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Abstract
In this paper, a hybrid method called variational iteration transform method has been
implemented to solve fractional-order Navier–Stokes equation. Caputo operator
describes fractional-order derivatives. The solutions of three examples are presented
to show the validity of the current method without using Adomian and He’s
polynomials. The results of the proposed method are shown and analyzed with the
help of figures. It is shown that the proposed method is found to be efficient, reliable,
and easy to implement for various related problems of science and engineering.

Keywords: Variational iteration method; Laplace transform; Caputo derivatives;
Navier–Stokes equations

1 Introduction
Navier–Stokes equations (NSEs) depicting the physical interests of engineering and scien-
tific research are viewed as beneficial. These equations are predominantly used to manage
climate estimating, sea flows, water stream in a line, and wind current around a wing. Also,
the basic plan of airplanes and vehicles, the investigation of the bloodstream, the goal of
intensity stations, and the examination of contamination are firmly identified with NSEs.
Moreover, the study of magnetohydrodynamics depends on the coupling of Maxwell’s and
NSEs. Since their presentation, distinctive physical models have been exploited in the lit-
erature to manage arranged material circumstances. In this work, we consider a fractional-
order NS equation for an incompressible fluid flow of kinematic viscosity υ = φ

ρ
and den-

sity ρ . It is indicated as

⎧
⎪⎪⎨

⎪⎪⎩

Dβ
η V + (V .∇)V = ρ∇2V – 1

ρ
∇g,

∇ .V = 0,

V = 0, on � × (0, T).

Here, V = (U ,V ,W), q, and η represent fluid vector, pressure, and time, respectively.
(χ ,ϕ,Z) represents the spatial components in �. φ is the dynamic viscosity. ρ is the den-
sity and the ratio of φ.
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The above equations can also be defined as

Dϒ
η (�) + �

∂�

∂χ
+ 


∂�

∂ϕ
+ �

∂�

∂Z = ρ

[
∂2�

∂χ2 +
∂2�

∂ϕ2 +
∂2�

∂Z2

]

–
1
ρ

∂g
∂χ

,

Dϒ
η (
) + �

∂


∂χ
+ 


∂


∂ϕ
+ �

∂


∂Z = ρ

[
∂2


∂χ2 +
∂2


∂ϕ2 +
∂2


∂Z2

]

–
1
ρ

∂g
∂ϕ

,

Dϒ
η (�) + �

∂�

∂χ
+ 


∂�

∂ϕ
+ �

∂�

∂Z = ρ

[
∂2�

∂χ2 +
∂2�

∂ϕ2 +
∂2�

∂Z2

]

–
1
ρ

∂g
∂Z .

Mathematically, these equations are a problematic arrangement of nonlinear equations
within sight of viscous flows [1].

Physical marvels of the incidental fields can be demonstrated properly using fractional
partial differential equations (FPDEs). The hypothesis of partial analytic is outfitted with
fabulous instruments to depict the dynamical conduct and memory-related qualities of
logical frameworks and cycles from the last three decades. Different researchers have uti-
lized FDEs in the displaying and investigation of logical phenomena in various fields of
knowledge [2–11]. The hypothesis of fractional calculus has been generally used in dif-
ferent fields. It is becoming extremely quick in creating models because of its connection
with memory and fractals plentiful in genuine physical frameworks. Fractional calculus
demonstrating limits the mistake that emerges from the numbness of noteworthy genuine
boundaries. It allows a more extraordinary level of opportunity in the model contrasted
with an integral-order framework [12, 13]. FDEs are furnished with magnificent strate-
gies to portray innate and memory attributes that are essentially disregarded by the whole
number order framework. Likewise, they are also appropriate in demonstrating genuine
frameworks and important in the examination of dynamical frameworks. FDEs are like-
wise suitable if there should be an occurrence of displaying frameworks with longer-go
intuitiveness both in space and time. The soundness area increments in the event of a
fractional-order framework when contrasted with its whole number order system. Frac-
tional analytic likewise gives nonlocal operators and mathematical outcomes with high
precision [14, 15]. Likewise, fractional-order frameworks, at last, meet the whole number
order frameworks.

The nonlocal characteristic of the fractional operator is the most profitable element in
this situation. The hypothesis of fractional analytic creates numerous speculations con-
cerning non-neighborhood qualities, improved level of opportunity, most excessive use of
data, and these attributes happen on account of fractional-order frameworks. The mathe-
matical plans given by fractional analytic begin the more profound comprehension of com-
plex frameworks and diminish the computational work concerning the solutions strategy
[16–24]. Precise expository solutions are not found virtually on account of FDEs. Hence,
over the most recent twenty years, numerous iterative plans, for example, homotopy per-
turbation method, Adomian decomposition method, variational iteration method, homo-
topy perturbation transform strategy, residual power series strategy, and so forth, have
been created to obtain the solutions of a few classes of FDEs [25–36].

