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Abstract
The nth r-extended Lah–Bell number is defined as the number of ways a set with n + r
elements can be partitioned into ordered blocks such that r distinguished elements
have to be in distinct ordered blocks. The aim of this paper is to introduce incomplete
r-extended Lah–Bell polynomials and complete r-extended Lah–Bell polynomials
respectively as multivariate versions of r-Lah numbers and the r-extended Lah–Bell
numbers and to investigate some properties and identities for these polynomials.
From these investigations we obtain some expressions for the r-Lah numbers and the
r-extended Lah–Bell numbers as finite sums.
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1 Introduction
It is well known that the unsigned Lah number L(n, k) (n ≥ k ≥ 0) counts the number of
ways a set with n elements can be partitioned into k nonempty linearly ordered subsets
(see [4, 7, 8]). The nth Lah–Bell number BL

n (n ≥ 0) is the number of ways a set with n
elements can be partitioned into nonempty linearly ordered subsets. Thus

BL
n =

n∑

k=0

L(n, k) (n ≥ 0) (see [7, 8]). (1)

From (1) it follows that the generating function of Lah–Bell numbers is given by

e
t

1–t =
∞∑

n=0

BL
n

tn

n!
(see [7, 8]), (2)

where

1
k!

(
t

1 – t

)k

=
∞∑

n=k

L(n, k)
tn

n!
(k ≥ 0) (see [7, 13, 15, 17]). (3)
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Explicitly, we see from (3) that the Lah numbers are given by

L(n, k) =
n!
k!

(
n – 1
k – 1

)
(n ≥ k ≥ 0) (see [7–10, 17, 19]).

Let n, k, r be nonnegative integers with n ≥ k. Then the r-Lah number Lr(n, k) counts
the number of partitions of a set with n + r elements into k + r ordered blocks such that
r distinguished elements have to be in distinct ordered blocks (see [17]). The r-extended
Lah–Bell number BL

n,r is defined as the number of ways a set with n + r elements can be
partitioned into ordered blocks such that r distinguished elements have to be in distinct
ordered blocks (see [8]). By the definitions of r-Lah numbers and r-extended Lah–Bell
numbers we have

BL
n,r =

n∑

k=0

Lr(n, k) (n ≥ 0) (see [8]). (4)

From (4) we see that the generating function of r-extended Lah-Bell numbers is given by

e
t

1–t

(
1

1 – t

)2r

=
∞∑

n=0

BL
n,r

tn

n!
(see [8, 15]), (5)

where

1
k!

(
t

1 – t

)k( 1
1 – t

)2r

=
∞∑

n=k

Lr(n, k)
tn

n!
(see [8, 17]) (6)

for nonnegative integers k.
Explicitly, the r-Lah numbers are given by

Lr(n, k) =
n!
k!

(
n + 2r – 1
k + 2r – 1

)
(n ≥ k ≥ 0) (see [7–10, 17, 19]).

In [8] the r-extended Lah–Bell polynomials are defined by

ex( t
1–t )

(
1

1 – t

)2r

=
∞∑

n=0

BL
n,r(x)

tn

n!
. (7)

It is well known that the complete Bell polynomials are defined by

exp

( ∞∑

j=1

xj
tj

j!

)
=

∞∑

n=0

Bn(x1, x2, . . . , xn)
tn

n!
(see [2–4, 6, 11, 14]). (8)

Then it can be shown that the complete Bell polynomials are given by

Bn(x1, x2, . . . , xn) =
∑

j1+2j2+···+njn=n

n!
j1!j2! · · · jn!

(
x1

1

)j1(x2

2!

)j2
· · ·

(
xn

n!

)jn
, (9)
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where the sum runs over all nonnegative integers j1, j2, . . . , jn satisfying j1 +2j2 + · · ·+njn = n.
The incomplete Bell polynomials are given by

1
k!

( ∞∑

m=1

xm
tm

m!

)k

=
∞∑

n=k

Bn,k(x1, x2, . . . , xn–k+1)
tn

n!
(n ≥ 0) (see [6, 11, 14]). (10)

Thus

Bn,k(x1, x2, . . . , xn–k+1) (11)

=
∑

π (n,k)

n!
j1!j2! · · · jn–k+1!

