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Abstract

In this work, a technique for finding approximate solutions for ordinary fraction
differential equations (OFDEs) of any order has been proposed. The method is a
hybrid between Galerkin and collocation methods. Also, this method can be
extended to approximate fractional integro-differential equations (FIDEs) and
fractional optimal control problems (FOCPs). The spatial approximations with their
derivatives are based on shifted ultraspherical polynomials (SUPs). Modified Galerkin
spectral method has been used to create direct approximate solutions of
linear/nonlinear ordinary fractional differential equations, a system of ordinary
fraction differential equations, fractional integro-differential equations, or fractional
optimal control problems. The aim is to transform those problems into a system of
algebraic equations. That system will be efficiently solved by any solver. Three spaces
of collocation nodes have been used through that transformation. Finally, numerical
examples show the accuracy and efficiency of the investigated method.

Keywords: Shifted ultraspherical polynomials; Fractional differential equations;
Fractional integro-differential equations; Fractional optimal control problems;
Galerkin method; Spectral method; Error analysis

1 Introduction
OFDEs play a role in many branches and applications. These applications can be found
in risk theory [1], physics [2], biological phenomena, and diseases [3—6]. Also, the appli-
cations of FIDEs have been presented for electromagnetic [7], microelectronics [8], and
hematopoietic stem cell modeling [9]. Moreover, many models have been constructed us-
ing FOCPs [10, 11]. For that reason, the importance of fractional calculus has emerged.
Most of these problems and models have no exact solutions. Consequently, the re-
searchers focus on investigating and developing new numerical methods. For OFDEs,
in [12] the authors presented a spectral method using shifted Chebyshev polynomials
(SCHPs) of the second kind. While in [13], the same authors used the same technique
but with the sixth kind of SCHPs. A different technique by using a nonpolynomial spline
function was employed in [14, 15]. The second kind Wright function with Erdélyi—Kober
fractional derivatives was used in [16]. Similar techniques were used for approximating
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FIDEs. Alternative Legendre functions in [17] were used to set up an operational matrix by
the collocation method. In [9], the authors used smoothed pseudo-splines refinable func-
tions to construct Riesz wavelets. And as a direct development of the mentioned methods
and algorithms, several methods have been formulated to approximate FOCPs. For details
about those methods, refer to [10, 18, 19].

The spirit in using the spectral method is the choice of the basis function [20, 21]. The
smoothness properties of the basis functions control the decay rate of the coefficients of
expansion. The boundary conditions have no effect on the rate. Unlike the other orthogo-
nal polynomials, ultraspherical polynomials (UPs) are not nearly as popular in use as basis
functions [22-24]. However, UPs motivate our interest because they include Chebyshev
and Legendre polynomials and some other polynomials as subclasses of them [25].

The importance of the Galerkin method (GM) is that, for the presented technique, it can
be used for the solution of a wide class of ordinary fractional problems (OFPs). Through-
out this work, OFPs are OFDEs, FIDEs, or OCFPs. One of the advantages of GM is that
it is not a difficult method. On the other hand, every equation has its own algorithm. The
presented technique is a mix of two well-known spectral methods: collocation method
[26-28] and Galerkin method [29-31]. We call that method pseudo-Galerkin method
(pseudo-GM).

The work is coordinated as follows: in Sect. 2, we introduce Caputo’s fractional deriva-
tive. Then, UPs (SUPs) and some of their properties are presented. Finally, the notion of
integration matrix (B-matrix) is presented. In Sect. 3, the main results of the paper are
stated and proved. Those results give formulae that assert the derivatives of SUPs and the
spectral expansion. In Sect. 4, the approximate of OFPs is stated by employing shifted ul-
traspherical pseudo-GM (SU-pseudo-GM). Then, the error analysis and upper bound for
the expansion are estimated in Sect. 5. The correctness and effectiveness of SU-pseudo-
GM are proved by different types of OFPs in Sect. 6. The last section “7” contains the
conclusion and remarks.

2 Preliminaries and notations

This section presents some core definitions and concepts needed throughout this paper.
We shall begin with the well-known Caputo fractional derivative for the function ¢(x) of
order § denoted by D (¢(x)):

P S A1)
Do) = s [ o s M

wherer-1<é<r,reN.
As a direct result of Eq. (1), we have

0, teNU{0}and t < [47,
Dixt = {0} and £ < 4] 2

F{t(j;fg)xffé, teNU{0}and¢>[§]ort¢ Nand¢> [5].

