.
Since {xn} is bounded, then there exists a subsequence {xnj} of {xn} such that xnj ⇀ w

and

lim sup
n→∞

〈xn – u, Jx0 – Ju〉 = lim
j→∞〈xnj – u, Jx0 – Ju〉 = 〈w – u, Jx0 – Ju〉. (3.21)

Now, applying Lemma 2.11, inequalities (3.4), (3.5), equation (3.12), and some M0 > 0, we
have

φ(u, xn+1) = V
(
u,αnJx0 + (1 – αn)

[
βJvn + (1 – β)Jwn

])

≤ V
(
u,αnJu + (1 – αn)

[
βJvn + (1 – β)Jwn

])
+ 2αn〈xn+1 – u, Jx0 – Ju〉

≤ (1 – αn)V
(
u,βJvn + (1 – β)Jwn

)
+ 2αn〈xn+1 – u, Jx0 – Ju〉

≤ (1 – αn)
[
βV (u, Jvn) + (1 – β)V (u, Jwn)

]
+ 2αn〈xn+1 – u, Jx0 – Ju〉

= (1 – αn)
[
βφ(u, vn) + (1 – β)φ(u, wn)

]
+ 2αn〈xn+1 – u, Jx0 – Ju〉

≤ (1 – αn)φ(u, xn) + 2αn
(〈xn – u, Jx0 – Ju〉 + ‖xn+1 – xn‖M0

)
. (3.22)

By inequality (3.21), Lemmas 2.5 and 2.9, it follows from inequality (3.22) that limn→∞ φ(u,
xn) = 0. Hence, by Lemma 2.7, we get that limn→∞ ‖xn – u‖ = 0.

Case 2. There exists a subsequence {xmj} ⊂ {xn} such that φ(u, xmj+1) > φ(u, xmj ) for all
j ∈ N, u ∈ �. By Lemma 2.10, there exists a nondecreasing sequence {ni} ⊂ N such that
limi→∞ ni = ∞ and the following inequalities hold:

φ(u, xni ) ≤ φ(u, xni+1) and φ(u, xi) ≤ φ(u, xni+1) for all i ∈N.

Now, from inequality (3.6), we have

φ(u, xni ) ≤ φ(u, xni+1)
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≤ αnφ(u, x0) + (1 – αn)φ(u, xni ) – (1 – αni )β
[
φ(yni , xni ) + φ(vni , yni )

]

– (1 – αni )(1 – β)
(

1 –
τL
c

)[
φ(wni , zni ) + φ(zni , xni )

]
. (3.23)

From inequality (3.23), with σ = (1 – β)(1 – αni )(1 – τL
c ) > 0 and ξ = (1 – αni )β > 0, we have

φ(yni , xni ) + φ(vni , yni ) ≤ ξ–1αniφ(u, x0),

φ(wni , zni ) + φ(zni , xni ) ≤ σ –1αniφ(u, x0). (3.24)

Since αni → 0 as i → ∞, we get that

lim
i→∞φ(yni , xni ) = lim

i→∞φ(vni , yni ) = lim
i→∞φ(wni , zni ) = lim

i→∞φ(zni , xni ) = 0.

Using similar arguments as in Case 1 above, we have the fact that
(1) limi→∞ ‖yni – xni‖ = limi→∞ ‖vni – yni‖ = limi→∞ ‖wni – zni‖ = limi→∞ ‖zni – xni‖ =

limi→∞ ‖xni+1 – xni‖ = 0;
(2) �w(xni ) ⊂ � := FJ (S) ∩ VI(A,D) ∩ EP(�).

Next, we show that {xi} converges strongly to a point u := ��x0.Since {xni} is bounded,
there exists a subsequence {xnij

} of {xni} such that xnij
⇀ z as j → ∞ and

lim sup
i→∞

〈xni – u, Jx0 – Ju〉 = lim
j→∞〈xnij

– u, Jx0 – Ju〉 = 〈z – u, Jx0 – Ju〉. (3.25)

From inequality (3.22) and Lemma 2.10, we get that

φ(u, xni+1) ≤ (1 – αni )φ(u, xni ) + 2αni

(〈xni – u, Jx0 – Ju〉 + ‖xni+1 – xni‖M0
)

≤ (1 – αni )φ(u, xni+1) + 2αni

(〈xni – u, Jx0 – Ju〉 + ‖xni+1 – xni‖M0
)
.