A Chinese mathematician has created the variational iteration method (VIM) He [37].
VIM is modified with the Laplace transform; the modified method is known as the vari-
ational iteration transform method (VITM). After the original work of He, a different ad-
justment of VIM has been utilized to take care of different nonlinear issues, for example,
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dissemination and wave equations [38–45]. Recently, several mathematicians have applied
various strategies for the solutions of fractional NSEs. Interested readers can see [46–51]
and the references therein.

In this paper, the variational iteration transform technique is implemented to analyze
the solution of fractional-order multi-dimensional Navier–Stokes equations. Caputo op-
erator describes the fractional-order derivatives. The solution of certain illustrative prob-
lems is provided to prove the feasibility of the proposed methodology. The results of the
proposed method are shown and analyzed with the help of figures and tables. The current
approach has lower computing costs and higher convergence rates. The proposed method
is therefore constructive to solve other fractional-order PDEs.

The outline of this article is as follows. In Sect. 2, the basic definitions of Laplace trans-
form and fractional calculus are discussed. In Sect. 3, the variational iteration transform
method is discussed. In Sect. 4, three test examples of fractional-order Navier–Stokes
equation are given to elucidate the suggested schemes. In Sect. 5, conclusions of the work
are drawn.

2 Basic definitions
Definition 2.1 The fractional-order derivative of g(χ ) in the Caputo sense is given as

Dϒg(χ ) =
1

�(k – ϒ)

∫ χ

0
(χ – τ )k–ϒ–1g(k)(τ ) dτ ,

for k – 1 < ϒ < k, k ∈ N ,χ > 0, g ∈ Ck
–1.

Definition 2.2 The Laplace transformation of g(χ ), τ > 0 is expressed as

F(s) = L
[
g(τ )

]
=

∫ ∞

0
e–sτ g(τ ) dτ .

Definition 2.3 The Laplace transformation L[g(τ )] of the Caputo derivative is given as

L
[
Dϒg(τ )

]
= sϒF(s) –

k–1∑

m=0

sϒ–1–kgm(0), k – 1 < ϒ < k.

Definition 2.4 The Mittag-Leffler function Eϒ (z) with ϒ > 0 is given by

Eϒ (z) =
∞∑

k=0

zk

�(ϒk + 1)
, ϒ > 0, z ∈ C.

3 The procedure of VITM
This section describes the VITM solution of fractional PDEs [52, 53].

Dϒ
η �(χ ,η) + H1(�,
) + M1(�,
) – q1(χ ,η) = 0,

Dϒ
η 
(χ ,η) + H2(�,
) + M2(�,
) – q2(χ ,η) = 0, m – 1 < ϒ ≤ m,

(1)

with the initial conditions

�(χ , 0) = g1(χ ), 
(χ , 0) = g2(χ ), (2)
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where is Dϒ
η = ∂ϒ

∂ηϒ the Caputo fractional derivative of order ϒ , H1, H2 and M1, M2 are
linear and nonlinear functions, respectively, and q1, q2 are source operators.

The Laplace transformation is applied to Eq. (1),

L
[
Dϒ

η �(χ ,η)
]

+ L
[
H1(�,
) + M1(�,
) – q1(χ ,η)

]
= 0,

L
[
Dϒ

η 
(χ ,η)
]

+ L
[
H2(�,
) + M2(�,
) – q2(χ ,η)

]
= 0.

(3)

Applying the differentiation property, we have

L
[
�(χ ,η)

]
–

m–1∑

k=0

sϒ–k–1 ∂k�(χ ,η)
∂kη

∣
∣
∣
∣
η=0

= –L
[
H1(�,
) + M1(�,
) – q1(χ ,η)

]
,

L
[

(χ ,η)

]
–

m–1∑

k=0

sϒ–k–1 ∂k
(χ ,η)
∂kη

∣
∣
∣
∣
η=0

= –L
[
H2(�,
) + M2(�,
) – q2(χ ,η)

]
.

(4)

Using the iterative technique, we get

L
[
�m+1(χ ,η)

]
= L

[
�m(χ ,η)

]

+ λ(s)

[

sϒ�m(χ ,η) –
m–1∑

k=0

sϒ–k–1 ∂k�(χ ,η)
∂kη

∣
∣
∣
∣
η=0

– L
[
q1(χ ,η)

]

– L
{
H1(�,
) + M1(�,
)

}
]

,

L
[

m+1(χ ,η)

]
= L

[

m(χ ,η)

]

+ λ(s)

[

sϒ
m(χ ,η) –
m–1∑

k=0

sϒ–k–1 ∂k
(χ ,η)
∂kη

∣
∣
∣
∣
η=0

– L
[
q2(χ ,η)

]

– L
{
H2(�,
) + M2(�,
)

}
]

.