Besides, one of the advantages of Caputo’s fractional derivative is the linearity property.
For any two arbitrary constants C; and C,,

D’ (Cip1(x) + Cagpa(x)) = C1D° (¢1(x)) + CoD° (¢2()).

For more details about fraction derivatives, refer to the review [32].
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Proceeding with the fundamental concepts, some properties of UPs (Z/[}-“ (x)) and SUPs
(U/*”(x)), of degree j and real parameter v > —%, will be presented. UPs are the special case
of Jacobi polynomials with analytic form [25]:

UL FG-r+v)

v _ 1y j—2r _ P
Lf,(x)—;( 1) F(U)F(r+1)F(j—2r+1)(2x)] , xe[-1,11,j=0,1,2,... 3)

; uy
As special cases: Lj(x) = L{j°‘5(x) and 7j(x) = ’Elim\,_,o ﬁ, j =1, where L;(x) and 7;(x) are

Legendre and Chebyshev polynomials, respectively.
Also, UPs can be generated from Rodrigues$ formula [33]

1 T+ +2v) - e}
(=2 TRVCG+v + %)(l_x ) d—x/(l_x ) ) @

Uy =

while SUPs, defined on the interval [0, 1], can be obtained from [34]

2(v +j - D)2 - DU (6) = v+ = 20U ()

L{}*U(x) — F

, j=2,3,..., (5)

where UV (x) = 1 and U;" (x) = 2v(2x — 1).
Or in terms of its derivatives [35]

1 2v+j
Z/[j*\)(x): |: v+)J

*V } *V .
DU; - ————DU; , j=2,3,... 6
2+ je1 W fl(x)] / 5
SUPs at the boundaries are as follows:

I'(+2v)
'(j+1)r2v)’

rG+2
u,*”(l)—M i=0,1,2,...

U0 =1y T TG+ 1r@2v)

The set {Llj*”(x)}j forms an orthogonal set w.r.t. the weight function w”(x) = (x — x2)"‘%:

1 0, rs,
/ w” () U ()U” (x) dx =
0

Y, r=s,

_ malvre)
where Y= (r+v)L(r+1)(C(v)2 *

Finally, the expression B-matrix will be presented. This matrix will be used for solving
FIDEs and FOCPs. According to the spectral method, let ¢(x) be a differential function
over the interval [0, 1]. Then ¢(x) can be approximated using M + 1 points as follows [36]:

M
¢®) =Y cnBuTr (), (7)
m=0
where

2 M
B = M ; CV¢(xV)7:n (%) (8
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such that: 7% (x) is the SCHP of degree m, co =cyy =0.5and ¢,, =1 form=1,2,...,M -1,
xr = 0.5 % (1 - cos 77) are the shifted Chebyshev points (SCH-points).
From Eq. (7) and Eq. (8), we get

M % M
oW = 7> en T @) T (e). )
m=0

r=0

According to El-Gendi [37], from Eq. (9),

X M
| o= 3 bootw, s=01...m, (10)
0 r=0
where
2, & s
by = ﬁr;cmm(xr)/o Tax)dx, sr=0,1,....M (11)
are the elements of the B-matrix. Equation (10) and Eq. (11) can be written in the matrix
form:
|:/ o(x) dxj| =B®d
0
such that
0 0 e 0 d(x0)
by bu - b o (x1)
B=| | . . and @ = .
byo by -+ bum & (xar)

In the next section, some important theorems and lemmas are investigated. These the-
orems are needed in the process of SU-pseudo-GM. As mentioned before, this method is
used to solve several types of fractional problems.

3 Shifted ultraspherical pseudo-Galerkin method (SU-pseudo-GM)
The first step, some rules and forms of UPs need to be shifted. Rodrigues (Eq. (4)) formula
is generalized in the shifted form

o . T+r(+2v) niov d -1
“ (x)_(_l)]F(j+1)F(2v)F(j+v+%)(x_x) prl A 12)

ax

Thus, SUPs can be obtained from Eq. (5) or Eq. (12). The next lemma will be used to
introduce a general form for the fractional derivative and the integer order integration of
SUPs.

Lemma 1 The analytic form of SUPs is as follows:

Ljr2] j-2r

o B (_l)j—r—kzi*2r+kl—w(i —r+ 1)) . a
U ) = 20:;0: TG+ DIGs DrG_2r—k+ 1) /=02
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Proof Straightforward using Eq. (3) and the binomial theorem. O
The following corollary proves the fractional derivatives of SUPs in the Caputo sense.

