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Abstract
In this paper, we introduce the non-convex interval-valued functions for
fuzzy-interval-valued functions, which are called (h1,h2)-convex fuzzy-interval-valued
functions, by means of fuzzy order relation. This fuzzy order relation is defined
level-wise through Kulisch–Miranker order relation given on the interval space. By
using the (h1,h2)-convexity concept, we present fuzzy-interval Hermite–Hadamard
inequalities for fuzzy-interval-valued functions. Several exceptional cases are debated,
which can be viewed as useful applications. Interesting examples that verify the
applicability of the theory developed in this study are presented. The results of this
paper can be considered as extensions of previously established results.
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1 Introduction
The following integral inequality is known in the literature as the Hermite–Hadamard
inequality [16, 17]:

F
(

u + ϑ

2

)
≤ 1

ϑ – u

∫ ϑ

u
F (x) dx ≤ F (u) + F (ϑ)

2
, (1)

where F : K →R is a convex function on the interval K = [u,ϑ] with u <ϑ . So the concept
of convexity in an integral problem is an interesting area for research. Therefore, much
attention has been given to studying and characterizing different directions of classical
convexity. Recently, many extensions and generalizations Hermite–Hadamard inequality
for generalized convex functions have been established. For more useful details, see [1, 3–
5, 7, 10, 19–23, 28] and the references therein.

On the other hand, the theory of interval analysis fell in to oblivion for a long time be-
cause of lack of applications in other sciences. The concept of interval analysis was pro-
posed and investigated by Moore [26] and Kulish and Miranker [25]. For the first time it
was used in numerical analysis to determine the error bounds of numerical solutions of
a finite state machine. For fundamental details and applications, we refer the readers to
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the papers [14, 27, 32, 33] and the references therein. Inspired by the above literature, in
2018, Zhao et al. introduced h-convex interval-valued functions and proved the Hermite–
Hadamard-type inequality for h-convex interval-valued functions [34]. As a step forward,
An et al. [2] presented the class of (h1, h2)-convex interval-valued functions and estab-
lished the following interval-valued Hermite–Hadamard-type inequality for such func-
tions:

Theorem 1 Let F : [u,ϑ] ⊂ R → K+
C be a (h1, h2)-convex interval-valued function given

by F (x) = [F∗(x),F∗(x)] for all x ∈ [u,ϑ], with h1, h2 : [0, 1] → R
+ and h1( 1

2 )h2( 1
2 ) �= 0,

where F∗(x) and F∗(x) both are (h1, h2)-concave functions. If F is Riemann integrable (in
short, IR-integrable), then

1
2h1( 1

2 )h2( 1
2 )
F

(
u + ϑ

2

)
⊇ 1

ϑ – u
(IR)

∫ ϑ

u
F (x) dx

⊇ [
F (u) + F (ϑ)

]∫ 1

0
h1(τ )h2(1 – τ ) dτ .

(2)

We refer to the readers for further analysis of the literature on the applications and prop-
erties of generalized convex functions and Hermite–Hadamard integral inequalities to
[6, 8, 9, 13, 15, 17, 24, 30, 31] and the references therein.

There are some integrals to deal with fuzzy-interval-valued functions, where the inte-
grands are fuzzy-interval-valued functions. For instance, Oseuna-Gomez et al. [29] and
Costa et al. [11] constructed Jensen’s integral inequality for fuzzy-interval-valued func-
tions. By using the same approach, Costa and Roman-Flores also presented Minkowski
and Beckenbach’s inequalities, where the integrands are fuzzy-interval-valued functions.
Motivated by [11, 12, 29] and [34], we generalize integral inequality (2) by constructing
fuzzy-interval integral inequality for convex fuzzy-interval-valued functions, where the
integrands are convex fuzzy-interval-valued functions.