(5)

A Lagrange multiplier as

λ(s) = –
1

sϒ
, (6)

the inverse Laplace transformation L–1, the iteration method Eq. (5) can be given as fol-
lows:

�m+1(χ ,η) = �m(χ ,η) – L–1

[
1

sϒ

[m–1∑

k=0

sϒ–k–1 ∂k�(χ ,η)
∂kη

∣
∣
∣
∣
η=0

– L
[
q1(χ ,η)

]
– L

{
H1(�,
) + M1(�,
)

}
]]

, (7)
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m+1(χ ,η) = 
m(χ ,η) – L–1

[
1

sϒ

[m–1∑

k=0

sϒ–k–1 ∂k
(χ ,η)
∂kη

∣
∣
∣
∣
η=0

– L
[
q2(χ ,η)

]
– L

{
H2(�,
) + M2(�,
)

}
]]

.

The initial iteration can be found as follows:

�0(χ ,η) = L–1

[
1

sϒ

{m–1∑

k=0

sϒ–k–1 ∂k�(χ ,η)
∂kη

∣
∣
∣
∣
η=0

}]

,


0(χ ,η) = L–1

[
1

sϒ

{m–1∑

k=0

sϒ–k–1 ∂k
(χ ,η)
∂kη

∣
∣
∣
∣
η=0

}]

.

(8)

The conveniences of this technique were shown in [52, 53].

4 Numerical examples
Example 1 Consider the time fractional-order (1 + 1) dimensional Navier–Stokes equa-
tion

Dϒ
η (�) + �

∂�

∂χ
+ 


∂�

∂ϕ
= ρ

[
∂2�

∂χ2 +
∂2�

∂ϕ2

]

+ q,

Dϒ
η (
) + �

∂


∂χ
+ 


∂


∂ϕ
= ρ

[
∂2


∂χ2 +
∂2


∂ϕ2

]

– q,
(9)

with the initial conditions

⎧
⎨

⎩

�(χ ,ϕ, 0) = – sin(χ + ϕ),


(χ ,ϕ, 0) = sin(χ + ϕ).
(10)

Using the iterative method according to equation (7) in equation (9), we get

�m+1(χ ,ϕ,η) = �m(χ ,ϕ,η) – L–1
[

1
sϒ

L
{

sϒ ∂�m

∂η

+ �m
∂�m

∂χ
+ 
m

∂�m

∂ϕ
– ρ

(
∂2�m

∂χ2 +
∂2�m

∂ϕ2

)

– q
}]

,


m+1(χ ,ϕ,η) = 
m(χ ,ϕ,η) – L–1
[

1
sϒ

L
{

sϒ ∂
m

∂η

+ �m
∂
m

∂χ
+ 
m

∂
m

∂ϕ
– ρ

(
∂2
m

∂χ2 +
∂2
m

∂ϕ2

)

+ q
}]

,

(11)

where

�0(χ ,ϕ,η) = – sin(χ + ϕ), 
0(χ ,ϕ,η) = sin(χ + ϕ). (12)
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For m = 0, 1, 2, . . . ,

�1(χ ,ϕ,η) = �0(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂�0

∂η
+ �0

∂�0

∂χ
+ 
0

∂�0

∂ϕ
– ρ

(
∂2�0

∂χ2 +
∂2�0

∂ϕ2

)

– q
}]

,


1(χ ,ϕ,η) = 
0(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂
0

∂η
+ �0

∂
0

∂χ
+ 
0

∂
0

∂ϕ
– ρ

(
∂2
0

∂χ2 +
∂2
0

∂ϕ2

)

+ q
}]

,

�1(χ ,ϕ,η) = – sin(χ + ϕ) + sin(χ + ϕ)
2ρηϒ

�(ϒ + 1)
+

qηϒ

�(ϒ + 1)
,


1(χ ,ϕ,η) = sin(χ + ϕ) – sin(χ + ϕ)
2ρηϒ

�(ϒ + 1)
–

qηϒ

�(ϒ + 1)
,

�2(χ ,ϕ,η) = �1(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂�1

∂η
+ �1

∂�1

∂χ
+ 
1

∂�1

∂ϕ
– ρ

(
∂2�1

∂χ2 +
∂2�1

∂ϕ2

)

– q
}]