Corollary 2 The fractional derivatives of SUPs in the Caputo sense of order § are as follows:

0, i=0,1,...,[6] -1,
DU (x) = LG=8)/2) <~j-2r ] o]
ZV:() Zkzm G, j=1[61,161+1,...,
_ ir—k 2/—27+kr(j_ ) k—s
where Gy = (-1)™" r(v)r(r+1)r(k—5+1)r1j(j-2r—k+1)x .
Proof Using Lemma 1 and the results from Eq. (2). O

The next theorem will establish the general form of the SUPs approximation of a func-
tion ¢(x). This form is used in SU-pseudo-GM.

Theorem 3 Counsider ¢(x) to be an “s + 1” differentiable function. Then ¢(x) can be ap-
proximated as

m=0

where {A,,} are unknown constants to be determined later and

4, m=0,
Om=132v+1, m=1, (14)
1, 2 <m.

Proof Let ¢(x) be approximated as follows:
(o)
) = > AU ().
m=0

So, by the assumption in the theorem,

PV (w) =Y AU (x) (15)
m=0
and

¢(s+l)(x) _ ZAEZJrl)u;\)(x)

m=0

o0
= ASVU () + ATVUE () + Y ASIUE (x).

m=2
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Substituting by 1" (x) and U} (x) and using Eq. (6), we obtain

¢(s+1 ( ) As+1) A(s+1 %) (2x 1) AS+1
— A V2p2v + 1)(2x - 1)

2v+m—1
A(s+1)
Z( "1 o(m+v—1)m

m+1

_As+1

"L om+ v+ 1)(v + m)

) DU (x). (16)

By differentiating Eq. (15) w.r.t. x, we have
o0
¢ (@) =Y ASDUY (x) (17)
m=1

Both of the equations (16) and (17) represent the s+ 1 derivative of ¢(x). Thus the following
equation must be satisfied:

A©) _ 46D 2v+m—-1 ) m+1 ’
e "L om+v—1)m "L om+ v+ 1)V +m)
and choose a set of constants {6,,} as defended in (14). O

4 SU-pseudo-GM for solving OFPs
This section is divided into three subsections. Each section concerns solving a different

type of OFP. Also, an algorithm for each problem has been added “Algorithm 1, Algo-
rithm 2, and Algorithm 3.

Before proceeding to the techniques of the solution, the “M+1” collection points must be
chosen. Throughout this paper three spaces of points are used. The set of equally spaced
points “S;”:

m
Sl={xm=ﬁ,m=o,1,...,M}, (18)

while the second is Gauss quadrate points “S,’} i.e., the zeros of SUPs:
Sy = {x, U1, (%) = 0}. (19)

The last set is the SCH-points “S3”:
mm
Sg,z{xm:0.5(1—cosﬁ>,m:0,1,...,M}. (20)

“S3” is used specially for solving FIDEs.

4.1 Solving OFDEs by SU-pseudo-GM
Consider OFDEs as follows:

F(T)()(X), nl(x))“-vn/<(x)¢¢(x):D51¢(x))"-7D8r¢(x)) =0¢ X € [O:l]r (21)

Page 6 of 18
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Algorithm 1: Algorithm steps for solving OFDE

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8

:Input :M€N, 8,8,,...,6,€RY, v e [—%,oo), 0 as defined in Eq. (14).
: Construct {U (x)} =01,

: Choose and calculate the collocation points (Eq. (18) or Eq. (19)).

: Calculate {D%U (x)}=M i = 1,2,...,r, according to Corollary 2.

: Expand ¢(x) and {D%¢(x)}'=] according to Eq. (23) and Eq. (24).
:Input : {n;(x)}{.

: Use the above steps to substitute into Eq. (21).

: Collocating the result of step 7 according the choice of step 3.

Step 9 :

As done in step 5, expand the boundary conditions (22).

Step 10: Solve the obtained system from step 8 and step 9 to calculate {.A,,}5'.

Step 11: Substitute into Eq. (23) to get the approximate solution.

such that
(0) = d;,
¥ (0)=d, 5hq=0,...,r—1, (22)
¢4(1) = hy,

where r, k € Z*, {8;}] € RY, {m(x)}]g are functions of x, the values of d;(i = 0,...,r — 1) and

he(q=0,.