(
x1

1!

)j1(x2

2!

)j2
· · ·

(
xn–k+1

(n – k + 1)!

)jn–k+1

,

where the sum runs over the set π (n, k) of all nonnegative integers (ji)i≥1 satisfying j1 + j2 +
· · · + jn–k+1 = k and 1j1 + 2j2 + · · · + (n – k + 1)jn–k+1 = n.

The complete and incomplete Bell polynomials are related by

Bn(x1, x2, . . . , xn) =
n∑

k=1

Bn,k(x1, x2, . . . , xn–k+1) (n ≥ 1).

Let f be a C∞-function, that is, f is a function that has continuous derivatives of all
orders on (–∞,∞). Then by (8) we have

ef (x+t) = exp

( ∞∑

j=0

f (j)(x)
tj

j!

)
(12)

= exp

(
f (x) +

∞∑

j=1

f (j)(x)
tj

j!

)

= ef (x)

(
1 +

∞∑

n=1

Bn
(
f (1)(x), f (2)(x), . . . , f (n)(x)

) tn

n!

)
,

where f (j)(x) is the jth derivative of f (x), and exp(t) = et .
We observe that

dm

dxm ef (x) =
∂m

∂xm ef (x+t)
∣∣∣∣
t=0

=
∂m

∂tm ef (x+t)
∣∣∣∣
t=0

(13)

= ef (x)Bm
(
f (1)(x), f (2)(x), . . . , f (m)(x)

)
.

From (12) and (13) we obtain the Kölbig–Coeffey equation

dm

dxm ef (x) = ef (x)Bm
(
f (1)(x), f (2)(x), . . . , f (m)(x)

)
(m ≥ 1) (see [5, 12]). (14)

The exponential incomplete r-Bell polynomials are defined by the generating function

1
k!

( ∞∑

j=1

aj
tj

j!

)k( ∞∑

i=0

bi+1
ti

i!

)r

=
∞∑

n=k

B(r)
n+r,k+r(a1, a2, . . . : b1, b2, . . .)

tn

n!
. (15)
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From (15) we note that

B(r)
n+r,k+r(a1, a2, . . . : b1, b2, . . .) (16)

=
∑

�(n,k,r)

[
n!

k1!k2!k3 · · ·
(

a1

1!

)k1(a2

2!

)k2(a3

3!

)k3

· · ·
]

×
[

r!
r0!r1!r2 · · ·

(
b1

0!

)r0(b2

1!

)r1(b3

2!

)r2

· · ·
]

,

where �(n, k, r) denotes the set of all nonnegative integers (ki)i≥1 and (ri)i≥0 such that

∑

i≥1

ki = k,
∑

i≥0

ri = r, and
∑

i≥1

i(ki + ri) = n (see [4, 6, 14]).

Let (ai)i≥1 and (bi)i≥1 are sequences of positive integers. Then the number B(r)
n+r,k+r(a1, a2,

. . . ; b1, b2, . . .) counts the number of partitions of an (n + r)-set into (k + r) blocks satisfying:
• The first r elements belong to different blocks;
• Any block of size i containing no elements from the first r elements can be colored

with ai colors;
• Any block of size i containing one element from the first r elements can be colored

with bi colors.
The complete r-Bell polynomials are given by

exp

( ∞∑

i=1

ai
ti

i!

)( ∞∑

j=0

bj+1
tj

j!

)r

=
∞∑

n=0

B(r)
n (a1, a2, . . . ; b1, b2, . . .)

tn

n!
(17)

(see [4, 6, 11, 14]).
By (16) and (17) we get

B(r)
n (a1, a2, . . . : b1, b2, . . .) =

n∑

k=0

B(r)
n+r,k+r(a1, a2, . . . : b1, b2, . . .) (see [6]). (18)

