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1 Introduction

Fixed point theorems have numerous applications in mathematics and are applied in di-
verse fields as biology [1], chemistry [2], economics [3, 4], engineering [5], game theory
[6], and physics [7, 8]. In the last years, boundary value problems of nonlinear fractional
differential equations with a variety of boundary conditions have been studied by various
researchers, see [9-20]. Fractional differential equations appear naturally in diverse fields
of science and engineering. They constitute an important field of research. It should be
noted that most papers dealing with the existence of solutions of nonlinear initial value
problems of fractional differential equations mainly use the techniques of nonlinear analy-
sis such as fixed point techniques, stability, the Leray—Schauder result, etc. Relatively, frac-
tional calculus and fractional differential/integral equations are very fresh topics for the
researchers. For instance, in [21] the authors resolved some fractional differential equa-
tions with multiple delays in relation to chaos neuron models by using fixed point results
of Lou [22] and E. de Pascale and L. de Pascale [23]. Amann [24] used a fixed point tech-
nique when studying some nonlinear eigenvalue problems in ordered Banach spaces. Liu

et al. [25] gave applications of mixed monotone operators with superlinear nonlinearity

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’'s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13662-021-03255-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03255-6&domain=pdf
http://orcid.org/0000-0001-8724-9367
http://orcid.org/0000-0003-4606-7211
http://orcid.org/0000-0002-7986-886X
mailto:hassen.aydi@isima.rnu.tn

Hammad et al. Advances in Difference Equations (2021) 2021:97 Page 2 of 20

via fixed point theory. On the other hand, by using fixed point theorems, the existence
and uniqueness of solutions to differential/integral equations involving fractional oper-
ators were studied by a huge number of researchers. For further related results, see for
example [26-30].

Definition 1.1 ([31]) The usual form of the RL-fractional integral operator of order 7 is
1 « 1
I'o(@)=—— | (@-h)""o(h)dh,
I'(7) Jo

where 7 > 0, and the function O is defined on L' (R*).

Definition 1.2 ([31]) Let o : (0,00) — R be a continuous function, the RL-fractional
derivative of order 7 is defined as

T _ 1 i e _ -7-1
Da(a)_gf‘(n—r)<da> /0 (@ —R)"""O(h)dh,

where n = [t] + 1.

In this manuscript, we investigate some fixed point results via a class of contractive type
mappings involving mild conditions in the setting of n3-metric spaces. Also, some non-
trivial examples are introduced. Finally, as applications, theoretical results are involved
to discuss the existence and uniqueness of a solution of 2D Volterra integral equations,
Riemann-Liouville integrals, and Atangana—Baleanu integral operators.

2 Main results
We begin this section with the following definition.

Definition 2.1 Suppose that o is a nonempty set and J,v : o x g — [1,00) are given
functions. Let 3 : o x p — [0,00) be a distance function on g. We list the following
hypotheses for all ¢,v,t € gp:

(h) ni(s,v) =0iff ¢ = v;

(2) n3(s,v) =n3(v, 5);

() n3(s,v) <1(s,v)[ny(s,7) + nj(r,v)] (an extended triangle inequality);

Ua) n3(s,v) <1(s,T)ny(s, ) +3(r,v)nj(r, v) (a controlled triangle inequality);

(J5) n3(s,v) <I(s,T)n3(s, ) + v(r,v)ni(z,v) (a double controlled triangle inequality).

1} is called:

« extended b- [32] if ny satisfies (J1) — (J5);

« controlled metric type [33] if ny satisfies (J1), (/2), and (J4);

+ double controlled metric type [34] if 5y satisfies (J1), ()2), and (J5).

The pair (g, n3) is called an extended b-metric/ a controlled metric type/ a double con-
trolled metric type space if nj is extended b-metric/ a controlled metric type/ a double
controlled metric type on g, respectively.

Example 2.2 Let = {1,2,3}. Define J,v: p x p — [1,00) by

10,2)=321) = 1, 3(2,3):3(3,2):2, and :(1,3):1(3,1):;
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7 9
v(1,2)=v(2,1) = o v(2,3)=v(3,2) = X and v(1,3)=v(3,1)=2.
Let 13 : 9 X o — [0,00) be given as

715(1:3) = 77‘])(3’ 1) =1, 7]‘3)(172) = 775(2: 1) =2,

n3(2,3) =n3(3,2) = 3.6, n3(1,1) = n3(2,2) = n3(3,3) = 0.
Note that

n5(2,3) = 3(2,3)[15(2, 1) + 15(1,3)],

n3(2,3) > 1(2, )n3(2,1) + 3(1,3)n3(1,3),
and

n3(2,3) <3(2,1)n3(2,1) +v(1,3)n3(1,3),
n3(1,2) <13(1,3)n3(1,3) +v(3,2)n3(3,2),

n3(1,3) =1(1,2)n3(1,2) + v(2,3)n3(2,3).

Thus, 7Y is neither extended b-metric nor controlled metric type for the function J, but it
is double controlled metric type.

