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Abstract
By means of ς fractional sum operator, certain discrete fractional nonlinear
inequalities are replicated in this text. Considering the methodology of discrete
fractional calculus, we establish estimations of Gronwall type inequalities for
unknown functions. These inequalities are of a new form comparative with the
current writing discoveries up until this point and can be viewed as a supportive
strategy to assess the solutions of discrete partial differential equations numerically.
We show a couple of employments of the compensated inequalities to reflect the
benefits of our work. The main outcomes might be demonstrated by the use of the
examination procedure and the approach of the mean value hypothesis.
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1 Introduction
Fractional calculus consisting of a derivative and an integral component of noninteger
order is a natural increase in the regular integer order calculus. With different analysts
and experts devoting themselves to this area, fractional analytic is apparently widespread
considering its intriguing applications concerning various fields of science, for instance,
viscoelasticity, dispersion, nervous system science, control hypothesis, and statistics [1–
9].

The justification for this paper is to implement discrete fractional sum equations in
terms of creating a method for interpreting such equations and to derive the related Gron-
wall form of inequality. Particularly Gronwall’s inequality is pointed out as one of the cen-
tral inequalities in the premise of differential form equations. Starting now and into the
foreseeable future, various speculations and growth of these inequalities ended up being a
bit of the composition. In 1969, Sugiyama [10] claimed to have turned up and created the
discrete Gronwall inequality. In the associated structure he carried out the most precise
and complete discrete module of Gronwall inequality as follows.
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Theorem 1.1 Let h(t1) and r(t1) be real-valued functions defined for t1 ∈N0, and suppose
that r(t1) > 0 for every t1 ∈N0. If

h(t1) ≤ η0 +
t1–1∑

t2=0

r(t2)h(t2), t1 ∈N0,

where η0 is a nonnegative constant, then

h(t1) ≤ η0

t1–1∏

t2=0

[
1 + r(t2)

]
.

For difference and integral equations, Theorem 1.1 is as yet used to possess the integra-
tion of the discrete factor models.

Despite the existence of a systematic mathematical theory of continuous fractional cal-
culus, the potential progress of the discrete fractional calculus (DFC) has been insufficient
until very recently. The discrete counterpart of the hypothesis in the presence of a frac-
tional sum of order ς > 0 was described by Miller and Ross [11] who discussed solutions
to linear difference equation and checked some basic features of this operator. Addition-
ally, Atici and Eloe [12] actualized a discrete Laplace transform strategy for a sequence of
fractional difference equations. The triggers of the initial value in the discrete fractional
calculus were established by Atici and Eloe [13]. Atici and Eloe [14] explored the layout
of a discrete fractional calculus with the nabla operator. They generated exponential laws
and the item rule for the forward fractional calculus. Atici and Sengul [15] set up the law
of Leibniz and summation by parts equation in a discrete fractional principle. Bastos and
Torres [16] created a more wide-ranging, discrete fractional operator, which has been cal-
culated by delta and nabla fractional sums. Holm [17] introduced fractional sums and dif-
ference operators and extended this concept to resolve the issue of fractional initial value.
Anastassiou [18] defined the privilege of the discrete nabla fractional Taylor equation. The
science that came about because of this depiction was charming to a few perusers, and now
it is a subject of extreme examination in various ways: existence and accuracy of discrete
fractional equations, modeling of tumor growth [19], stability of tumor-based solutions to
the order of Legendre’s derivative ς [20], Euler–Lagrange equation, and optimal status for
calculus of variations problems [21]. The impression of discrete fractional calculus is be-
ing presented just more as of late, generally attributable to the blast of work in the analysis
of fractional differential (see, for example, the books [22, 23]). Usually, within a particular
fractional system, there are several derivative analogues, so experts choose those that are
generally appropriate in a specific sense (see [24–28]).