The incomplete and complete Bell polynomials have applications to such diverse areas as
combinatorics, probability, algebra, and analysis. The number of monomials appearing in
the incomplete Bell polynomial Bn,k(x1, x2, . . . , xn–k+1) is the number of partitioning n into
k parts, and the coefficient of each monomial is the number of partitioning n as the cor-
responding k parts. Also, the incomplete Bell polynomials Bn,k(x1, x2, . . . , xn–k+1) appear in
the Faà di Bruno formula concerning higher-order derivatives of composite functions (see
[6]). In addition, the incomplete Bell polynomials can be used in constructing sequences
of binomial type (see [16]), and there are certain connections between incomplete Bell
polynomials and combinatorial Hopf algebras such as the Hopf algebra of word symmet-
ric functions, the Hopf algebra of symmetric functions, and the Fa di Bruno algebra (see
[1]). The complete Bell polynomials Bn(x1, x2, . . . , xn) have applications to probability the-
ory (see [6, 12, 18]). Indeed, the nth moment μn = E[Xn] of the random variable X is the
nth complete Bell polynomial in the first n cumulants μn = Bn(κ1,κ2, . . . ,κn). The reader
can refer to the Ph.D. thesis of Port [18] for many applications to probability theory and
combinatorics. Many special numbers, like Stirling numbers of both kinds, Lah numbers,
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and idempotent numbers, appear in many combinatorial and number-theoretic identities
involving complete and incomplete Bell polynomials. We refer the reader to the Introduc-
tion in [11] for further details.

The incomplete Lah–Bell polynomials (see (22)) and the complete Lah–Bell polynomi-
als (see (25)) are respectively multivariate versions of the unsigned Lah numbers and the
Lah–Bell numbers. Note here that the incomplete Bell polynomials (see (10)) and the in-
complete Lah–Bell polynomials are related as given in (23), whereas the complete Bell
polynomials (see (8)) and the complete Lah–Bell polynomials are related as given in (26).
The incomplete r-extended Lah–Bell polynomials (see (30)) and the complete r-extended
Lah–Bell polynomials (see (32)) are respectively extended versions of the incomplete Lah–
Bell polynomials and the complete Lah–Bell polynomials. Further, they are respectively
multivariate versions of the r-Lah numbers and the r-extended Lah–Bell numbers.

The aim of this paper is to introduce the incomplete r-extended Lah-Bell polynomials
and the complete r-extended Lah-Bell polynomials and to investigate some properties and
identities for these polynomials. From these investigations we obtain some expressions for
the r-Lah numbers and the r-extended Lah–Bell numbers as finite sums.

2 Complete and incomplete r-extended Lah–Bell polynomials
Let f (t) = t

1–t . Then we have

f (n)(t) =
dn

dtn f (t) =
n!

(1 – t)n+1 (n ≥ 1). (19)

By (14) we get

dn

dtn e
t

1–t

∣∣∣∣
t=0

= Bn(1!, 2!, . . . , n!). (20)

From (2) we note that

dn

dtn e
t

1–t

∣∣∣∣
t=0

=
dn

dtn

∞∑

k=0

BL
k

tk

k!

∣∣∣∣
t=0

= BL
n. (21)

Therefore by (20) and (21) we obtain the following theorem.

Theorem 1 For n ≥ 1, we have

BL
n = Bn(1!, 2!, . . . , n!) =

∑

k1+2k2+···+nkn=n

n!
k1!k2! · · ·kn!

.

Let us consider the incomplete Lah–Bell polynomials given by

1
k!

( ∞∑

m=1

xmtm

)k

=
∞∑

n=k

BL
n,k(x1, x2, . . . , xn–k+1)

tn

n!
, (22)

where n, k ≥ 0 with n ≥ k.
Note hat BL

n,k(1, 1, . . . , 1) = L(n, k) (n ≥ k ≥ 0).
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Indeed, by (10) and (22) we get

BL
n,k(x1, x2, . . . , xn–k+1) = Bn,k

(
1!x1, 2!x2, . . . , (n – k + 1)!xn–k+1

)
. (23)

From (23) we note that

L(n, k) = BL
n,k(1, 1, . . . , 1) = Bn,k

(
1!, 2!, . . . , (n – k + 1)!

)

=
∑

j1+j2+···+jn–k+1=k
j1+2j2+···+(n–k+1)jn–k+1=n

n!
j1!j2! · · · jn–k+1!

.

Therefore by (23) we obtain the following proposition.

Proposition 2 For n, k ≥ 0 with n ≥ k, we have

BL
n,k(x1, x2, . . . , xn–k+1) = Bn,k

(
1!x1, 2!x2, . . . , (n – k + 1)xn–k+1

)
.