Definition 2.3 Let (p,n3) be a double controlled metric type space (for short, nj-metric
space). A sequence {¢,} € g is called:
« convergent if there is ¢ € g such that lim,_, ., 73(¢4, ) = 0, and this notation leads to
limy, 00 6 = 65
+ Cauchy iff n3(y, 6n) — 0 as n,m — oo.
An nj-metric space is complete if every Cauchy sequence in g is convergent.

Remark 2.4 1f 1(¢,7) = v(t,v) =b > 1forall ¢,v, 7 € p, then an n}-metric space reduces
to a b-metric space [35, 36].

Theorem 2.5 Let (,17) be a complete ny-metric space and the mappings 0,0 : p —
satisfy

n3(v, BV)[1 + n3(v, Bv)]
1+n3(0¢,0v)

n3(w, Bu)[1 + n3(s,0¢6)]
+ U "
1+ 773(§:U)

abng(ag,Uu) <onj(s,v)+p

(2.1)

forall ¢,v € p, where o, p, and |1 are nonnegative real numbers with o + p + 1 < 1 and
a,b > 1. Consider ¢, = U" ¢, for ¢, € p. Then O and U have a unique common fixed point
(cfp), provided that the following hypotheses hold:

(i)

3(5,41, 5']’+2) 1 o
————v(gu1,6) < =, where® = ——-——; (2.2)
=1/~ (), je1) a C)
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(i) lim,— 00 (s, Gn) and lim,,_, o, v(s, ,,) exist and are finite for all ¢ € g.

Proof Suppose that ¢, € g is an arbitrary point such that the sequence {¢, = U"¢.} in g
satisfies the two conditions of theorem and iterates below as follows:

Sone1 =062, and G40 = O6ops1, n=0,1,.... (2.3)

From inequality (2.1), one writes

ﬂbn5(§2n+1:§2n+2) = ﬂbﬁ;(as‘szS‘Znu)
13(52n+1, 062401)[1 + 05(S2141, OG2041)]
1+ 73621, Bgans1)
‘i 13 (62141, O62:1)[1 + 05 (G20, D 621)]
1+ ’73}(5'2}1’ Sone1)

< on3(S2n S2ne1) + P

n§(§2n+lr §2n+2)[1 + 77:'()(5‘2;'&1’ §2n+2)]
1+ n]j)(§2n+1v U5'2;1+2)

O'nl'l)(§2m Sons1) + P

nﬁ)(§2n+1) §2n+2)[1 + nﬁ)(S‘an §2n+1)]
1+ 7)]3)(§2n» §2n+1)

= Gnl'l)(§2n: §2n+1) + (:O + M)nﬁ)(§2n+1; §2n+2)-

This leads to

o

)775(52;’17 §2n+1)'
- u

v
nj(§2n+1: §2n+2) < (gb — o

Iteratively,

o
7)’7;(5'2%1, Sons2)-
- M

4
13(S2n42, G2ns3) < (ab s

a

By taking ® = -

<1, one gets

n;(gnr §n+1) = ®775(}(S‘n—1: gn)

< O’n4(6n-2 Sn-1)

< ®"n3(s0, 61)-

For all m,n € N with m > n, we get

n;(gnv gm) = j(gm §n+1)775(§n: §n+1) + v(§n+1: §m)77§(§n+1: gm)

J(§n+1r §n+2)n5(§n+1: §n+2)
+ V(§n+2, §m)771'|)(§n+21 gm)

= j(gm §n+1)n§(§n: §n+1) + v(§n+1; gm) |:

= j(gm §n+1)7]§(§n; §n+1) + v(§n+1; §m):|(gn+1, §n+2)n§(§n+1: §n+2)

+ V(§n+1; §m)U(§n+2, §m)n§(§n+27 §m)

Page 4 of 20



Hammad et al. Advances in Difference Equations (2021) 2021:97 Page 5 of 20

m=2 i
=< j(gm S‘n+1)nlj)(§n: §n+1) + Z ( 1_[ V(S'/'r gm))J(gzr §i+1)nlj)(§it §i+1)

i=n+1 \j=n+1
m-1
+ T v smni(Smos Sm)
k=n+1

m-2 i
< 26w Sn1)O™ 03 (50, 61) + Y (]_[ v(s), §m)>:[(§i, 6ir1)O' (50, 61)

i=n+1 \j=n+1

m-1
+ [T viso sm®™ " n3(s0, 1)
k=n+1

m=2 i
< 25w Sn)®" 03 (50, 61) + Y (]_[ v(g), §m)>:[(§ir Si1)O (S0, 61)

i=n+1 \j=n+1
m-1
+ T vt 6m)®" " WG, Sl (S0, 61)
k=n+1

m-1 i
< 36 5u1)O" 13 (50, 51) + Z (H v(g;, s‘m)):[(s‘i, 5i+1)0'5 (50, 1)

i=n+1 \j=n+1

m-1 i
< XS Sn)O" 03 (50, 61) + Y (1‘[ v(g), gm>>:(gi, 5i1)0n5 (S0, 61)- (2:4)

i=n+1 \ j=0
Set Ay = Zf:o(l_[;:o V(S Sm))A(Gi ¢i+1)®'. Hence, inequality (2.4) implies that