.., — 1) describe the boundary or the initial state of ¢(x). The linearity and the

nonlinearity of OFDE (21) depend on the function F.
Now, by using SUPs as the base function in the spectral approximation of ¢(x) as in
Eq. (13), we have

M
P®) = Y O Anllyy (). (23)

m=0

Using the straightforward differentiation in the sense of Corollary 2 leads to

M
Dig(x) = ¢ (x) = Y 0 AnDUY (). (24)

m=0

Also, the initial and boundary conditions (22) have series expansion of the form

M O A DU (0) = d,

5hq=0,...,r—1. (25)

MO0 A DU (0) = hy,

Substitute from Egs. (23) and (24) into (21) by choosing S; or S, as nodes to get a sys-

tem of linear/nonlinear algebraic equations together with Eq. (25). The unknowns of this

system are {A,,}5!. The system can be easily solved by any method.
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Algorithm 2: Algorithm steps for solving FIDE
Stepl :Input :MeN,§eR*,ve [—%,oo), 0 as defined in Eq. (14).
Step 2 : Construct {U4" (x)}=.
Step 3 : Calculate the collocation points (Eq. (20)).
Step 4 : Calculate {D°U/*" (x)}=M according to Corollary 2.
Step 5 : Expand ¢(x) and D’¢(x) according to Eq. (23) and Eq. (24).
Step 6 : Input : u(x).
Step 7 : Use the above steps to substitute into Eq. (26).
Step 8 : Construct the integration matrix (Eq. (11)).

Step 9 : Collocating the result of step 7 together with the integration matrix in step 8.
Step 10: As done in step 5, expand the boundary conditions.

Step 11: Solve the obtained system from step 9 and step 10 to calculate {A,,}}.

Step 12: Substitute into Eq. (23) to get the approximate solution.

4.2 Solving FIDEs by SU-pseudo-GM
Herein, the SU-pseudo-GM for solving OFDEs is extended to some types of FIDEs. Con-
sider the following FIDE:

DPp(x) = u(x) + /x k(x, t)F(qb(t)) dt, xe€][0,1], (26)
0

under a sufficient number of initial conditions according to §. By applying the expansion
described at Eq. (23), we obtain

M x5 M
> OmAnD U (55) = ) + / k(s t)F(Z emAmu;;“(t)> dt, (27)
m=0 0 m=0

where s =0,1,..., M. Replacing the integration in Eq. (27) by the B-matrix (10) gives

M M M
Z emAmDsu:;,v (%5) = ulxs) + Z bek(xs,t.)F (Z QmAmu;:,v (tr)) . (28)

m=0 r=0 m=0

As in the previous section, the obtained Eq. (28) is an algebraic system. The linearity of

that system depends on the linearity of the function F.

4.3 Solving FOCPs by SU-pseudo-GM
Finally, we proceed to approximating the FOCP that takes the form

1
max(min) J(u) = / F(x,¢(x), u(x)) dx (29)
0
under the conditions

D’ p(x) = G((x, p(x), u(x))) (30)
#(0) = c1, #'(0) = ¢, (31)
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Algorithm 3: Algorithm steps for solving FOCP
Stepl :Input :MeN,§eR*,ve [—%,oo), 0 as defined in Eq. (14).
Step 2 : Construct {U" (x)} =01,
Step 3 : Choose and calculate the collocation points (Eq. (18), Eq. (19), or Eq. (20)).
Step 4 : Calculate {D°U/*" (x)}=M according to Corollary 2.
Step 5 : Expand ¢(x) and D’¢(x) according to Eq. (23) and Eq. (24).
Step 6 : Expand u(x) according to Eq. (23).
Step 7 : Use the above steps to substitute into Eq. (29) and Eq. (30).
Step 8 : Construct the integration matrix (Eq. (11)).

Step 9 : Collocating the result of step 7 together with the integration matrix in step 8.

Step 10: As done in step 5, expand the boundary conditions (Eq. (31)).

Step 11: Solve the obtained optimization problem from step 9 and step 10 to calculate
{A,,}}! and the optimal value 7.

Step 12: Substitute into Eq. (23) to get the approximate solutions of ¢(x) and u(x).

where c;,c; € R. By taking both techniques that are included in the last two subsections,

the FOCP is transformed into a regular optimization problem.