,


2(χ ,ϕ,η) = 
1(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂
1

∂η
+ �1

∂
1

∂χ
+ 
1

∂
1

∂ϕ
– ρ

(
∂2
1

∂χ2 +
∂2
1

∂ϕ2

)

+ q
}]

,

�2(χ ,ϕ,η) = – sin(χ + ϕ) + sin(χ + ϕ)
2ρηϒ

�(ϒ + 1)
+

qηϒ

�(ϒ + 1)
– sin(χ + ϕ)

(2ρ)2η2ϒ

�(2ϒ + 1)
,


2(χ ,ϕ,η) = sin(χ + ϕ) – sin(χ + ϕ)
2ρηϒ

�(ϒ + 1)
–

qηϒ

�(ϒ + 1)
+ sin(χ + ϕ)

(2ρ)2η2ϒ

�(2ϒ + 1)
,

�3(χ ,ϕ,η) = �2(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂�2

∂η
+ �2

∂�2

∂χ
+ 
2

∂�2

∂ϕ
– ρ

(
∂2�2

∂χ2 +
∂2�2

∂ϕ2

)

– q
}]

,


3(χ ,ϕ,η) = 
2(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂
2

∂η
+ �2

∂
2

∂χ
+ 
2

∂
2

∂ϕ
– ρ

(
∂2
2

∂χ2 +
∂2
2

∂ϕ2

)

+ q
}]

,

�3(χ ,ϕ,η) = – sin(χ + ϕ) + sin(χ + ϕ)
2ρηϒ

�(ϒ + 1)
+

qηϒ

�(ϒ + 1)

– sin(χ + ϕ)
(2ρ)2η2ϒ

�(2ϒ + 1)
+ sin(χ + ϕ)

(2ρ)3η3ϒ

�(3ϒ + 1)
,


3(χ ,ϕ,η) = sin(χ + ϕ) – sin(χ + ϕ)
2ρηϒ

�(ϒ + 1)
–

qηϒ

�(ϒ + 1)

+ sin(χ + ϕ)
(2ρ)2η2ϒ

�(2ϒ + 1)
– sin(χ + ϕ)

(2ρ)3η3ϒ

�(3ϒ + 1)
,

�(χ ,ϕ,η) =
∞∑

m=0

�m(χ ,ϕ) = – sin(χ + ϕ)
∞∑

m=0

(–2ρ)mηmϒ

�(mϒ + 1)
+

qηϒ

�(ϒ + 1)
,


(χ ,ϕ,η) =
∞∑

m=0

�m(χ ,ϕ) = sin(χ + ϕ)
∞∑

m=0

(–2ρ)mηmϒ

�(mϒ + 1)
–

qηϒ

�(ϒ + 1)
.

(13)
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The exact solution of equation (9) at ϒ = 1 and q = 0,

�(χ ,ϕ,η) = –e–2ρη sin(χ + ϕ),


(χ ,ϕ,η) = e–2ρη sin(χ + ϕ).
(14)

Figures 1 and 4 show the behavior of solutions of the exact and analytical results using
the initial conditions given in equation (10). In Fig. 1 the exact and analytical solutions
of � at ϒ = 1 show close contact with each other. In Figs. 2 and 3 for different values of
ϒ = 0.8, 0.6, and 0.4 for �. In Fig. 4, we show the exact and analytical solution of 
 at
ϒ = 1. In Figs. 5 and 6 for different values of ϒ = 0.8, 0.6, and 0.4 for 
 . The fractional
results are investigated to be convergent to an integer-order result of each problem.

Example 2 Consider the time fractional-order (1 + 1) dimensional Navier–Stokes equa-
tion

Dϒ
η (�) + �

∂�

∂χ
+ 


∂�

∂ϕ
= ρ

[
∂2�

∂χ2 +
∂2�

∂ϕ2

]

+ q,

Dϒ
η (
) + �

∂


∂χ
+ 


∂


∂ϕ
= ρ

[
∂2


∂χ2 +
∂2


∂ϕ2

]

– q,
(15)

Figure 1 The graph of exact (a) and approximate (b) solution of �(χ ,ϕ ,η) at ϒ = 1 of Example 1

Figure 2 The graph of different approximate solution of �(χ ,ϕ ,η) at ϒ = (c) 0.8 and (d) 0.6 of Example 1
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Figure 3 The graph of approximate solution (e) of �(χ ,ϕ ,η) at ϒ = 0.4 of Example 1

Figure 4 The graph of exact (a) and approximate (b) solution of 
(χ ,ϕ ,η) at ϒ = 1 of Example 1