13 (S Sm) < 03(60, S1)[O"I(Gs Gne1) + (A1 — A)]. (2.5)
It follows by (2.2) and the ratio test that the real number sequence {A,} exists, and so

{A,} is Cauchy. Note that the ratio test is applied to the term s; = (]_[;:0 V(S m))A(Sir Siv1)-
Taking n,m — oo in (2.5), we can write

lim  13(5u Gm) = 0. (2.6)
n,m—>00

Relation (2.6) implies that the sequence {g,} is Cauchy. The completeness of (2, ) yields
that there exists some g € g such that

lim n} (s 0) = 0. 2.7)
n—0oQ
Applying the triangle inequality, we have
U;(Q, §n+1) = J(Q; gn)”;(@; gn) + U(gn’ §n+1)77‘j)(§n1 §n+1)' (28)
By (2.6) and (2.7) in (2.8), we get at the limit

lim 73(0, Gus1) = 0. (2.9)
n— 00
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Now, we shall show that ¢ = Dg. Using the method of contradiction, i.e., let n3(e,0¢) > 0.
Then

n3(0,00) < (0, Sur2)n3(05 Sns2) + V(Sns2,00)05(Sns2,00)
= J(Q’ §n+2)775(Q’ Sne2) + V(Sna2s DQ)’?S(US‘HH, 00)
< (0, Sn2)15(05 Snv2) + V(Sur2, D0)a" 05 (00, Ugi1)

0775(@’ §n+1)

15(5n+1,06n41) (1405 (6141, 06n+41)]
=< J(Q, §n+2)775(Q’ Sne2) + V(Sni2,00) +p . 1+ﬂ5(DQ,UJ§n+1)

1Y (1,0 6n+1) 1414 (0:00)]
L+n%(0:6n+1)

+

UTI‘ﬁ(Q, §n+1)

15 (n+1,6n+2) (1404 (Sn+1,6n+2)]
= (0, 6m2)n3(05 Sns2) + V(Gn2,00) M Tt T

1Y (Sne1,6n+2) (1414 (0,00)]
L+ (0:5n+1)

+ 1

Letting n — 0o in the above inequality and with the help of (2.6), (2.7), and (2.9), we
conclude that ny(0,00) = 0. It is a contradiction, that is, ¢ = Dg. Likewise, we can show
that ¢ = Up. This means that g is a cfp of © and U. For uniqueness, suppose that « is
another cfp of © and U such that ¢ # «, then by condition (2.1) we obtain that

a’ny(o, @) = a’n}(®o, Va)

ny(e, Bar)[1 + (e, Bar)] i ny(e, Bar)[1 + n5(0,00)]
1+ 1300, Va) 1+n3(0,a)

<onylo,a)+p

= onj(o, ).

This implies that (a’ — o)nj(e,a) <0, a contradiction. So it should be ny(u,a) = 0, i.e.,
= o. Hence p is the unique cfp of © and U. This ends the proof. d

Theorem 2.5 reduces to the following corollary if we consider that the two mappings ©

and O are equal.

Corollary 2.6 Let (p,nY) be a complete n3-metric space and O : p — © be a mapping
satisfying

n3(v,0V)[1 + nj(v,0v)] " n3(v,0V)[1 +nj(s,0¢)]
1+n3(0¢,0v) 1+n3(s,v)

a’ny(O¢,0v) <oni(s,v) +p

forall ¢,v € p, where o, p, and |1 are nonnegative real numbers with o + p + 1 < 1 and
a,b > 1. Consider ¢, = 0" ¢, for ¢, € p. If assumptions (i) and (ii) of Theorem 2.5 are ful-
filled, then O has a unique fixed point.

Ifwetakea=b=1, 4 =p =0,and © = U in Theorem 2.5, we get the following main
result.
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Corollary 2.7 Let (0,13) be a complete ny-metric space, and let the mapping O : o —
satisfy

n31(0¢,0v) <ony(s,v)

forall ¢,v € p,where o is a nonnegative real number with o < 1. Choose ¢, = 0" ¢, for ¢, €
$, then O has a unique fixed point, provided that the following assumptions are satisfied:
. 3( j+1:Sj+ )
¢ SUp;>q lim;, ﬁv(gjﬂ: S1) < %;
o limy,— 00 I(s, 64) and lim,_ oo v(5, g, exist and are finite for all ¢ € .

Another direction to obtain a cfp of © and U is by considering a strong contractive con-

dition in the following theorem.