In addition,

L(n, k) =
∑

j1+j2+···+jn–k+1=k
j1+2j2+···+(n–k+1)jn–k+1=n

n!
j1!j2! · · · jn–k+1!

.

From (23) we note that

BL
n,k(αx1,αx2, . . . ,αxn–k+1) = Bn,k

(
α · 1!x1,α · 2!x2, . . . ,α · (n – k + 1)!xn–k+1

)
(24)

= αkBn,k
(
1!x1, 2!x2, . . . , (n – k + 1)!xn–k+1

)

= αkBL
n,k(x1, x2, . . . , xn–k+1).

We now consider the complete Lah–Bell polynomials given by

exp

( ∞∑

i=1

xiti

)
=

∞∑

n=0

BL
n(x1, x2, . . . , xn)

tn

n!
. (25)

By (25) we get

BL
n(x1, x2, . . . , xn) = Bn(1!x1, 2!x2, . . . , n!xn) (26)

=
∑

l1+2l2+···+nln–1=n

n!
l1!l2! · · · ln!

xl1
1 xl2

2 · · ·xln
n (n ≥ 0).

From (22) and (25) we note that

1 +
∞∑

n=1

BL
n(x1, x2, . . . , xn)

tn

n!
= exp

( ∞∑

i=1

xiti

)
(27)

= 1 +
∞∑

k=1

1
k!

( ∞∑

i=1

xiti

)k
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= 1 +
∞∑

k=1

∞∑

n=k

BL
n(x1, x2, . . . , xn–k+1)

tn

n!

= 1 +
∞∑

n=1

(
n∑

k=1

BL
n,k(x1, x2, . . . , xn–k+1)

tn

n!
.

Therefore by (25) and (27) we obtain the following theorem.

Theorem 3 For n ≥ 1, we have

BL
n(x1, x2, . . . , xn) =

n∑

k=1

BL
n,k(x1, x2, . . . , xn–k+1)

=
n∑

k=1

Bn,k
(
1!x1, 2!x2, . . . , (n – k + 1)!xn–k+1

)
.

In addition, for n ≥ 1, we have

BL
n(x1, x2, . . . , xn) =

n∑

k=1

∑

π (n,k)

n!
l1!l2! · · · ln–k+1!

xl1
1 xl2

2 · · ·xln–k+1
n–k+1,

where π (n, k) denotes the set of all nonnegative integers (li)i≥1 such that l1 + l2 + · · ·+ ln–k+1 =
k and 1 · l1 + 2 · l2 + · · · + (n – k + 1)ln–k+1 = n.

By (25) we easily get

∞∑

n=0

BL
n(1, 1, . . . , 1)

tn

n!
= exp

( ∞∑

i=1

ti

)
= exp

(
t

1 – t

)
=

∞∑

n=0

BL
n

tn

n!
. (28)

From (28) we note that

BL
n(1, 1, . . . , 1) = BL

n (n ≥ 0).

By Proposition 2, (24), and Theorem 3 we get

BL
n(x, x, . . . , x) =

n∑

k=0

BL
n,k(x, x, . . . , x) =

n∑

k=0

Bn,k
(
1!x, 2!x, . . . , (n – k + 1)!xn–k+1

)
(29)

=
n∑

k=0

xkBn,k
(
1!, 2!, . . . , (n – k + 1)!

)
=

n∑

k=0

xkL(n, k) = BL
n(x).

Assume that {ai}i≥1 and {bi}i≥1 are sequences of positive integers. We define the incom-
plete r-extended Lah–Bell polynomials by

1
k!

( ∞∑

j=1

ajtj

)k( ∞∑

i=0

bi+1ti

)2r

=
∞∑

n=k

BL
n+2r,k+2r(a1, a2, . . . : b1, b2, . . .)

tn

n!
, (30)

where k, r are nonnegative integers.
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From (30) we have

BL
n+2r,k+2r(a1, a2, . . . : b1, b2, . . .) (31)

= B(2r)
n+2r,k+2r(1!a1, 2!a2, . . . : 0!b1, 1!b2, . . .)