5 Error analysis
The convergence and the error analysis for using SUPs are inevitable. Theorems and con-

cepts for these aspects are investigated in [34, 35].

Lemma4 Let ¢p(x) € L2,[0,1], |¢" ()| < B, and it can be expanded according to expansion
(13). Then

4B(1 +v)*(m + 1 +v)?

|‘AWI| < (m_2)4 ’

m > 3,

where 0 < v < 1.
Proof For the proof, see [38]. (]
Theorem 5 Let ¢y(x) = erf:o O Anldy (x) and ¢(x), v satisfies Lemma 4. Then

(1 +v)2(M +v)

B
llp —dumll < TS m>3.

Proof See [38]. O

The next section proves the effectiveness and correctness of SU-pseudo-GM by solving
different types of OFPs.

6 Numerical examples
In this section, numerical examples of SU-pseudo-GM are presented. The results to those

obtained are compared with other methods and the exact solution.
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Table 1 The MAE for Example 1

c M SU-pseudo-GM [39] [40]
S v
-049 049 1
1 8 S 6.2e-08 6.2e-08 6.2e-08 6.2e-03 2.0e-12
S 2.5e-08 4.3e-08 3.1e-08
16 S 4.9e-15 1.2e-14 4.9e-15 7.5e-04 4.0e-14
S 2.7e-15 2.2e-15 1.3e-15
32 S 3.7e-15 6.5e-13 1.9e-12 1.0e-04 2.0e-11
S 2.7e-15 2.2e-15 1.3e-15
6 16 S 6.3e-06 6.3e-06 6.3e-06 8.4e-03 1.0e-08
S 2.1e-07 3.6e-07 2.0e-07
32 S 6.9e-10 1.4e-08 1.3e-09 7.5e-04 2.0e-08
S 94e-11 5.1e-09 3.5e-11

Table 2 The best MAE for Example 1

c Method Best MAE M
1 SU-pseudo-GM 8.9e-16 13
[39] 1.6e-05 64
[40] 4.0e-14 16
6 SU-pseudo-GM 5.5e-12 20
[39] 6.5e-05 64
[40] 1.0e-08 16

Example 1 Consider the linear OFDE
D**¢(x) - 3D*¢(x) = u(x),

subject to ¢(0) = 1, ¢'(0) = ¢, and ¢”(0) = > with the exact solution ¢(x) = e and u(x) =
¢23¢* (31 (1/3,cx) +(c1V/Oerf (Jex)-3)T (1/3)]
T(1/3) .

According to Sect. 4.1, the maximum absolute error (MAE) for SU-pseudo-GM and
MAE for others are presented in Table 1 and Table 2. These tables show the demonstra-
tion of SU-pseudo-GM over the methods in [39] and [40] for all values of ¢ and the pa-
rameter v for the two spaces S; and S, at different values of M, while Fig. 1 represents the

convergence at an exponential rate using Ss.

Example 2 Consider the nonlinear OFDE

ra.5
RRACER
'3.5-3)

’

D (x) +x(p(x))” = 4°

subject to ¢(0) = 0 with the exact solution ¢(x) = x>

Applying the technique discussed in Sect. 4.1, we obtained the pointwise absolute er-
ror (PW-AE) shown in Table 3 for § = 0.5 and Table 4 for § = 0.7. Comparisons between
SU-pseudo-GM “at different values of v’; the neural network method (NNM) in [41], the
differentiated radial basis function method (DRBF) in [42], and the integrated radial basis
function method (IRBF) in [42] have been done. From both tables we recognize that:

« SU-pseudo-GM is more accurate and efficient than NNM in [41] for the presented

values of the parameter v, § = 0.5,0.7 and both spaces S; and S;.
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Figure 1 The LogError for Example 1 using S3
Table 3 The PW-AE for Example 2 at M=10and 6 =0.5
X SU-pseudo-GM NNM IRBF DRBF
S v [41] [42] [42]
-0.49 0.49 1
0.1 S 2.2e-05 2.2e-05 2.2e-05 3.4e-03 1.5e-05 2.8e-05
S 7.8e-07 1.6e-06 7.7e-07
0.2 S 1.3e-05 1.3e-05 1.3e-05 8.7e-03 8.5e-06 2.0e-05
S 2.5e-06 1.3e-06 3.0e-07
0.3 M 1.0e-05 1.0e-05 1.0e-05 1.7e-02 - -
Sy 2.3e-07 1.5e-06 1.1e-06
04 S 8.7e-06 8.7e-06 8.7e-06 8.1e-03 - -
S 1.2e-06 2.8e-06 2.1e-06
0.5 S 7.5e-06 7.5e-06 7.5e-06 4.2e-04 4.7e-06 6.7e-06
S 9.8e-07 1.7e-06 1.1e-06
0.6 S 6.4e-06 6.4e-06 6.4e-06 7.8e-03 4.8e-06 6.8e-06
S 2.2e-08 1.1e-06 5.4e-07
0.7 S 5.3e-06 5.3e-06 5.3e-06 9.1e-03 - -
S, 7.8e-07 2.1e-06 1.5e-06
0.8 S 4.2e-06 4.2e-06 4.2e-06 1.4e-03 - -
S 3.6e-07 1.7e-06 1.3e-06
09 S 3.3e-06 3.3e-06 3.3e-06 1.6e-02 1.5e-06 1.2e-05
S 2.3e-07 1.2e-06 1.2e-06
1 S 1.9e-06 1.9e-06 1.9e-06 5.6e-03 2.0e-06 7.0e-06
S 1.5e-07 1.4e-06 3.3e-06

Using the equidistance space S;, SU-pseudo-GM is of almost the same accuracy as
DRBF and IRBF methods in [42] for the presented values of the parameter v and

8=0.5,0.7.

For § = 0.5, SU-pseudo-GM got the same accuracy as DRBF and IRBF methods in [42]
at v = 0.49 using the S, space.
For § = 0.5, SU-pseudo-GM is more accurate than DRBF and IRBF methods in [42]
for v =1 and v = —0.49 using the S, space.

For § = 0.7, SU-pseudo-GM is more accurate and efficient than DRBF and IRBF
methods in [42] for the presented values of the parameter v using the S, space.

The values of the parameter v do not affect the results while using Sj.

Page 11 0f 18
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Table 4 The pointwise AE for Example 2 at M=10and § =0.7

X SU-pseudo-GM NNM IRBF DRBF

S v [41] [42] [42]
-0.49 049 1

0.1 S 4.5e-05 4.5e-05 4.5e-05 2.3e-03 5.8e-05 7.1e-05
S 3.9e-06 1.1e-06 9.4e-07

0.2 S 3.6e-05 3.6e-05 3.6e-05 5.5e-03 4 4e-05 5.5e-05
S 1.1e-07 1.1e-06 5.9e-07

03 S 2.9e-05 2.9e-05 2.9e-05 7.3e-03 - -
S 2.0e-07 1.7e-06 6.2e-07

04 S 2.7e-05 2.7e-05 2.7e-05 6.3e-03 - -
S 4.6e-06 2.6e-06 2.3e-06

0.5 S 24e-05 2.4e-05 24e-05 1.5e-03 3.1e-05 3.6e-05
S 3.7e-07 1.6e-06 3.8e-07

0.6 S 2.2e-05 2.2e-05 2.2e-05 5.6e-03 2.8e-05 3.9e-05
S 6.7e-07 1.4e-06 2.9e-07

0.7 S 1.9e-05 1.9e-05 1.9e-05 9.0e-03 - -
S 34e-06 1.9e-06 1.7e-06

0.8 S 1.6e-05 1.6e-05 1.6e-05 1.2e-03 - -
S 1.6e-07 1.4e-06 6.8e-07

0.9 S 1.3e-05 1.3e-05 1.3e-05 1.5e-02 1.5e-05 2.3e-05
Sy 7 4e-07 7.0e-07 1.1e-06

1 S 9.7e-06 9.7e-06 9.7e-06 1.7e-02 1.2e-05 1.3e-05
S 1.1e-07 3.8e-07 1.7e-06

During the process of approximation, we recognized that the results were not affected
by changing the values of parameters v at the small values of M.

Example 3 Consider the Bagley—Torvik fractional BVP

D*¢(x) + D¢ (x) + ¢p(x) = x> + 5x + ixl's, x€[0,1],

JT
subject to ¢(0) = 0 and ¢(1) = 0 with the exact solution ¢ (x) = —x + x>.

SU-pseudo-GM reaches the double-precision (e-16) as MAE only at M = 3 using any
space. While in [43], MAE varies from e-04 to e-05 by increasing M from 10 to 40.