Theorem 2.8 Let (9, nY}) be a complete ny-metric space, and let the mappings 9,5 : p —
satisfy

N1, 0v) < (TM(s) - M(O¢))As, v),
where

n3(s,v),n3(s,9¢),n3 (v, Bv),

14 (s,06)+n4(v,0v)  /n5L.O5)-ny(s,0v)
2 ’ 2

(¢, v) = max

’

and 1 : p — R is bounded from below (inf{I1()} > —00). Assume that ¢, = U"¢, for ¢, €
§, and

e ¢
sup lim (§1+1 §1+2)

1
V(g )< —, 0<RN<1.
I>1 /7> J(S‘j; §j+1) }+ N

In addition, suppose that lim,,_, ., I(c, ¢,) and lim,_,  v(s, ,,) exist and are finite for all
G € 9. Then O and U have a unique cfp.

Proof As at the beginning of the proof of Theorem 2.5, we consider the same sequences
defined by (2.3). Consider

15 (Sans1r S2nr2) = M3 (©62m U6am1) < (M(524) = IO 621)) G205 Soms1)s (2.10)
where

773}(§2m §2n+1)1 7’3}(5‘2}1; D§2n)’ n§(§2n+1: U5‘2;’1+1);

1Y (S22 52m) 414 ($2n+1,062141) /15 (62006214115 (620+1,8520)
2 ) 2

:(§2nr §2n+1) = max

nﬁj(anr §2n+1)7 n]j)(§2n: §2n+1)¢ 775}(§2n+1: §2n+2))

773 (§2n:§2n+1)+’]3 ($21+1,S2n+2) \/’75 (§2n+1:§2n+1)-713 (S21,52m+2)
2 ’ 2

= max

= maX{nl])(S‘va §2n+1)) 7]5(5‘2714—1’ §2n+2)}-
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Now, if n§(§2n+1; Sons2) = 773}(§2n+1, San+2), then by (2.10) we get

n§(§2n+1: §2n+2) = n;(ag2n)6§2n+1)
= (H(§2n) - H(D§2n))775(§2n+1; Sone2)

= (T(s21) = TH(S2141)) 14 (S2n41> S2me2)s
a contradiction. S0, J(¢ay, Cons1) = 13(S21s S2n+1). Again, by (2.10), one can write
N1(S2n415 S2n42) = N3O 521, OGaue1) < (H(s‘zn) = T1(S2041)) 14 (S2m> S2s1)-
Similarly,
13 (S2ne2s S2n43) = 15O 62041, B6ana2) < (M(S2me1) = M(6242)) ANS2mes Somaa)s  (2.11)
where

13 (S2n+1> S2n+2)s M3 (G241, D S2141) M5 (G242, O G2m42),

1(52101,0 52041) 15 (€2042,02042) /15 (621410 62042) -1 (62142, B 5241)
2 ’ 2

:(§2n+1; §2n+2) = max

n§(§2n+1: §2n+2)¢ n§(§2n+1’ §2n+2)r 775(5‘2714—2; §2n+3):

’73 (§2n+lv§2n+2)+775 (S2n+2,52n+3) \/nﬁ (§2n+2:§2n+2)-715 (S21+1,62n+3)
2 ? 2

= max

= maX{’?;(s‘le, §2n+2)1 775(§2n+2) §2n+3)}-

From (2.11), we have

15(Sons25 S2n43) = N (©G2ms1, US242) < (T1(S2041) — T1(G2m42)) 13 (G242 G2ms3)s

a contradiction. Hence, J(¢a,41, Cons2) = 15(S2n+15 S2n42), then by (2.11) we get

15 (Soms2s S2n43) = M3 (©G2ms1, U6242) < (T1(S2m41) = T1(G242)) 03 (S241, Samsa)-

Continuing this approach, for each # € N, we conclude that

Uﬁ(gm §n+1) = (H(gn—l) - H(S‘n))n:'])(gn—ly §n)'
That is,

’7§(§nr Snel) <

IM(c,-1) - (cy)).
na(gnfl,gn)—( (1) = Tllsi)

Thus, the sequence {g,} is necessarily decreasing and positive. So, it converges to an ele-
ment J > 0. Mathematically, we get, for each n € N,

n n

Z % = Z(H(s‘n—l) - (sx))

=1
= (M(s0) - M(s1)) + (M(s1) - M(s2)) + -+ + (M(5u-1) — M(Gn))

=T(co) - (g,) — M(co) = asn— 00,

=1

Page 8 of 20
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which yields that )" _; % < 00. Accordingly, we conclude that

v
lim 7’/3(5‘71, Sr+1) -0 (2.12)

n—00 775(5‘71—1, Sr)

It follows by (2.12) that there is 0 < X < 1 so that

n;(gm Sr+1)

. <N forallw > m.
n3(Sn-1,6x)

Equivalently,

03(Sns Sra1) < VN (Gr-1,67) forall w > mo.