Finite difference inequalities showing unique limits of unknown functions provide a
thoroughly valuable and important method for improving the perception of finite differ-
ential equations. During the recent years, guided and motivated by their characterizations
in different parts of difference equations, several of these inequalities have been linked up
[29–34]. Hence, difference equations arise as logical constructs that describe such real-life
situations, e.g., queueing problems, electrical networks, financial dimensions, etc., and
this defense is sufficient to seek such a framework. There are many representations for
these sorts of inequalities at the point where one wants to evaluate several properties of
a differential equation. Basically reliant on the capacity of the above investigation, in this
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material, we can search for the discrete fractional nonlinear inequalities related to ς frac-
tional sum operator that has been built up to explain fractional inequalities and integrate
some proven literature trials.

To represent the theoretical aspects, it was seen that the inequalities delivered may be
used to analyze various classes of discrete fractional differential equations. So as to investi-
gate the uniqueness and boundedness of the usage of fractional sum difference equations,
two theorems are secured throughout this manuscript.

Definitive parts of the record are situated as such. In Sect. 2, we portray significant real
factors and fundamental hypotheses which can be key setups for our main impacts. Sec-
tion 3 is devoted to abstract discussions of nonlinear discrete fractional inequalities with a
few conducting remarks. The last bit is considered in fulfilling the theoretical examination
necessities.

2 Material history
Throughout this endeavor, without lack of broad declaration, let Cα(L, K) be the class of
functions of continuously differentiable with all α times from a set L into a set K , P be a
constant, Nt1 = {t1, t1 + 1, t1 + 2, . . .}, Mt1 = [t1, P] ∩ Nt1 , where P, t1 ∈ Nt1 ,

∑ϑ
t2=c r(t2) = 0,

R+ = [0,∞) and difference operator of q be assigned as �q(ϑ) = q(ϑ) – q(ϑ – 1),ϑ ∈Nt1 .
A portion of the basic necessities and theorems in the assessment of discrete fractional

are accounted for as follows.

Definition 2.1 ([15]) Let ς > 0, l be any real number, and σ (t1) = t1 +1, then ς th fractional
sum of r is defined for t2 = l (mod 1) by

�
–ς

l r(t1) =
1

�(ς )

t1–ς∑

t2=l

(
t1 – σ (t2)

)ς–1r(t2)

so that tς
1 = �(t1+1)

�(t1+1–ς ) , �–ς

l r is defined for t2 = l + ς (mod1), and �
–ς

l : Nl →Nl+ς .

Definition 2.2 ([15]) Let δ > 0 and γ – 1 < δ < γ . Then the δth fractional difference of r is
characterized as

�δr(t1) = �γ –ς r(t1) = �γ
(
�–ς r(t1)

)
,

where γ is a positive integer and –ς = δ – γ .

Theorem 2.3 ([13]) If a real-valued function r is prescribed on Nl , such that δ,ς > 0, then

�–ς
(
�–δr(t1)

)
= �–(ς+δ)r(t1) = �–δ

(
�–ς r(t1)

)
.

Theorem 2.4 ([13]) Let ς > 0 and r be a function which is real valued on Nl , then

�–ς�r(t1) = ��–ς r(t1) =
(t1 – l)ς–1

�(ς )
r(l).

On the discrete fractional principle, the reader can turn their attention to further im-
portant properties to [13, 15].
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In this article, based on the Riemann–Liouville definition of fractional difference pio-
neered by Miller and Ross [11] and generated by Atici and Eloe [13], we explore certain
new nonlinear discrete fractional sum inequalities which lead to the generalizations of
Gronwall–Bellman types.

3 Outcome assertion
Now we are going to round off the simple tests.

Theorem 3.1 Suppose that h ∈ Nς–1 → R+, W : Nς → R+ are functions, 0 < ς ≤ 1, j > g >
0 are constants, and η is a positive nondecreasing function defined on Nς–1. If

hj(t1) ≤ ηj(t1) + �
–ς
0

[
W (t1)hg(t1 + ς – 1)

]
, t1 ∈ Mς–1, (1)

is satisfied, then

h(t1) ≤ η(t1)

[
1 +

j – g
j

t1∑

t2=ς

w(t2 – ς )ηg–j(t2)

] 1
j–g

, t1 ∈ Mς–1, (2)

where

W (t2, t1) =
1

�(ς )
(t1 – t2 – 1)ς–1W (t2). (3)