Figure 5 The graph of different approximate solution of 
(χ ,ϕ ,η) at ϒ = (c) 0.8 and (d) 0.6 of Example 1

with the initial conditions

⎧
⎨

⎩

�(χ ,ϕ, 0) = –eχ+ϕ ,


(χ ,ϕ, 0) = eχ+ϕ .
(16)
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Figure 6 The graph of approximate solution (e) of 
(χ ,ϕ ,η) at ϒ = 0.4 of Example 1

Using the iterative method according to equation (7) in equation (15), we get

�m+1(χ ,ϕ,η) = �m(χ ,ϕ,η) – L–1
[

1
sϒ

L
{

sϒ ∂�m

∂η

+ �m
∂�m

∂χ
+ 
m

∂�m

∂ϕ
– ρ

(
∂2�m

∂χ2 +
∂2�m

∂ϕ2

)

– q
}]

,


m+1(χ ,ϕ,η) = 
m(χ ,ϕ,η) – L–1
[

1
sϒ

L
{

sϒ ∂
m

∂η

+ �m
∂
m

∂χ
+ 
m

∂
m

∂ϕ
– ρ

(
∂2
m

∂χ2 +
∂2
m

∂ϕ2

)

+ q
}]

,

(17)

where

�0(χ ,ϕ,η) = –eχ+ϕ , 
0(χ ,ϕ,η) = eχ+ϕ . (18)

For m = 0, 1, 2, . . . ,

�1(χ ,ϕ,η) = �0(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂�0

∂η
+ �0

∂�0

∂χ
+ 
0

∂�0

∂ϕ
– ρ

(
∂2�0

∂χ2 +
∂2�0

∂ϕ2

)

– q
}]

,


1(χ ,ϕ,η) = 
0(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂
0

∂η
+ �0

∂
0

∂χ
+ 
0

∂
0

∂ϕ
– ρ

(
∂2
0

∂χ2 +
∂2
0

∂ϕ2

)

+ q
}]

,

�1(χ ,ϕ,η) = –eχ+ϕ + eχ+ϕ 2ρηϒ

�(ϒ + 1)
+

qηϒ

�(ϒ + 1)
,


1(χ ,ϕ,η) = eχ+ϕ – eχ+ϕ 2ρηϒ

�(ϒ + 1)
–

qηϒ

�(ϒ + 1)
,

�2(χ ,ϕ,η) = �1(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂�1

∂η
+ �1

∂�1

∂χ
+ 
1

∂�1

∂ϕ
– ρ

(
∂2�1

∂χ2 +
∂2�1

∂ϕ2

)

– q
}]

,
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2(χ ,ϕ,η) = 
1(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂
1

∂η
+ �1

∂
1

∂χ
+ 
1

∂
1

∂ϕ
– ρ

(
∂2
1

∂χ2 +
∂2
1

∂ϕ2

)

+ q
}]

,

�2(χ ,ϕ,η) = –eχ+ϕ + eχ+ϕ 2ρηϒ

�(ϒ + 1)
+

qηϒ

�(ϒ + 1)
– eχ+ϕ (2ρ)2η2ϒ

�(2ϒ + 1)
,


2(χ ,ϕ,η) = eχ+ϕ – eχ+ϕ 2ρηϒ

�(ϒ + 1)
–

qηϒ

�(ϒ + 1)
+ eχ+ϕ (2ρ)2η2ϒ

�(2ϒ + 1)
,

�3(χ ,ϕ,η) = �2(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂�2

∂η
+ �2

∂�2

∂χ
+ 
2

∂�2

∂ϕ
– ρ

(
∂2�2

∂χ2 +
∂2�2

∂ϕ2

)

– q
}]

,


3(χ ,ϕ,η) = 
2(χ ,ϕ,η)

– L–1
[

1
sϒ

L
{

sϒ ∂
2

∂η
+ �2

∂
2

∂χ
+ 
2

∂
2

∂ϕ
– ρ

(
∂2
2

∂χ2 +
∂2
2

∂ϕ2

)

+ q
}]

,

�3(χ ,ϕ,η) = –eχ+ϕ + eχ+ϕ 2ρηϒ

�(ϒ + 1)
+

qηϒ

�(ϒ + 1)
– eχ+ϕ (2ρ)2η2ϒ

�(2ϒ + 1)
+ eχ+ϕ (2ρ)3η3ϒ

�(3ϒ + 1)
,


3(χ ,ϕ,η) = eχ+ϕ – eχ+ϕ 2ρηϒ

�(ϒ + 1)
–

qηϒ

�(ϒ + 1)
+ eχ+ϕ (2ρ)2η2ϒ

�(2ϒ + 1)
– eχ+ϕ (2ρ)3η3ϒ

�(3ϒ + 1)
,

�(χ ,ϕ,η) =
∞∑

m=0

�m(χ ,ϕ) = –eχ+ϕ

∞∑

m=0

(–2ρ)mηmϒ

�(mϒ + 1)
+

qηϒ

�(ϒ + 1)
,


(χ ,ϕ,η) =
∞∑

m=0

�m(χ ,ϕ) = eχ+ϕ

∞∑

m=0

(–2ρ)mηmϒ

�(mϒ + 1)
–

qηϒ

�(ϒ + 1)
.