This study is organized as follows: Sect. 2 presents preliminaries and results in the in-
terval space, in the space of fuzzy-intervals, and for fuzzy integrals. Section 3 introduces
the new classes of (h1, h2)-convex fuzzy-interval-valued functions and investigates their
properties. Section 4 obtains fuzzy-interval Hermite–Hadamard inequalities via (h1, h2)-
convex fuzzy-interval-valued functions. In addition, some interesting examples are also
given to verify our results. Section 4 gives conclusions and directions for future works.

2 Preliminaries
Let KC be the collection of all closed and bounded intervals of R, that is, KC = {[ω∗,ω∗] :
ω∗,ω∗ ∈ R and ω∗ ≤ ω∗}. If ω∗ ≥ 0, then [ω∗,ω∗] is called a positive interval. The set of all
positive intervals is denoted by K+

C and defined as K+
C = {[ω∗,ω∗] : [ω∗,ω∗] ∈KC and ω∗ ≥

0}.
We now discuss some properties of intervals under the arithmetic operations of addi-

tion, multiplication, and scalar multiplication. If [μ∗,μ∗], [ω∗,ω∗] ∈ KC , and ρ ∈ R, then
these arithmetic operations are defined by

[
μ∗,μ∗] +

[
ω∗,ω∗] =

[
μ∗ + ω∗,μ∗ + ω∗],
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[
μ∗,μ∗] × [

ω∗,ω∗]
=

[
min

{
μ∗ω∗,μ∗ω∗,μ∗ω∗,μ∗ω∗}, max

{
μ∗ω∗,μ∗ω∗,μ∗ω∗,μ∗ω∗}],

ρ.
[
μ∗,μ∗] =

⎧⎨
⎩

[ρμ∗,ρμ∗] if ρ ≥ 0,

[ρμ∗,ρμ∗] if ρ < 0.

For [μ∗,μ∗], [ω∗,ω∗] ∈KC , the inclusion “⊆” is defined by

[
μ∗,μ∗] ⊆ [

ω∗,ω∗] if and only if ω∗ ≤ μ∗, μ∗ ≤ ω∗.

Remark 1 The relation “≤I ” is defined on KC by

[
μ∗,μ∗] ≤I

[
ω∗,ω∗] if and only if μ∗ ≤ ω∗, μ∗ ≤ ω∗,

for all [μ∗,μ∗], [ω∗,ω∗] ∈KC , it is an order relation, see [25]. For given [μ∗,μ∗], [ω∗,ω∗] ∈
KC , we say that [μ∗,μ∗] ≤I [ω∗,ω∗] if and only if μ∗ ≤ ω∗, μ∗ ≤ ω∗ or μ∗ ≤ ω∗, μ∗ < ω∗.

The concept of Riemann integral for interval-valued functions first introduced by Moore
[26] and is defined as follows:

Theorem 2 ([26]) If F : [c, d] ⊂ R → KC is an interval-valued function on such that
[F∗,F∗], then F is Riemann integrable on [c, d] if and only if F∗ and F∗ both are Riemann
integrable on [c, d] and such that

(IR)
∫ d

c
F (x) dx =

[
(R)

∫ d

c
F∗(u) dx, (R)

∫ d

c
F∗(u) dx

]
.

The collections of all Riemann integrable real-valued functions and Riemann integrable
interval-valued functions are denoted by R[c,d] and IR[c,d], respectively.

Let R be the set of real numbers. A fuzzy subset set A of R is distinguished by a function
ϕ : R → [0, 1] called the membership function. In this study this depiction is approved.
Moreover, the collection of all fuzzy subsets of R is denoted by F(R).

A real fuzzy-interval ϕ is a fuzzy set in R with the following properties:
(1) ϕ is normal, i.e., there exists x ∈R such that ϕ(x) = 1;
(2) ϕ is upper semicontinuous, i.e., for every x ∈R and ε > 0 there exists δ > 0 such that

ϕ(x) – ϕ(y) < ε for all y ∈R with |x – y| < δ.
(3) ϕ is fuzzy convex, i.e., ϕ((1 – τ )x + τy) ≥ min(ϕ(x),ϕ(y)), ∀x, y ∈ R and τ ∈ [0, 1];
(4) ϕ is compactly supported, i.e., cl{x ∈ R | ϕ(x) > 0} is compact.