By continuing with the same scenario used in proving Theorem 2.5, we conclude that the

sequence {¢,} converges to some ¢ € p, i.e.,
lim n3(su ¥) =0. (2.13)
n— 00

It is clear that

13(S2ns15 S2n42) < (G241, D)3 (G241, D) + V(F, S2ni2) 3 (D5 S2ne2) (2.14)

— 0 asn— oo.
Now, we show that ¥ = O1}. Suppose to the contrary, i.e., nj(©%, %) > 0. Consider

'75(17, Dl}) = J(ﬁr §2n+2)n§(ﬁ, §2n+2) + v(§2n+2: 919)775(§2n+2, Dﬂ)
= :I(l?, §2n+2)77§(191 §2n+2) + V(§2n+2: 919)775(319, U§2n+1)

<1, §2n+2)77§(191 Sans2) + V(S2ms2, Dﬁ)(n(l?) - H(Dﬁ))j(l?, Sons1)s  (2.15)
where

775(19) §2n+1): Tlﬁ)(ﬁ, Dﬂ): n§(§2n+1) U§2n+1)y

7]5 (19,919)"'775 (2141,062n+1) \/’75 (§2n+1s919)~’]5 (©,0621+1)
2 ’ 2

3(7}, §2n+1) = max

n3(9, Sane1)s 05 (9, 00), 15 (S2n415 S2ns2)s

TIAXN o 0,00) 1) (Sanet.0m02) /T2 DD TR S20r2) (2.16)
2 ’ 2
Letting n — oo in (2.16) and applying (2.13) and (2.14), we have
lim (&, Ga41) = n3(F, 0F). (2.17)
n—00

Taking n — oo in (2.15) and by (2.17), we get

n3(,00) < v(®,00)(M(¥) - H(Dﬁ))n},’(v“,aﬂ),
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a contradiction. Hence, n3(¢,09) = 0, i.e,, ¥ = 0¢. Similarly, we can show that © = U¢.
To prove the uniqueness of the cfp of © and U, let w # ¥ be another cfp of © and U, i.e,,
n3(?, w) > 0. Consider

n1(%, @) = n3(09, Bw)

=1
< (0®) - NEY))3®,0)

n3(?, @), n3(¥,00), nj (@, Vw),

14 (9,09)+n4 (@,00) 14 (@,09).n5 (9, 0w)
2 ’ 2

n3(%, ), n3 (2, 9), nj(w, w),
= () -TE) M) oy )00 JEET T
2 ’ 2

= (M) - M(©¥)) max

(l'[(z?) - H(Dl?)) max{ng(ﬁ,w),o, 0,0, Uﬁj(l;,w) }

(M) - IEY))n; (¥, 0).

There exists a contradiction in the relation n3(¢, @) < (I(¥) - I1(©¥))n3(¥, ®), thus
n3(9,0) =0, i.e, ¥ = w. Therefore, ¥ is the unique cfp of the mappings © and U. g

Example 2.9 Assume that all requirements of Example 2.2 hold, then (g, 13) is a complete
ny-metric space. Let the mappings O, U : p — g be defined by 01 =03 =1, 02 = 3 and
U1 =02 =1, U3 =2, respectively. Now, we shall verify the contractive condition (2.1) of
Theorem 2.5.Fora=1,b=2,0 = %, p= i, and u = é (itis obviousthato + p + u = % <1),
for simplicity, we put

n1(v, Bu)[1 + nj(v, Bv)] ‘i n3(v, Bu)[1 +n3(s,0¢)]
1+n50©g,0v) 1+n5(s,v) ’

Qs,v) =on3yls,v) +p
We consider the following cases:
eIfc=v=1or(¢c=1v=2),0r(¢c=3v=2),0r (¢ =3, v=1). This case is achieved
directly because of
n3(©1,01) = n3(©1,02) = n3(03,02) = n3(©3,01) = n5(1,1) = 0.
o If ¢ =v =2, then

a"n3Os,Bu) = n3(02,02) = nj(3,1) = 1

and
1 1
Q(c,v)=2(2,2) =00 +3p + 10u = 3<1> + 10(5) =2.75.

It is easily seen that abnﬁ’(ag, Uv) < Q(¢,v).
o If ¢ =v =3, then

a’ (g, Bv) = n3(03,03) = n4(1,2) = 2
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and

1 1
Q(c,v) = Q(3,3) =00 +5.250 + 7.2 = 5.25(1) + 72(5) =2.7525.

So, we have a’n} (95, Uv) < Q(s,v).
e If¢=1,v=3,then

a"n3(©5,Bv) = 1§(01,03) = n§(1,2) =2
and

Q(c,v) = Q(1,3) 20 o= i) 1oL - 2566666667
W =QL3) =0+ —p+2u==+—-)+2[=)=2 ,
oY 3P =53\, 5

hence, we observe that abnﬁ’(Dg,Uv) < Q(c,v).
o« If ¢ =2,v =1, then

a"n3Oc,Bu) = n3(©2,01) = n¥(3,1) = 1
and
1
Q(s,v)=R2(2,1) =20 +0p+0,u,=2(§) =1.

Thus, abng(ag,Uv) < Q(c,v).
o If ¢ =2 and v =3, then

a"nj(©g,Vv) = n§(02,U3) = n3(3,2) = 3.6
and
Q(c,v)=R(2,3)=4(c + p + u) =3.8.

It is clear that abn‘j(Dg, UOv) < Q(¢g,v).
From the above cases, the hypotheses managed by Theorem 2.5 are fulfilled, and 1 is the
unique cfp of © and U.