=
∑

�(n,k,2r)

[
n!

k1!k2!k3! · · ·ak1
1 ak2

2 ak3
3 · · ·

][
(2r)!

r0!r1!r2 · · ·br0
1 br1

2 br2
3 · · ·

]
,

where �(n, k, 2r) denotes the set of all nonnegative integers {ki}i≥1 and {ri}i≥0 such that
∑

i≥1 ki = k,
∑

i≥0 ri = 2r, and
∑

i≥1 i(ki + ri) = n.
We define the complete r-extended Lah–Bell polynomials B(L,2r)

n (x | a1, a2, . . . : b1, b2, . . .)
(n ≥ 0), which are given by

exp

(
x

∞∑

j=1

ajtj

)( ∞∑

i=0

bi+1ti

)2r

=
∞∑

n=0

B(L,2r)
n (x | a1, a2, . . . : b1, b2, . . .)

tn

n!
. (32)

Thus we note that

exp

(
x

∞∑

j=1

ajtj

)( ∞∑

i=0

bi+1ti

)2r

(33)

=
∞∑

k=0

xk

k!

( ∞∑

j=1

ajtj

)k( ∞∑

i=0

bi+1ti

)2r

=
∞∑

k=0

xk
∞∑

n=k

BL
n+2r,k+2r(a1, a2, . . . : b1, b2, . . .)

tn

n!

=
∞∑

n=0

n∑

k=0

xkBL
n+2r,k+2r(a1, a2, . . . : b1, b2, . . .)

tn

n!
.

From (32) and (33) we have

B(L,2r)
n (x | a1, a2, . . . : b1, b2, . . .) =

n∑

k=0

xkBL
n+2r,k+2r(a1, a2, . . . : b1, b2, . . .) (n ≥ 0). (34)

By (18), (31), (32), and (34) we have

B(2r)
n (1!a1, 2!a2, . . . : 0!b1, 1!b2, . . .) (35)

=
n∑

k=0

B(2r)
n+2r,k+2r(1!a1, 2!a2, . . . : 0!b1, 1!b2, . . .)

=
n∑

k=0

BL
n+2r,k+2r(a1, a2, . . . : b1, b2, . . .) = B(L,2r)

n (1 | a1, a2, . . . : b1, b2, . . .).

Therefore by (31) and (34) we obtain the following theorem.
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Theorem 4 For n ≥ 0, we have

B(L,2r)
n (x | a1, a2, . . . : b1, b2, . . .) =

n∑

k=0

xkBL
n+2r,k+2r(a1, a2, . . . : b1, b2, . . .)

=
n∑

k=0

xkB(2r)
n+2r,k+2r(1!a1, 2!a2, . . . : 0!b1, 1!b2, . . .).

From (30) we note that

∞∑

n=k

BL
n+2r,k+2r(1, 1, . . . ; 1, 1, . . .)

tn

n!
=

1
k!

( ∞∑

j=1

tj

)k( ∞∑

i=0

ti

)2r

(36)

=
1
k!

(
t

1 – t

)k( 1
1 – t

)2r

=
∞∑

n=k

Lr(n, k)
tn

n!
.

By (32) and (36) we get

∞∑

n=0

B(L,2r)
n (x | 1, 1, . . . : 1, 1, . . .)

tn

n!
= exp

(
x

∞∑

j=1

tj

)( ∞∑

i=0

ti

)2r

(37)

= ex( t
1–t ) ·

(
1

1 – t

)2r

=
∞∑

n=0

( n∑

k=0

xkLr(n, k)

)
tn

n!
.

Thus by (36) and (37) we have

B(L,2r)
n (x | 1, 1, . . . : 1, 1, . . .) =

n∑

k=0

xkBL
n+2r,k+2r(1, 1, . . . : 1, 1, . . .) (38)

=
n∑

k=0

xkLr(n, k).

Therefore we obtain the following theorem.

Theorem 5 For n ≥ k ≥ 0, we have

BL
n+2r,k+2r(1, 1, . . . : 1, 1, . . .) = Lr(n, k)

and

B(L,2r)
n (x | 1, 1, . . . : 1, 1, . . .) =

n∑

k=0

BL
n+2r,k+2r(1, 1, . . . : 1, 1, . . .) =

n∑

k=0

xkLr(n, k).