(19)

The exact result of equation (15) at ϒ = 1 and q = 0,

�(χ ,ϕ,η) = –eχ+ϕ+2ρη,


(χ ,ϕ,η) = eχ+ϕ+2ρη.
(20)

Figures 7 and 10 show the behavior of solutions of the exact and analytical results using
the initial conditions given in equation (16). In Fig. 7, the exact and analytical solutions
of � at ϒ = 1 show close contact with each other. In Figs. 7 and 9 for different values of

Figure 7 The graph of exact (a) and approximate (b) solution of �(χ ,ϕ ,η) at ϒ = 1 of Example 2
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Figure 8 The graph of different approximate solution of �(χ ,ϕ ,η) at ϒ = (c) 0.8 and (d) 0.6 of Example 2

Figure 9 The graph of approximate (e) solution of �(χ ,ϕ ,η) at ϒ = 0.4 of Example 2

Figure 10 The graph of exact (a) and approximate (b) solution of 
(χ ,ϕ ,η) at ϒ = 1 of Example 2

ϒ = 0.8, 0.6, and 0.4 for �. In Fig. 10, we show the exact and analytical solution of 
 at
ϒ = 1. In Figs. 11 and 12 for different values of ϒ = 0.8, 0.6, and 0.4 for 
 . The fractional
results are investigated to be convergent to an integer-order result of each problem.
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Figure 11 The graph of different approximate solution of 
(χ ,ϕ ,η) at ϒ = (c) 0.8 and (d) 0.6 of Example 2

Figure 12 The graph of approximate (e) solution of 
(χ ,ϕ ,η) at ϒ = 0.4 of Example 2

Example 3 Consider the time fractional-order (2 + 1) dimensional Navier–Stokes equa-
tion

Dϒ
η (�) + �

∂�

∂χ
+ 


∂�

∂ϕ
+ �

∂�

∂Z = ρ

[
∂2�

∂χ2 +
∂2�

∂ϕ2 +
∂2�

∂Z2

]

+ q1,

Dϒ
η (
) + �

∂


∂χ
+ 


∂


∂ϕ
+ �

∂


∂Z = ρ

[
∂2


∂χ2 +
∂2


∂ϕ2 +
∂2


∂Z2

]

+ q2, (21)

Dϒ
η (�) + �

∂�

∂χ
+ 


∂�

∂ϕ
+ �

∂�

∂Z = ρ

[
∂2�

∂χ2 +
∂2�

∂ϕ2 +
∂2�

∂Z2

]

+ q3,

with the initial conditions

⎧
⎪⎪⎨

⎪⎪⎩

�(χ ,ϕ,Z , 0) = –0.5χ + ϕ + Z ,


(χ ,ϕ,Z , 0) = χ – 0.5ϕ + Z ,

�(χ ,ϕ,Z , 0) = χ + ϕ – 0.5Z .

(22)

Further, if ρ is known, then q1 = – 1
ρ

∂g
∂χ

, q2 = – 1
ρ

∂g
∂ϕ

, and q1 = – 1
ρ

∂g
∂Z can be determined.
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According to equation (7), the iteration formulas for equation (21) are as follows:

�m+1(χ ,ϕ,Z ,η)

= �m(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂�m

∂η

+ �m
∂�m

∂χ
+ 


∂�m

∂ϕ
+ �

∂�m

∂Z = ρ

(
∂2�m

∂χ2 +
∂2�m

∂ϕ2 +
∂2�m

∂Z2

)

+ q1

}]

,


m+1(χ ,ϕ,Z ,η)

= 
m(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂
m

∂η

+ �m
∂
m

∂χ
+ 
m

∂
m

∂ϕ
+ �

∂
m

∂Z = ρ

(
∂2
m

∂χ2 +
∂2
m

∂ϕ2 +
∂2
m

∂Z2

)

+ q2

}]

,

�m+1(χ ,ϕ,Z ,η)

= �m(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂
m

∂η

+ �m
∂�m

∂χ
+ 
m

∂�m

∂ϕ
+ �m

∂�m

∂Z = ρ

(
∂2�m

∂χ2 +
∂2�m

∂ϕ2 +
∂2�m

∂Z2

)

+ q3

}]

,

(23)

with the initial conditions

⎧
⎪⎪⎨

⎪⎪⎩

�(χ ,ϕ,Z , 0) = –0.5χ + ϕ + Z ,


(χ ,ϕ,Z , 0) = χ – 0.5ϕ + Z ,

�(χ ,ϕ,Z , 0) = χ + ϕ – 0.5Z .