Example 2.10 Suppose that the data of Example 2.2 are verified, then (¢, n3) is a complete
ny-metric space. Suppose that the mappings 0,0 : o — g are defined by 01 = 02 = 2,
©3=01=1and U2 =03 = 2. Define IT : pp — [0,00) as I1(1) = 4, I1(2) = 3, and TI(3) = 5.
Thus, for all ¢, v € p such that ¢ # 2, we discuss the following cases:
A If(c=1Lv=3)or(¢=1,v=2)0r (s =3, v =1), we have n§(01,03) = n5(©1,02) =
n3(2,2) = 0 and n3(93, 1) = n3(1,1) = 0, respectively. So this case is trivial.
A If ¢ =v =1, wehave n3(01,01) = 95(2,1) = 2.
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Consider

(T(1) - M(©1))3(1,1) = (4 -3)3(1,1)

n3(1,1),73(1,01),n3(1, B1),
= max n3(L21)+ny(1,01) n4(1,01).75(L01)
2 ’ 2
775(1! 1), 775(17 2), 77‘]}(1’ 1),
=Y a2 /02D
2 ’ 2

=max{0,2,0,1,0} = 2.
This leads to n5(©1,U1) < (I1(1) - IM(21))3(1, 3).

A If ¢ = v =3, we have n3(93,03) = n5(1,2) = 2.
Consider

(T(3) - M(©3))3(3,3) = (5-4)3(3,3)

n3(3,3),15(3,03),75(3, U3),
= max T v
n3(3,93)+n5(3,03) n:(S,DS).nJ(B,US)
2 ’ 2
n3(3,3),13(3,1),m3(3,2),
T MY a6 J/IGDEGD
2 ’ 2

3\/E} =3.6.

=max30,1,3.6,2.3, ——
10

It yields that 3 (93, U3) < (I1(3) - [1(93))3(3, 3).
A If ¢ =3, v =2, we have ny(03,02) = n3(1,2) = 2.
Consider

(M(3) - M(93))3(3,2) = (5-4)3(3,2)

15(3,2),75(3,03),75(2,02),

=M L eonmyesy) /EEONEEOD)
2 ’ 2

n3(3,2),13(3,1),n3(2,2),

T MY penayey JEEDEGD
2 ’ 2
3vV5

- max{3.6, 1,0,0.5, \Tf} - 3.6.

This implies that 14 (93, U3) < (I1(3) — I1(93))3(3,2).
According to the above cases, we observe that all assumptions of Theorem 2.8 are ful-
filled and 2 is the unique cfp of © and U.

3 Solving the 2D Volterra integral equations
There are many advantages to studying equations of the form (3.1). The authors [37]
showed that problem (3.1) arises from the transformation of certain Volterra integral
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equations of the first kind, with applications, for example, in analysis of Cauchy prob-
lems for certain partial differential equations (e.g., the telegraph equation) and in radiation
transfer problems. Moreover, the Darboux problem can also be reduced to equation (3.1),
as shown in [38].

In this section, we highlight the role of this technique in finding a solution of the two-
dimensional (2D) Volterra integral equations, which takes the form

A ph
AAR) =& R) +/0 /0 El(g, U,A(g,v)) dg dv
A h
+J/ 22 (hv, AL, 0)) du+v/ E3(% 6, AR, 6))ds (3.1)
0 0

forall A, A, ¢,v € [0,1], where A € p = C([0,1] x [0,1]) and £ : [0,1] x [0,1] = R?; &,(i =
1,2,3):[0,1] x [0,1] x R* — R Define the distance n} : g x g — [0,00) on the set of all
continuous functions g = C([0,1]%,R*) from [0, 1]?> onto R* as follows:

5 (AG, h), @ (0, h)) = |4 B) — @ (1, 1)

for all k, @ € g. Let the functions J, v : g x g — [1,00) be defined by

I(AG, ), @ (4, 1)) = |A G, ) ;lw(x, o,

[A(X, R)| + | (X, B)|
v(aG. )@ (o) = o7 AGo D) + o)

Then (g, ny) is clearly an ny-metric space.
We shall consider problem (3.1) via the following assumptions:
(i) 8 (=1,2,3):[0,1] x [0,1] x R? — R? are continuous functions satisfying

}El(g,U,hl(g,U) - El(§7U¢h2(§¢U)‘ = ¥1\/|h1(§!v) - hZ(grU)|;

|Z2(s, v, (s, V) = Ba(s, v, Ma(s,v)| < ¥z\/lh1(§,v) - (s, V)],

iES(g’ U,hl(g,v) - E3(§,U;h2(§,v)| =< ¥3\/|h1(§1v) - h2(§1U)|,
for constants ¥;,¥,,¥; > 0 and hy, Ay € R%;
(ii) ¥; +|A[¥2 + |v|¥3 <0,where0<o < 1.

The important theorem of this part is showed below.

Theorem 3.1 Assume that the above conditions (i)—(ii) hold, then problem (3.1) has a
unique solution.