Proof Since η(t1) is a positive nondecreasing function, from (1) we have

hj(t1)
ηj(t1)

≤ 1 + �
–ς
0

[
W (t1)

hg(t2 + ς – 1)
ηj(t2 + ς – 1)

]
. (4)

Defining

y(t1) = 1 + �
–ς
0

[
W (t1)

hg(t2 + ς – 1)
ηj(t2 + ς – 1)

]
, (5)

from (4) and (5), we attain

hj(t1)
ηj(t1)

≤ y(t1) ⇒ h(t1) ≤ η(t1)y
1
j (t1), t1 ∈ Mς–1. (6)

Inequality (5) with Definition 2.1 imply that

y(t1) = 1 +
1

�(ς )

t1–ς∑

t2=0

(t1 – t2 – 1)ς–1W (t2)
hg(t2 + ς – 1)
ηj(t2 + ς – 1)

= 1 +
t1–ς∑

t2=0

W (t2, t1)ηg–ĵ(t2 + ς – 1)
[

h(t2 + ς – 1)
η(t2 + ς – 1)

]g

, (7)

where W (t2, t1) is given as in (3). Now W (t2, t1), tς
1 by their definition and W (t2, t1)) is

decreasing in t1 for each t2 ∈N0. Using straightforward computation, for t1 ∈ Mς and (6),
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we get

y(t1) – y(t1 – 1) = W (t1 – ς , t1)ηg–j(t1 – 1)
[

h(t2 – 1)
η(t2 – 1)

]j

+
t1–ς–1∑

t2=0

[
W (t2, t1) – W (t2, t1 – 1)

]
ηg–j(t2 + ς – 1)

[
h(t2 + ς – 1)
η(t2 + ς – 1)

]g

≤ W (t1 – ς , t1)ηg–j(t1 – 1)
[

h(t2 – 1)
η(t2 – 1)

]g

≤ w(t1 – ς )ηg–j(t1 – 1)y
ĝ
j (t1 – 1)

leads to

y(t1) – y(t1 – 1)

y
g
j (t1 – 1)

≤ w(t1 – ς )ηg–j(t1 – 1), t1 ∈ Mς . (8)

By the mean value theorem, it can be seen that

�

(
j

j – g
y

g–j
g (t1 – 1)

)
=

j
j – g

y
j–g

j (t1) –
j

j – g
y

j–g
j (t1 – 1)

= ρ
–g
j �y(t1 – 1) =

�y(t1 – 1)

ρ
g
j

≤ �y(t1 – 1)

y
g
j (t1 – 1)

; ρ ∈ [
y(t1 – 1), y(t1)

]
. (9)

In view of (8) and (9), we conclude

�

(
j

j – g
y

j–g
j (t1 – 1)

)
≤ w(t1 – ς )ηg–j(t1 – 1). (10)

Summing (10) from ς to t1 – 1 and y(ς – 1) = 1, we obtain

t1–1∑

t2=ς

�

(
j

j – g
y

j–g
j (t1 – 1)

)
≤

t1–1∑

t2=ς

w(t2 – ς )ηg–j(t2 – 1),

that is,

y
j–g

j (t1 – 1) ≤ 1 +
j – g

j

t1–1∑

t2=ς

w(t2 – ς )ηg–j(t2 – 1)

or

y
1
j (t1 – 1) ≤

[
1 +

j – g
j

t1–1∑

t2=ς

w(t2 – ς )ηg–j(t2 – 1)

] 1
j–g

, t1 ∈ Mς ,
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so that

y
1
j (t1) ≤

[
1 +

j – g
j

t1∑

t2=ς

w(t2 – ς )ηg–j(t2)

] 1
j–g

, t1 ∈ Mς–1, (11)

the conclusion of (2) can be obtained from (6) and (11). �

Remark 3.2 By inserting ς = 1, �(1) = 1 (the property of gamma function), η(t1) = η0, and
j = g = 1 in (1), then Theorem 3.1 shifts to Theorem 1.1 [10].