On the other hand, the authors in [44] investigated four methods. They treated the same
problem with the first and fourth methods. The authors had to increase M to 256. But they
only reached e-08 for the first method and e-05 for the fourth method.

Example 4 Consider the linear FIDE (Volterra type)

2 2 3 :
D34 (x) = —§x13/2 3 §x9/2 . W«/j/@xwe +/O (xy + (£9)%)p(y) dy (32)

subject to ¢(0) = 0 with the exact solution ¢(x) = x-°.

In this example, we have to use the space S3 to meet the conditions of the B-matrix.
The method in [45] solved Eq. (32) and got 9.5e-04 as MAE at M = 5. Also, [46] solved
it at the same number of points but by three methods. MAE were 1.9e-02, 9.8¢e-0.3, and
9.8e-0.3 for the three methods. While the MAE of SU-pseudo-GM is 7.0e-04 using M = 5
too. The authors in [46] increased M to increase the accuracy. Their best MAE was 10~% at
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Table 5 The MAE for Example 4 using S3

M SU-pseudo-GM  [46] [45]
Method 1 Method 2&3
5 7.0e-04 2.0e-02 9.8e-03 9.5e-04
10 8.7e-05 6.3e-03 3.4e-03 -
20 1.1e-05 2.1e-03 1.2e-03 -
1
ol J
1} 4
5 [ )
iy
j=2d
S 3 J
—4} 4
5} 4
6 ‘ ‘ ‘ ‘
0 5 10 15 20 25
M
Figure 2 The LogError for Example 4 using S3

M =40, 80. But by using SU-pseudo-GM, MAE is 8.7e-05 at M = 10 and 9.4e-06 at M = 21.
Some results and comparisons are summarized in Table 5. The stability and convergence

rate are shown in Fig. 2.
Example 5 Consider the nonlinear FIDE (Volterra—Fredholm type)

15 1 2(2 3
DAy =5 12, 204V3) 5 5

56 6 TI'(2- f3)x

R /0 (49 (00) dy+ /0 2y(60) dy

subject to the boundary conditions of mixed type ¢(0) + ¢'(0) = 0 and ¢(1) + ¢'(1) = 3 with

the exact solution ¢(x) = 2.

The boundary conditions of mixed type do not affect the steps. They are just two extra
equations added to the algebraic system. The PW-AE of this example using SU-pseudo-
GM and two other methods in [47] is written in Table 6. The first method in [47] is “Nys-
trom’, while the second method depends on the wavelet. This method used the two pa-
rameters m and k for the approximation. So, 2¢~1 is the equivalent number of iterations.
The following observations have been noted from Table 6. This first method in [47] ap-
proximates the solution to 10> as PW-AE at M = 16. But SU-pseudo-GM got the same
PW-AE at M = 5 only. On the other hand, PW-AE decreases from 107 to 1072 as x changes
from 0.1 to 0.9 by using “Nystrom” at M = 16. The double-precision “1071” was reached
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Table 6 The MAE for Example 5 using S3

X SU-pseudo-GM [471
M=5 M=7 M=20 Method 1 Nystrom
M=16 M=20
0 7.46e-05 1.76e-15 1.28e-15 7.66e-05 0
0.1 6.70e-05 1.59%e-15 1.12e-15 6.90e-05 4.87e-06
0.2 6.02e-05 1.45e-15 1.05e-15 6.13e-05 6.50e-06
03 5.68e-05 1.30e-15 9.44e-16 5.36e-05 3.04e-05
04 5.70e-05 1.17e-15 8.33e-16 4.60e-05 1.01e-04
0.5 591e-05 1.05e-15 7.77e-16 3.72e-05 3.29e-04
0.6 6.09e-05 9.44e-16 6.66e-16 3.07e-05 1.16e-03
0.7 6.02e-05 8.33e-16 6.11e-16 2.22e-05 4.13e-03
0.8 5.59%-05 7.77e-16 444e-16 1.36e-05 1.3%-02
0.9 4.89e-05 7.77e-16 5.55e-16 6.90e-05 4.40e-02
1 4.26e-05 6.66e-16 444e-16 - -
2
of J
-2} -
4t i
g -6r 1
i
[=2]
S -8t 1
-10} 1
-12} 1
14} 1
\\777/7777\/\_/)ﬁ T
_16 ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30
M
Figure 3 The LogError for Example 5 using S3

using SU-pseudo-GM at M = 16 for all the domain points. Figure 3 ensures the accuracy,
stability, and convergence rate for SU-pseudo-GM.