Proof Define the integral operator o : p — g by

A h
E)A(A,h):s(k,h)+/0 /0 E1(s v, Als,v))dg dv

A R
+:|/ Ez(h, v, A(A, v)) dv + U/ Eg(k, ¢, A(h, g)) dc. (3.2)
0 0
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It is obvious that from (3.2) a unique fixed point of the mapping O is the unique solution

of problem (3.1). By (3.2), we have
ni(©(AM R),0(w (A, h)))
= [2(AG, h)) = (@ (1, )|
A h A
= |EQ R Ei(c, v, Alc,v))dcdv+1 | Za(h v, AL, v))d
‘s( )+f0f0 A(oov (gv))gu+/0 (7 v, Ay v)) dv

h A ph
+v/ Eg(kh,g,A(h,g))dg—s(k,h)—/ / E1(s,v,w(s,v))ds dv
0 o Jo

2

s h
—J/ Eg(h,v,w(k,v))du—vf Eg(k,g,w(h,g))dg
0 0

»oh
/ / (B1(s,v,Als,v)) - Ei(s,v, (5, v))) ds dv
o Jo

A
+:l/ (Ez(h, v,A()»,v)) - Ez(h, v, w (X, U)))du
0
" 2
+ V/O (Eg(k’g’A(h’ §)) - 33(}"9@7(71,5‘)))415-
A ph
= </0 /0 |81(s,v, A5, v) = Bi(s,v, @ (s, v)) | dg dv
A
131 [ 2o, A, ) - Ea(0 v, )
0
" 2
+'”'/o |ES(X’§’A<M>)—Ea(k,g,w(h,g)lds) .

Applying the double conditions of our theorem, we get

n5(©(AM, 1)), 0(z (A, b))

A ph N
([ [l n-otsolasan [ylaom ool

h 2
+|v|/0 ¥\/3|A(h,g>—w(h,g)|dg)

< (¥1y/| A6, v) ~ (5, 0)]| + 112/ |AGh, V)~ w (1, v)

+1u¥3\/| A €)@ (B, <))

< (¥1y/| MG 1) — @ G 1) + 1%,/ | AG ) - (0, 1)

¥/ [AG, B - 2 (0, B)])’

= (0 + 3% + 0 ¥3) [AGL B) - G )

<

0y (A h), (A, )

ooy
<ony (A()\., h), @ (A, h)).
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Hence the requirements of Corollary 2.7 are fulfilled, therefore we observe that © has a
unique fixed point, and so problem (3.1) has a unique solution. d

4 A unique solution of Riemann-Liouville fractional integrals
A bunch of scientists have tackled Riemann-Liouville integral equations and recently
identified a new technique, so-called ‘fixed point approach’ This novel approach has
promised the existence of a solution of Riemann-Liouville integral equations. For more
details, see [39, 40].

Along the same lines, here we study the existence and uniqueness of a solution of
Riemann-Liouville (RL) fractional integral in the form of

R o) = % f k-0 T(@)>0, @1)
h

where T € R, ¢(k) € e = C([0,1],R) (C([0, 1], R) is the set of all continuous functions from
[0,1] onto R) and «, £ € [0, 1] which is the fractional integral. Define the distance n3 : p x
g — [0,00) by

n5(s,v) = |5 (k) - v(e)|”
for all ¢(x),v(k) € g and « € [0,1]. Also define J,v: p x g — [1,00) by

I(sk),v(x)) = |§(")|;—|U(K)| .2,

~ [ (k)| + [vli)
V(500 v0) = T o+ 1ot

Then (p, n}) is an 3-metric space.
Now, we shall show that integral (4.1) has a unique solution under the following condi-

tion:

1 (k =) Yk - B)**

M+ 1) 0| <o, whereo €(0,1)and x #¢.

Define also the operator O : pp — g by

_ - “ _p\t-1
Dg(K)-F(t)/;L (k=) "c(e)de. (4.2)

Thus, the existence of a unique solution of problem (4.1) is equivalent to finding a unique
fixed point of the integral operator (4.2).
Assume that

75Os,0v) = [Dg() - (k)|

= 1 ‘ -1 1 fe 1 2
_'m./ﬁ (c=0) g(g)‘”——/h (k=0 u(0)de

I'(7)
L “ _ -l 2 _ 2
5<r(f)/ﬁ“‘ 0 de) I5(0) - v(0)]




Hammad et al. Advances in Difference Equations (2021) 2021:97 Page 16 of 20

IA

1 « -1 ? B 2
FZ(T)</h [ |de) |5(0) - v(®)

1 (k-0 « . 2
) FZ(I)Wi—T-H(/h =0 16%) |c(6) - v(©)|

-1 (k-0 (k- 0) " 2 ,
I'2(7) |(K—z)r—1|<[ - L) ls(€) - v(0)]

1 (k=01 [(k-h) 2
I(7) |(x—£)r—1|< . ) ls(€) - v(e)|

1 (K - Z)T_l (K — h)Zr
s = CORIClN

<oni(s,v).