From (36) and (31) we note that

Lr(n, k) = BL
n+2r,k+2r(1, 1, . . . : 1, 1, . . .)

= B(2r)
n+2r,k+2r(1!, 2!, . . . : 1!, 2!, . . .)

=
∑

�(n,k,2r)

n!
k1!k2! · · ·

(2r)!
r0!r1! · · · .
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Corollary 6 For n, k, r ≥ 0 with n ≥ k, we have

Lr(n, k) =
∑

�(n,k,2r)

n!
k1!k2! · · · · (2r)!

r0!r1! · · · ,

where �(n, k, 2r) denotes the set of all nonnegative integers {ki}i≥1 and {ri}i≥ such that
∑

i≥1 ki = k,
∑

i≥0 ri = 2r, and
∑

i≥1 i(ki + ri) = n.

Now we observe that

exp

( ∞∑

i=1

xiti

)
= 1 +

∞∑

k=1

1
k!

( ∞∑

i=1

xiti

)k

(39)

= 1 +
1
1!

∞∑

i=1

xiti +
1
2!

( ∞∑

i=1

xiti

)2

+
1
3!

( ∞∑

i=1

xiti

)3

+ · · ·

=
∞∑

k=0

∑

m1+2m2+···+kmk =k

1
m1!m2! · · ·mk !

xm1
1 xm2

2 · · ·xmk
k tk

and

( ∞∑

j=0

yj+1tj

)2r

=
∞∑

m=0

∑

l1+···+l2r=m

yl1+1yl2+1 · · · yl2r+1tm. (40)

By (39) and (40) we get

exp

( ∞∑

i=1

xiti

)( ∞∑

j=0

yj+1
tj

j!

)2r

(41)

=
∞∑

n=0

n!

( n∑

k=0

∑

m1+2m2+···+kmk =k

∑

l1+l2+···+l2r=n–k

1
m1!m2! · · ·mk !

xm1
1 xm2

2 · · ·xmk
k

× yl1+1yl2+1 · · · yl2r+1

)
tn

n!
.

Therefore by (32) and (41) we obtain the following theorem.

Theorem 7 For n, r ≥ 0, we have

B(L,2r)
n (1 | x1, x2, . . . : y1, y2, . . .)

= n!
n∑

k=0

∑

m1+2m2+···+kmk =k

∑

l1+l2+···+l2r=n–k

1
m1!m2! · · ·mk !

xm1
1 · · ·xmk

k yl1+1yl2+1 · · · yl2r+1.

Remark For n ≥ 0, we have

BL
n+2r,k+2r(x, x, . . . : 1, 1, . . .) = xkBL

n+2r,k+2r(1, 1, . . . : 1, 1, . . .). (42)
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Thus we note that

n∑

k=0

BL
n+2r,k+2r(x, x, . . . : 1, 1, . . .) = BL

n,r(x) (n ≥ 0).

3 Conclusion
There are various methods of studying special numbers and polynomials, for example,
generating functions, combinatorial methods, umbral calculus, p-adic analysis, differen-
tial equations, probability theory, orthogonal polynomials, and special functions. These
ways of investigating special polynomials and numbers can be also applied to degenerate
versions of such polynomials and numbers. Indeed, in recent years, many mathematicians
have drawn their attention to studies of degenerate versions of many special polynomials
and numbers by using the aforementioned means ([9, 10, 14] and references therein).

The incomplete and complete Bell polynomials arise in many different contexts as we
stated in the Introduction. For instance, many special numbers, like Stirling numbers of
both kinds, Lah numbers, and idempotent numbers, appear in many combinatorial and
number-theoretic identities involving complete and incomplete Bell polynomials.

In this paper, we introduced the incomplete r-extended Lah–Bell polynomials and the
complete r-extended Lah–Bell polynomials respectively as multivariate versions of r-Lah
numbers and the r-extended Lah–Bell numbers and investigated some properties and
identities for these polynomials. As corollaries of these results, we obtained some expres-
sions for the r-Lah numbers and the r-extended Lah–Bell numbers as finite sums.

It would be very interesting to explore many applications of the incomplete and complete
r-extended Lah–Bell polynomials as the incomplete and complete Bell polynomials have
diverse applications.
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