Theorem 3.3 If T : Nς →R+, j �= 1, j > 1 is a constant and the inequality

hj(t1) ≤ ηj(t1) + �
–ς
0

[
W (t1)h(t1 + ς – 1)

]

×
[

h(t1 + ς – 1) +
1

�(ς )

t1–ς∑

t2=0

(t1 – t2 – 1)ς–1T(t2)h(t2 + ς – 1)

]
,

t1 ∈ Mς–1, (12)

is satisfied under the same suppositions of h, W , ς , η, W (t2, t1) of Theorem 3.1, then

h(t1) ≤ η(t1)

[
1 +

j – 1
j

t1∑

t2=ς

w(t2 – ς )η(t2)
t2∏

p=ς

[
1 +

1
j

w(p – ς )η2–j(p) + t(p – ς )
]] 1

j–1

,

t1 ∈ Mς–1, (13)

such that

T(t2, t1) =
1

�(ς )
(t1 – t2 – 1)ς–1T(t2). (14)

Proof Obviously, by the positive and nondecreasing nature of η(t1), inequality (12) takes
the form

hj(t1)
ηj(t1)

≤ 1 + �
–ς
0

[
W (t1)

h(t2 + ς – 1)
ηj(t2 + ς – 1)

]

×
[

h(t2 + ς – 1) +
1

�(ς )

t2–ς∑

p=0

(t2 – p – 1)ς–1T(p)h(p + ς – 1)

]
, (15)

denoting

y1(t1) = 1 + �
–ς
0

[
W (t1)

h(t2 + ς – 1)
ηj(t2 + ς – 1)

]

×
[

h(t2 + ς – 1) +
1

�(ς )

t2–ς∑

p=0

(t2 – p – 1)ς–1T(p)h(p + ς – 1)

]
, (16)

(15), (16) produce

hj(t1)
ηj(t1)

≤ y1(t1) ⇒ h(t1) ≤ η(t1)y
1
j

1 (t1). (17)
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Utilizing Definition 2.1 to (16), we deduce

y1(t1) = 1 +
1

�(ς )

t1–ς∑

t2=0

(t1 – t2 – 1)ς–1W (t2)
h(t2 + ς – 1)
ηj(t2 + ς – 1)

×
[

h(t2 + ς – 1) +
1

�(ς )

t2–ς∑

p=0

(t2 – p – 1)ς–1T(p)h(p + ς – 1)

]
, t1 ∈ Mς–1,

the last inequality with (17) turns out to be

y1(t1) ≤ 1 +
t1–ς∑

t2=0

W (t2, t1)η2–j(t2 + ς – 1)y
1
j

1 (t2 + ς – 1)

×
[

y
1
j

1 (t2 + ς – 1) +
t2–ς∑

p=0

T(p, t2)y
1
j

1 (p + ς – 1)

]

≤ R(t1), (18)

where T(t2, t1) is given as in (14) and

R(t1) = 1 +
t1–ς∑

t2=0

W (t2, t1)η2–j(t2 + ς – 1)y
1
j

1 (t2 + ς – 1)

×
[

y
1
j

1 (t2 + ς – 1) +
t2–ς∑

p=0

T(p, t2)y
1
j

1 (p + ς – 1)

]
.

As R(t1) ≥ 0 is nondecreasing and with the support of straightforward computation for
t1 ∈ Mς , the decreasing nature of W (t2, t1), T(t2, t1) for t2 ∈N0, the definition of W (t2, t1),
T(t2, t1), tς

1 , and (18), we get

R(t1) – R(t1 – 1)

= W (t1 – ς , t1)η2–j(t1 – 1)y
1
j

1 (t1 – 1)

[
y

1
j

1 (t1 – 1) +
t1–ς∑

t2=0

T(t2, t1)y
1
j

1 (t2 + ς – 1)

]
,

≤ w(t1 – ς )η2–j(t1 – 1)R
1
j (t1 – 1)

[
R

1
j (t1 – 1) +

t1–ς∑

t2=0

T(t2, t1)R
1
j (t2 + ς – 1)

]
.