2

Thus, all the assumptions of Corollary 2.7 are verified, so © has a unique fixed point, i.e.,

the Riemann-Liouville fractional integral equation has a unique solution.

5 Existence of a unique solution of Atangana-Baleanu fractional operator
In 2016, Atangana and Baleanu [41] developed more general definitions of a fractional
derivative and an integral operator targeting nonlocal and nonsingular kernel. This oper-
ator takes the form (5.1). This study examines the connections between nanofluids, the
dynamics of ions over the membrane, material mechanics, and predictor-corrector algo-
rithms [42—46]. This new impression offers the opportunity to elaborate on the new find-
ings/new insights and creative approaches for contextualizing the new topics in various
aspects.

Let g = C([0,1],R) be a set of all continuous functions from [0, 1] onto R. Define the
distance 7y : g X g — [0,00) by

n3(s,v) = | (k) - v(e)|

for all ¢(x), v(x) € g and k € [0,1]. Also, define J,v: o x g — [1,00) by

(s ), v(k)) = lg(fdlzilv(x)l vo,

s + (k)]
V(0 v0) = T Tt ot

Then (g, 7}) is an 3-metric space.

Atangana—Baleanu fractional integral type (AB) of order % of a function ¢ (k) is exem-

plified as follows:
) 1-N N K )
ABPIC () = () + — / ©)c — )" de, (5.1)
heSE = e o T georon Sy °

where i € (0,1], s(x) € g and «, £ € [0,1], which is the fractional integral. Note that the

normalization functions §(0) and B(1) both are equal to 1.
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Now, we will prove that the fractional integral (5.1) has a unique solution if the following
assumption holds:

1-% A
OGN

o, whereo €(0,1).

Define an operator Oag : o — by

- % . o
D) = i <)+ s [ et - o e 52)

Thus, the solution of integral (5.1) is equivalent to finding a unique fixed point of the
integral operator (5.2). Consider

n5Og,0v) = [Dg(c) - D (k)|

-N N K a
'(;(m) 6+ gayren J, SOk-0" dﬁ)

1-N N
B (ﬂ(‘h) vle) + ﬂ(smr(m)/h

2

’ v(0)(k — )" 1 de)

1-%R 2

N-1
Tanlst-ve] + ﬂm)r(m) / (- 0" de[(0) - v(ﬁ)])

1-NR 2

ﬁ(%)lg(lc) (k)| + ) r(%)/ (c — 0" de|( é)—u(£)|>

oY; R K 2
_ ( 0 |g(/<) v(k)| - i [(" 2 ] <) - U(Z)|)

IA

BONT(N) N

R (k- h)™ 2

BEOHC(M) N
N ( ﬁ)‘)t
m)‘r( - )\gx)— ()|

1-N N (K—h)’“ | ()2
(ﬁ(iﬂ) TBOOCO) . N ) s (k) = v(K)|

)]+ 10 u<e>y)

2

IA

< o?|c(ic) = v(e)|’

<oni(s,v).

Thus, the assertions managed by Corollary 2.7 are gratified, which implies that the frac-
tional integral of Atangana—Baleanu type of order % has a unique solution.

6 Conclusion and discussions

In this manuscript, we considered a double controlled metric space (in short, nj-metric
space). Via this space, some novel theoretical results involving fixed point techniques un-
der various suitable assumptions have been established. To confirm our consequences,
nontrivial examples have been presented. Finally, short and simple proofs have been ob-
tained to find the existence and uniqueness of solutions of 2D Volterra integral equations,
Riemann-Liouville integrals, and Atangana—Baleanu integral operators. In addition, the
applications in this manuscript are listed as follows:



Hammad et al. Advances in Difference Equations (2021) 2021:97 Page 18 of 20

« A fixed point technique to solve the 2D Volterra integral equation (3.1). This problem
is considered without kernels because it is caused by a time-fractional telegraph
equation. It is exciting to clarify a few points in this direction: In telegraph’s equation
characterizing the variation of voltage A along with an electrical cable as a function of

time and position
A + (@ + W)A, + PUA =C?A,,, (6.1)

which consists of a resistor of resistance R, a coil of inductance L, a resistor of
conductance s, or a capacitor of capacitance C, where (? = ﬁ, =3 V= %

If % =% (or RC = L) a constant velocity of propagation would result and the
attenuation would be minimized, this result was discussed by the physicist Oliver
Heaviside in 1893.

This equation is a special case of the nonlinear Cauchy problem

A 9 A

ad
W+a(q(§,K,A)) +_(q(§:K’A))+Q(§’K1A)’

IRTERT;
where (£,k) € I={(¢,k): ¢ +k > 0,¢ —k <0}. Thus, by the above notes, equation
(6.1) can be written as the 2D Volterra integral equation (3.1).

« A fixed point technique to discuss the existence of a solution of Riemann—-Liouville
integral equations via Guo—Gupta—Suzuki—Ciri¢ type results in the setting of an
nj-metric space.

+ The existence and uniqueness of solutions for an Atangana—Baleanu fractional

operator in the class of nj-metric spaces have been discussed by a fixed point

approach.
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