Since αni > 0, for all i ≥ 1, we get that

φ(u, xi) ≤ φ(u, xni+1) ≤ 2〈xni – u, Jx0 – Ju〉 + ‖xni+1 – xni‖M0.

By Lemma 2.5 and the fact that limi→∞ ‖xni+1 – xni‖ = 0, we have

lim sup
i→∞

φ(u, xi) ≤ lim sup
i→∞

2〈xni – u, Jx0 – Ju〉 + 2M0 lim sup
i→∞

‖xni+1 – xni‖,

which implies that lim supi→∞ φ(u, xi) ≤ 0. By Lemma 2.7, we conclude that xi → u, as
i → ∞. �

Corollary 3.2 Let Q∗ be the dual space of a uniformly smooth and two-uniformly convex
real Banach space Q. Let D be a nonempty, closed, and convex subset of Q. Let A : D →Q∗

be a monotone and L-Lipschitz map, � : D × D → R be a bi-functional satisfying condi-
tions A1 to A4, with K�

rn as the resolvent map of �. Let B : D →Q∗ be a continuous mono-
tone map with � := B–1(0) ∩ VI(A,D) ∩ EP(�) �= ∅ and {xn} be a sequence generated by
algorithm (3.1). Assume τ ∈ ]0, 1[ with τ < c

L , {rn} ⊂ [a,∞[ for some a > 0 and {αn} ⊂ ]0, 1[
with limαn = 0 and

∑
αn = ∞. Then the sequence {xn} converges strongly to a point ��x0.
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Proof Set S := J – B. Then we have that S is a continuous J-pseudo-contractive map
with � := FJ (S) ∩ VI(A,D) ∩ EP(�) = B–1(0) ∩ VI(A,D) ∩ EP(�). Hence, the result follows
from Theorem 3.1. �

4 Application to convex optimization problem
In this section, we apply our theorem to finding a minimizer of a convex function defined
on a real Banach space.

Theorem 4.1 Let Q∗ be the dual space of a uniformly smooth and two-uniformly convex
real Banach space Q. Let D be a nonempty, closed, and convex subset of Q. Let A : D →Q∗

be a monotone and L-Lipschitz map, � : D × D → R be a bi-functional satisfying condi-
tions A1 to A4, with K�

rn as the resolvent map of �. Let h : D → Q be a Fréchet differen-
tiable and convex functions and dh : D → Q∗ be a monotone and continuous map with
� := dh–1(0) ∩ VI(A,D) ∩ EP(�) �= ∅. Let {xn} be a sequence generated by algorithm (3.1).
Assume τ ∈ ]0, 1[ with τ < c

L , {rn} ⊂ [a,∞[ for some a > 0 and {αn} ⊂ ]0, 1[ with limαn = 0
and

∑
αn = ∞. Then the sequence {xn} converges strongly to a point ��x0.

Proof Setting dh = B in Corollary 3.2, then J – dh is a continuous J-pseudo-contractive
map. Furthermore, we get that dh–1(0) ∩ VI(A,D) ∩ EP(�) = arg infy∈Dh(y) ∩ VI(A,D) ∩
EP(�). Therefore, the result follows from Corollary 3.2. �

5 Numerical experiment
Here, we present an example to confirm the implementability of our algorithm (3.1).

Example 1 Let Q = LR

p ([0, 1]), 1 < p ≤ 2.Then Q∗ = LR

q ([0, 1]), 1
p + 1

q = 1. Let D := Bp(0, 1) ⊂
Q,

‖x‖Lp :=
(∫ 1

0

∣∣x(t)
∣∣p dt

) 1
p

and

T =
{

w ∈Q :
∫ 1

0

(
[w – z](t)[Jx – τAx – Jz](t)

)
dt ≤ 0

}
,

where A : D →Q∗ is a map defined by

(Ax)(t) = Jx(t) for all t ∈ [0, 1].

Clearly, A monotone and L-Lipschitz and VI(A,D) = {0}.
Let B : D →Q∗ be a map defined by

(Bx)(t) = (1 + t)Jx(t) for all t ∈ [0, 1].