On the other hand, by the mean value theorem, we attain

j
j – 1

[
R1– 1

j (t1) – R1– 1
j (t1 – 1)

]
=

R1– 1
j (t1) – R1– 1

j (t1 – 1)

[�(t1)]
1
j

for some �(t1) ∈ [R(t1 – 1), R(t1)]. Furthermore

R1– 1
j (t1) – R1– 1

j (t1 – 1)

≤ j – 1
j

[
R(t1 – 1), R(t1)

R
1
j (t1 – 1)

]
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≤ j – 1
j

w(t1 – ς )η2–j(t1 – 1)

[
R

1
j (t1 – 1) +

t1–ς∑

t2=0

T(t2, t1)R
1
j (t2 + ς – 1)

]
, t1 ∈ Mς ,

the above inequality, by summing from ς to t1 – 1 and with R(ς – 1) = 1, implies

R
j–1

j (t1 – 1)

≤ 1 +
j – 1

j

t1–1∑

t2=ς

w(t2 – ς )η2–j(t2 – 1)

[
R

1
j (t2 – 1) +

t2–ς∑

p=0

T(p, t2)R
1
j (p + ς – 1)

]
. (19)

Consider

B(t1) = 1 +
j – 1

j

t1–1∑

t2=ς

w(t2 – ς )η2–j(t2 – 1)

[
R

1
j (t2 – 1) +

t2–ς∑

p=0

T(p, t2)R
1
j (p + ς – 1)

]
, (20)

from (19) and (20), one has

R
j–1

j (t1 – 1) ≤ B(t1). (21)

We proceed from (19) and (20) to

B(t1) – B(t1 – 1)

=
j – 1

j
w(t1 – ς – 1)η2–j(t1 – 2)

[
R

1
j (t1 – 2) +

t1–ς–1∑

t2=0

T(t2, t1 – 1)R
1
j (t2 + ς – 1)

]

≤ j – 1
j

w(t1 – ς – 1)η2–j(t1 – 2)

[
B

1
j–1 (t1 – 1) +

t1–ς–1∑

t2=0

T(t2, t1 – 1)B
1

j–1 (t2 + ς – 1)

]

≤ j – 1
j

w(t1 – ς – 1)η2–j(t1 – 2)S(t1), (22)

where

S(t1) = B
1

ĵ–1 (t1 – 1) +
t1–ς–1∑

t2=0

T(t2, t1 – 1)B
1

j–1 (t2 + ς – 1) (23)

and

B
1

j–1 (t1 – 1) ≤ S(t1). (24)

Equation (23) with inequality (24) becomes

S(t1) – S(t1 – 1) = B
1

j–1 (t1 – 1) – B
1

j–1 (t1 – 2) + t(t1 – ς – 2)B
1

j–1 (t1 – 2),

≤ B
1

j–1 (t1 – 1) – B
1

j–1 (t1 – 2) + t(t1 – ς – 2)S(t1 – 1). (25)

A similar analysis of the mean value theorem as before yields
(

j – 1
j – 2

)[
B1– 1

j–1 (t1 – 1) – B1– 1
j–1 (t1 – 2)

]
=

B(t1 – 1) – B(t1 – 2)

[�(t1 – 1)]
1

j–1
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gives

B1– 1
j–1 (t1 – 1) – B1– 1

j–1 (t1 – 2) ≤ j – 2
j – 1

[
B(t1 – 1) – B(t1 – 2)

�
1

j–1 (t1 – 1)

]

≤ 1
j

w(t1 – ς – 2)η2–j(t1 – 3)S(t1 – 1). (26)

Substituting (26) in (25), we get

S(t1) – S(t1 – 1) ≤ 1
j

w(t1 – ς – 2)η2–j(t1 – 3)S(t1 – 1) + t(t1 – ς – 2)S(t1 – 1),

which with S(ς – 1) = 1 offers the estimation

S(t1 – 1) ≤
t1–2∏

t2=ς

[
1 +

1
j

w(t2 – ς )η2–j(t2 – 1)S(t1 – 1) + t(t2 – ς )
]

, t1 ∈ Mς .