(24)

Then q1, q2, and q3 are equal to zero. For m = 0, 1, 2, . . . ,

�1(χ ,ϕ,Z ,η) = �0(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂�0

∂η
+ �0

∂�0

∂χ
+ 
0

∂�0

∂ϕ
+ �0

∂�0

∂Z

+ ρ

(
∂2�0

∂χ2 +
∂2�0

∂ϕ2 +
∂2�0

∂Z2

)}]

,


1(χ ,ϕ,Z ,η) = 
0(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂
0

∂η
+ �0

∂
0

∂χ
+ 
0

∂
0

∂ϕ
+ �0

∂
0

∂Z

+ ρ

(
∂2
0

∂χ2 +
∂2
0

∂ϕ2 +
∂2
0

∂Z2

)}]

,

�1(χ ,ϕ,Z ,η) = �0(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂
0

∂η
+ �0

∂�0

∂χ
+ 
0

∂�0

∂ϕ
+ �0

∂�0

∂Z

+ ρ

(
∂2�0

∂χ2 +
∂2�0

∂ϕ2 +
∂2�0

∂Z2

)}]

,

�1(χ ,ϕ,Z ,η) = –0.5χ + ϕ + Z –
2.25χηϒ

�(ϒ + 1)
,


1(χ ,ϕ,Z ,η) = χ – 0.5ϕ + Z –
2.25ϕηϒ

�(ϒ + 1)
,
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�1(χ ,ϕ,Z ,η) = χ + ϕ – 0.5Z –
2.25Zηϒ

�(ϒ + 1)
,

�2(χ ,ϕ,Z ,η) = �1(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂�1

∂η
+ �1

∂�1

∂χ
+ 
1

∂�1

∂ϕ
+ �1

∂�1

∂Z

+ ρ

(
∂2�1

∂χ2 +
∂2�1

∂ϕ2 +
∂2�1

∂Z2

)}]

,


2(χ ,ϕ,Z ,η) = 
1(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂
1

∂η
+ �1

∂
1

∂χ
+ 
1

∂
1

∂ϕ
+ �1

∂
1

∂Z

+ ρ

(
∂2
1

∂χ2 +
∂2
1

∂ϕ2 +
∂2
1

∂Z2

)}]

,

�2(χ ,ϕ,Z ,η) = �1(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂
1

∂η
+ �1

∂�1

∂χ
+ 
1

∂�1

∂ϕ
+ �1

∂�1

∂Z

+ ρ

(
∂2�1

∂χ2 +
∂2�1

∂ϕ2 +
∂2�1

∂Z2

)}]

,

�2(χ ,ϕ,Z ,η) = –0.5χ + ϕ + Z –
2.25χηϒ

�(ϒ + 1)
+

2(2.25)χη2ϒ

�(2ϒ + 1)
(–0.5χ + ϕ + Z , )


2(χ ,ϕ,Z ,η) = χ – 0.5ϕ + Z –
2.25ϕηϒ

�(ϒ + 1)
+

2(2.25)ϕη2ϒ

�(2ϒ + 1)
(χ – 0.5ϕ + Z),

�2(χ ,ϕ,Z ,η) = χ + ϕ – 0.5Z –
2.25Zηϒ

�(ϒ + 1)
+

2(2.25)Zη2ϒ

�(2ϒ + 1)
(χ + ϕ – 0.5Z),

�3(χ ,ϕ,Z ,η) = �2(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂�2

∂η
+ �2

∂�2

∂χ
+ 
2

∂�2

∂ϕ
+ �2

∂�2

∂Z

+ ρ

(
∂2�2

∂χ2 +
∂2�2

∂ϕ2 +
∂2�2

∂Z2

)}]

,


3(χ ,ϕ,Z ,η) = 
2(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂
2

∂η
+ �2

∂
2

∂χ
+ 
2

∂
2

∂ϕ
+ �2

∂
2

∂Z

+ ρ

(
∂2
2

∂χ2 +
∂2
2

∂ϕ2 +
∂2
2

∂Z2

)}]

,

�3(χ ,ϕ,Z ,η) = �2(χ ,ϕ,Z ,η) – L–1
[

1
sϒ

L
{

sϒ ∂
2

∂η
+ �2

∂�2

∂χ
+ 
2

∂�2

∂ϕ
+ �2

∂�2

∂Z

+ ρ

(
∂2�2

∂χ2 +
∂2�2

∂ϕ2 +
∂2�2

∂Z2

)}]