Example 6 Consider the nonlinear FOCP

| ) ) . \ 20x%9 \ 2
(min) J—/O ((qb(x)—x) _(v(x)+x _m) )dx

subject to D¢ (x) = x2¢(x) + v(x) and ¢(0) = ¢’(0) = 0 with the exact solution (J (v), ¢ (x),
0.9
v(x)) = (0,47, g5 — ).

According to the integration “from 0 to 1’ all spaces”S;, Sz, S3” may be used. The same
technique is applied. In the past examples we got algebraic systems to solve. But in the
case of FOCP, the problem is transformed into an optimization problem.

The best result is J = 4.1280e — 17 at “M = 2” when “v = —0.49” using “S,” with run
time 0.019. The results of SU-pseudo-GM have been compared with the results from [18,
19, 48]. In [18], the authors used wavelet expansion. They got J = 4.7187e — 06 using six
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Table 7 Optimality value ", MAE of the state function “¢(x)" and the control function “v(x)" for
Example 6 using S1 when v =049

M SU-pseudo-GM (48]

JW) PX) v(x) JW)

Value Time
2 49816e-16 0.012 1.7155e-08 2.7391e-08 -
3 7.5675e-16 0.021 2.5321e-08 3.8533e-08 -
4 4.3574e-16 0.035 2.0878e-08 4.8836e-08 4.7693e-06
5 4.5959%-16 0.044 2.2785e-08 5.7676e-08 1.4724e-06
6 8.4043e-15 0.071 24193e-08 1.5770e-07 5.3783e-07
7 6.7510e-13 0.099 1.2375e-07 5.6828e-06 -
8 8.7378e-13 0.139 2.2888e-07 3.5761e-06 1.0610e-07
9 5.4106e-14 0.181 5.4007e-08 5.7890e-07 5.4430e-07

Table 8 Best results of Example 7

Optimal value MAE Method
J State function Control function

PK) v(x)
107V 10710 1070 SU-pseudo-GM
M=3) M=3) M=3)
10716 - - [19]
M=4)
10710 1079 1079 [18]
M=9) (M =9) "PW-AE" (M=9) "PW-AE"
107% 10703 1070° [49]
M=7) M=7) M=7)
107 1070 - [50]
M=8) (M = 6) "PW-AE

iterations with run time 0.046. While in [19], J = 6.16e — 16 but at M = 4 with run time
0.030 and in [48], J = 5.44e — 08 at M = 9 as best results. Table 7 compares the results
obtained by SU-pseudo-GM when v = 0.49 using S; with results from [48].

These comparisons show the accuracy and the efficiency of SU-pseudo-GM for solving
FCOPs.

Example 7 Consider the nonlinear FOCP

1
[x 16
(mm) ._7 — / (_2el+x2+¢(x) + 62(1+x2+¢(9€)) +8 —v(x) + (V(x))z y
0 4 T

- 2sin(1 +&%)v(x) - 8\/§Sin(1 +a7) +sin®(1+4%) + 1) dx

subject to DY ¢(x) = sin(¢p(x)) + v(x), $(0) = =1, and ¢'(0) = 0 with the exact solution
(T ), p(x),v(x)) = (0,-1 — &2, —4\/% +sin(1 + x2)).

By applying the same steps, Table 8 summarizes the best results of 7, MAE of the state
function ¢(x), and MAE of the control function v(x). All those results are compared with
the methods in [18, 19, 49, 50]. The obtained results prove the high correctness and effec-
tiveness of SU-pseudo-GM. Figure 4 shows the stability of the optimality value.
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Optimal Value
o

ot

0 10 20 30 40 50 60

Figure 4 The optimal value 7 (x) for Example 7 using S3 at v =-0.49

7 Conclusion

A general method developed from GM has been introduced in this work. This method
uses SUPs as trails functions. We call this method SU-pseudo-GM. New formulae for the
spectral expansion and fractional derivatives of SUPs have been proved. This method can
handle several types of OFPs. Finally, SU-pseudo-GM was used to solve several examples.
As shown in those examples, the method was easy to apply in FODEs, IFDEs, and FOCPs.
To show and prove the high correctness of that method, several graphs have been con-
structed. Also, comparisons with other methods have been done. Three spaces have been
used in the examples. The results show that the quadrature points (S;) are slightly more
accurate than the equidistant Riemann points (S;).
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