Also,

S(t1) ≤
t1–1∏

t2=ς

[
1 +

1
j

w(t2 – ς )η2–j(t2)S(t1 – 1) + t(t2 – ς )
]

.

From the last inequality and (22), we observe that

B(t1) – B(t1 – 1) =
j – 1

j
w(t1 – ς – 1)η2–j(t1 – 2)

×
t1–1∏

t2=ς

[
1 +

1
j

w(t2 – ς )η2–j(t2)S(t1 – 1) + t(t2 – ς )
]

. (27)

Summing (27) from ς to t1 – 1 and utilizing B(ς – 1) = 1, we acquire

B(t1 – 1) ≤ B(ς – 1) +
j – 1

j

t1–1∑

t2=ς

w(t2 – ς )η2–j(t2 – 1)

×
t2–1∏

p=ς

[
1 +

1
j

w(p – ς )η2–j(p) + t(p – ς )
]

, t1 ∈ Mς ,

or

B(t1) ≤ 1 +
j – 1

j

t1∑

t2=ς

w(t2 – ς )η2–j(t2)
t2∏

p=ς

[
1 +

1
j

w(p – ς )η2–j(p) + t(p – ς )
]

,

t1 ∈ Mς–1. (28)

The acquired bound in (13) can be carried out by substituting (28) in (21), (18), and (17)
with t1 ∈ Mς–1 simultaneously. �

Remark 3.4 If j = 1, ς = 1, �(1) = 1, T(t2) = k(s,σ ) and h2(t1) = u(n), k(n, s), �1k(n, s), 0 <
s < n < 1, n, s ∈N0 in (12), then Theorem 3.3 can be modified into [35] Theorem 2.3(c2).
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Corollary 3.5 Suppose that h, ς , W , T , η, W (t2, t1), T(t2, t1) of Theorem 3.3 and ĵ, g of
Theorem 3.1 with the inequality

hj(t1) ≤ η(t1) + �
–ς
0

[
W (t1)hg(t1 + ς – 1)

]

+
1

�(ς )

t1–ς∑

t2=0

(t1 – t2 – 1)ς–1T(t2)hj(t2 + ς – 1), t1 ∈ Mς–1,

are fulfilled. Then

h(t1) ≤ η
1
j (t1)

t1∏

t2=ς

[
1 + t(t2 – ς )

] 1
ĵ

×
[

1 +
ĝ – ĵ

ĵ

t1∑

t2=ς

w(t2 – ς )η
g–j

j (t2)
t2∏

p=ς

[
1 + t(p – ς )

g–j
j
]
] 1

j–g

, t1 ∈ Mς–1.

Remark 3.6 Corollary 3.5 alters into [36], Lemma 2.5 (β1) by letting j = 1, ς = 1, �(1) = 1,
T(t2) = 0, and w(t1) = b(s).

4 Boundedness and uniqueness
The boundedness and uniqueness of the discrete fractional inequalities can be evaluated
by a relevant practice of Theorem 3.3 in this segment. Consider the IVP of fractional dif-
ference equation of the form

⎧
⎨

⎩
�ς hj(t1) = K(t1, h(t1 + ς – 1),�–ς [V (t1, h(t1 + ς – 1))]), t1 ∈ Mς–1,

�ς–1h(t1)|t1=0 = h0,
(29)

where K , V : N0 × R → R are functions, h0 is a constant, and t1, ς , j, h are mentioned as
in Theorem 3.3.

The ensuing theorem can illustrate the boundedness on the solutions of (29).

Theorem 4.1 Suppose that

∣∣K(t1, h, v)
∣∣ ≤ W (t1)|h|[|h| + |v|], (30)

∣∣V (t1, h)
∣∣ ≤ T(t1)|h|. (31)

If h(t1) is a solution of (29), then

∣∣h(t1)
∣∣ ≤ η(t1)

[
1 +

j – 1
j

t1∑

t2=ς

w(t2 – ς )η(t2)
t2∏

p=ς

[
1 +

1
j

w(p – ς )η2–j(p) + t(p – ς )
]] 1

j–1

,

t1 ∈ Mς–1. (32)

Proof Equation (29) is transformed into

hj(t1) ≤ tς–1
1

�(ς )
h0
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+
1

�(ς )

t1–ς∑

t2=0

(t1 – t2 – 1)ς–1K̂
(
t2, h(t2 + ς – 1),�ς

[
V

(
t2, h(t2 + ς – 1)

)])
.