,

�3(χ ,ϕ,Z ,η) = –0.5χ + ϕ + Z –
2.25χηϒ

�(ϒ + 1)
+

2(2.25)χη2ϒ

�(2ϒ + 1)

× (–0.5χ + ϕ + Z) –
(2.25)2χ (4(�(ϒ + 1))2 + �(2ϒ + 1))η3ϒ

�(2ϒ + 1)(�(ϒ + 1))2 ,


3(χ ,ϕ,Z ,η) = χ – 0.5ϕ + Z –
2.25ϕηϒ

�(ϒ + 1)
+

2(2.25)ϕη2ϒ

�(2ϒ + 1)

× (χ – 0.5ϕ + Z) –
(2.25)2ϕ(4(�(ϒ + 1))2 + �(2ϒ + 1))η3ϒ

�(2ϒ + 1)(�(ϒ + 1))2 ,
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�3(χ ,ϕ,Z ,η) = χ + ϕ – 0.5Z –
2.25Zηϒ

�(ϒ + 1)
+

2(2.25)Zη2ϒ

�(2ϒ + 1)

× (χ + ϕ – 0.5Z) –
(2.25)2Z(4(�(ϒ + 1))2 + �(2ϒ + 1))η3ϒ

�(2ϒ + 1)(�(ϒ + 1))2 .

In the same procedure, the remaining �m, 
m, and �m (m > 3) components of the VITM
solution can be obtained smoothly.

�(χ ,ϕ,Z ,η) = –0.5χ + ϕ + Z –
2.25χηϒ

�(ϒ + 1)
+

2(2.25)χη2ϒ

�(2ϒ + 1)

× (–0.5χ + ϕ + Z) –
(2.25)2χ (4(Z(ϒ + 1))2 + �(2ϒ + 1))η3ϒ

�(2ϒ + 1)(�(ϒ + 1))2 + · · · ,


(χ ,ϕ,Z ,η) = χ – 0.5ϕ + Z –
2.25ϕηϒ

�(ϒ + 1)
+

2(2.25)ϕη2ϒ

�(2ϒ + 1)

× (χ – 0.5ϕ + Z) –
(2.25)2ϕ(4(�(ϒ + 1))2 + �(2ϒ + 1))η3ϒ

�(2ϒ + 1)(�(ϒ + 1))2 + · · · ,

�(χ ,ϕ,Z ,η) = χ + ϕ – 0.5Z –
2.25Zηϒ

�(ϒ + 1)
+

2(2.25)Zη2ϒ

�(2ϒ + 1)

× (χ + ϕ – 0.5Z) –
(2.25)2Z(4(�(ϒ + 1))2 + �(2ϒ + 1))η3ϒ

�(2ϒ + 1)(�(ϒ + 1))2 + · · · .

The exact result of equation (21) at ϒ = 1 and q1 = q2 = q3 = 0 is as follows:

�(χ ,ϕ,Z ,η) =
–0.5χ + ϕ + Z – 2.25χη

1 – 2.25η2 ,


(χ ,ϕ,Z ,η) =
χ – 0.5ϕ + Z – 2.25ϕη

1 – 2.25η2 ,

�(χ ,ϕ,Z ,η) =
χ + ϕ – 0.5Z – 2.25Zη

1 – 2.25η2 .

(25)

Figures 13 and 14 show the behavior of solutions of the exact and analytical results using
the initial conditions given in equation (22). In Fig. 13 (a) of �, subfigure (b) of 
 , and
Fig. 14 of � the exact and analytical solutions at ϒ = 1 show close contact with each other.

Figure 13 The (a) graph of exact and approximate solution of �(χ ,ϕ ,η) (b) 
(χ ,ϕ ,η) at ϒ = 1 of Example 3
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Figure 14 The graph of exact and approximate solution of �(χ ,ϕ ,η) at ϒ = 1 of Example 3

5 Conclusion
In this article, we evaluated the fractional-order multi-dimensional Navier–Stokes equa-
tions using a variational iteration transform technique. The solutions for specific examples
are explained using the current method. The VITM result is in close contact with the ex-
act result of the given problems. The graphical analysis of the fractional-order solutions
obtained has verified the convergence towards the solutions of integer order. One may see
that the obtained results are in excellent agreement with FRDTM [54] and HPETM [48].
Moreover, the present technique is straightforward, simple, and carrying less computa-
tional cost; the suggested method can be modified to solve other fractional-order partial
differential equations.
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