Clearly, B is monotone and continuous. Define S := J – B. Therefore, S is a continuous
J-pseudo-contractive map with FJ (S) = {0}. Furthermore, from Lemma 2.12, we have

TS
r (x) :=

{
z ∈D : 〈w – z, Sz〉 –

1
r
〈
w – z, (1 + r)Jz – Jx

〉 ≤ 0,∀w ∈D
}

, x ∈Q.
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Therefore, for any x ∈Q and for some z ∈Q, we have

(
TS

r x
)
(t) = J–1

(
Jx(t)
1 + tr

)
, x ∈Q.

Let � : D ×D →R be a map defined by �(x, y) = 〈y – x, Jx〉, ∀y ∈D.
Clearly, � satisfies conditions A1 to A4 and 0 ∈ EP(�). Moreover, from a result of Blum

and Otelli, we have

K�
r (x) :=

{
z ∈ �(z, y) +

1
r
〈y – z, Jz – Jx〉 ≥ 0,∀y ∈D

}
.

Thus, for any x ∈Q and for some z ∈D, we have that

〈
y, Jz(r + 1) – Jx

〉 ≥ 〈
z, Jz(r + 1) – Jx

〉
, ∀y ∈D.

Hence,

(
K�

r (x)
)
(t) =

x(t)
(r + 1)

for all t ∈ [0, 1].

Therefore, � := FJ (S) ∩ VI(A,D) ∩ EP(�) = {0}.
Let PT : R→ T and PD : R →D be maps defined by

PT (u) :=

⎧
⎨

⎩
u – max{0, 〈a,u–z〉

‖a‖2 }a, if a �= 0,

u, if a = 0,

PD(x) :=

⎧
⎨

⎩
x, if x ∈D,

x0 + r
‖x–x0‖ (x – x0), if x /∈D,

where u := Jx – τA(z) and a := Jx – τA(x) – Jz.
For implementation, we choose p = 2, β = 1

2 , τ = 0.000868, αn = 1
(n+5) , and rn = 10, ∀n ≥ 0.

Then we compute the (n + 1)th iteration as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0(t) = e–t or x0(t) = sin(t),

zn(t) =

⎧
⎨

⎩
0.999132xn(t), if ‖xn‖ ≤ 1,

0.999132 xn(t)
‖xn‖ , if ‖xn‖ > 1,

setting:

an(t) = 0.999132xn(t) – zn(t),

wn(t) = xn(t) – 0.000868zn(t),

wn(t) – zn(t) = xn(t) – 1.000868zn(t),

vn(t) = xn(t)
22(10t+1) + 1

2 ·
⎧
⎨

⎩
wn(t) – max{0,

∫ 1
0 an(t)(wn(t)–zn(t)) dt

‖an‖2 } · an(t), if an(t) �= 0,

wn(t), if an(t) = 0,

xn+1(t) = 1
n+5 x0(t) + (1 – 1

n+1 )vn(t).

Remark 3 Theorem 3.1 extends and improves the results in [17, 49] in the following ways:
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(a) Theorem 3.1 extends the results in [17, 49] from a real Hilbert space to a uniformly
smooth and two-uniformly convex real Banach space.

(b) In Theorem 3.1, a continuous J-pseudo-contractive map was studied, which contains
the class of Lipschitz pseudo-contractive maps studied in [49].

(c) The theorem in [17, 49] did not study equilibrium problems, whereas in Theorem 3.1
it was studied.

(d) Finally, a subgradient-extragradient algorithm has an advantage in computing over
the extragradient method proposed in [12] (see also [13]).

6 Conclusion
In this paper, we constructed a new Halpern-type subgradient-extragradient iterative al-
gorithm whose sequence approximates a common solution of some nonlinear problems in
Banach spaces. Also, the theorem is applied to approximate a common solution of a varia-
tional inequality, an equilibrium problem, and a convex minimization problem. Moreover,
the theorem proved is applicable in Lp (lp or W m

p (�) spaces, 1 < p ≤ 2, where W m
p (�) de-

notes the usual Sobolev space. The analytical representations of the duality map in these
spaces where p–1 + q–1 = 1 is given in Theorem 3.1 of [55], page 36. Finally, a numerical
example is given to illustrate the implementability of our algorithm.
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