Apparently, equation (29) with Definition 2.1 and the combination of (30) and (31) ap-
proaches to

∣∣hj(t1)
∣∣ ≤ tς–1

1
�(ς )

|h0| +
1

�(ς )

t1–ς∑

t2=0

(t1 – t2 – 1)ς–1W (t2)
∣∣h(t2 + ς – 1)

∣∣

×
[
∣∣h(t2 + ς – 1)

∣∣ +
1

�(ς )

t2–ς∑

p=0

(t2 – p – 1)ς–1T(p)
∣∣h(p + ς – 1)

∣∣
]

,

≤ ∣∣ηj(t1)
∣∣ +

1
�(ς )

t1–ς∑

t2=0

(t1 – t2 – 1)ς–1W (t2)
∣∣h(t2 + ς – 1)

∣∣

×
[
∣∣h(t2 + ς – 1)

∣∣ +
1

�(ς )

t2–ς∑

p=0

(t2 – p – 1)ς–1T(p)
∣∣h(p + ς – 1)

∣∣
]

,

where tς–1
1

�(ς ) |h0| ≤ |ηj(t1)|. The remaining calculations can be done through the assumption
of correct composition of Theorem 3.3 to get the required inequality (32). �

The uniqueness of solutions of (29) can be identified by the following theorem.

Theorem 4.2 Let

∣∣K(t1, h1, v1) – K(t1, h2, v2)
∣∣ ≤ W (t1)|h1 – h2|

[|h1 – h2| + |v1 – v2|
]
, (33)

∣∣V (t1, h1) – V (t1, h2)
∣∣ ≤ T(t1)|h1 – h2|. (34)

Then (29) has at most one solution.

Proof IVP (29) with solutions h1(t1) and h2(t1) is restated as follows:

hj
1(t1) – hj

2(t1)

=
1

�(ς )

t1–ς∑

t2=0

(t1 – t2 – 1)ς–1K
(
t2, h1(t2 + ς – 1),�ς

[
V

(
t2, h1(t2 + ς – 1)

)])

–
1

�(ς )

t1–ς∑

t2=0

(t1 – t2 – 1)ς–1K
(
t2, h2(t2 + ς – 1),�ς

[
V

(
t2, h2(t2 + ς – 1)

)])
.

The last equation with speculations (33), (34) provides

∣∣hj
1(t1) – hj

2(t1)
∣∣ ≤ 1

�(ς )

t1–ς∑

t2=0

(t1 – t2 – 1)ς–1W (t2)
∣∣h1(t2 + ς – 1) – h2(t2 + ς – 1)

∣∣

×
[
∣∣h1(t2 + ς – 1) – h2(t2 + ς – 1)

∣∣ +
1

�(ς )

t2–ς∑

p=0

(t2 – p – 1)ς–1T(p)
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× ∣∣h1(p + ς – 1) – h2(p + ς – 1)
∣∣
]

.

The prior inequality by making a few modifications in the technique for Theorem 3.3 to
|hj

1(t1) – hj
2(t1)| induces

∣∣hj
1(t1) – hj

2(t1)
∣∣ ≤ 0.

Subsequently h1(t1) = h2(t1), and one positive solution of fractional difference equation
(29) exists. �

5 Concluding remarks
Fixated on the guideline of discrete fractional analytic and with the advantage of fractional
sum inequalities, we suggested new varieties of discrete Gronwall fractional inequalities
in this paper. Such inequalities can be seen not exclusively to remember explicit estima-
tions for solutions of fractional difference equations in discrete type yet additionally in
the investigation to the uniqueness and continuous dependency on the initial value for
the solutions in the analysis.
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