The collection of all real fuzzy-intervals is denoted by FC(R).
Since FC(R) denotes the set of all real fuzzy-intervals, ϕ ∈ FC(R) is a real fuzzy-interval

if and only if each γ -level [ϕ]γ is a nonempty compact convex set of R. This is represented
by

[ϕ]γ =
{

x ∈R | ϕ(x) ≥ γ
}

.

From these definitions, we have

[ϕ]γ =
[
ϕ∗(γ ),ϕ∗(γ )

]
,
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where

ϕ∗(γ ) = inf
{

x ∈ R | ϕ(x) ≥ γ
}

, ϕ∗(γ ) = sup
{

x ∈R | ϕ(x) ≥ γ
}

.

Thus a real fuzzy-interval ϕ can be identified by parametrized triples

{(
ϕ∗(γ ),ϕ∗(γ ),γ

)
: γ ∈ [0, 1]

}
.

This leads to the following characterization of a real fuzzy-interval in terms of the two
end point functions, ϕ∗(γ ) and ϕ∗(γ ).

Theorem 3 ([6, 15]) Suppose that ϕ∗(γ ) : [0, 1] → R and ϕ∗(γ ) : [0, 1] → R satisfy the
following conditions:

(1) ϕ∗(γ ) is a nondecreasing function;
(2) ϕ∗(γ ) is a nonincreasing function;
(3) ϕ∗(1) ≤ ϕ∗(1);
(4) ϕ∗(γ ) and ϕ∗(γ ) are bounded and left continuous on (0, 1], and right continuous at

γ = 0.

Moreover, if ϕ : R → [0, 1] is a real fuzzy-interval given by [ϕ∗(γ ),ϕ∗(γ )], then functions
ϕ∗(γ ) and ϕ∗(γ ) satisfy conditions (1)–(4).

Proposition 1 ([12]) Let ϕ,φ ∈ FC(R). Then the relation “�” given on FC(R) by

ϕ � φ if and only if [ϕ]γ ≤I [φ]γ for all γ ∈ [0, 1]

it is a partial order relation.

Now we discuss some properties of real fuzzy-intervals under addition, scalar multi-
plication, multiplication, and division. If ϕ,φ ∈ FC(R) and ρ ∈ R, then these arithmetic
operations are defined by

[ϕ +̃ φ]γ = [ϕ]γ + [φ]γ , (3)

[ϕ ×̃ φ]γ = [ϕ]γ ×[φ]γ , (4)

[ρ.ϕ]γ = ρ.[ϕ]γ . (5)

If ψ ∈ FC(R) is such that ϕ = φ +̃ ψ , then we have the existence of Hukuhara difference of
ϕ and φ, and we say that ψ is the H-difference of ϕ and φ, which is denoted by ϕ–̃φ . If
the H-difference exists, then

(ψ)∗(γ ) = (ϕ–̃φ)∗(γ ) = ϕ∗(γ ) – φ∗(γ ), (ψ)∗(γ ) = (ϕ–̃φ)∗(γ ) = ϕ∗(γ ) – φ∗(γ ). (6)

Remark 2 Obviously, FC(R) is closed under addition and nonnegative scalar multiplica-
tion. And the above-defined properties on FC(R) are equivalent to those derived from the
usual extension principle. Furthermore, for each scalar number ρ ∈R,

[ρ +̃ ϕ]γ = ρ + [ϕ]γ . (7)
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Theorem 4 ([18, 29]) The space FC(R) equipped with a supremum metric, i.e., for ψ ,φ ∈
FC(R)

D(ψ ,φ) = sup
0≤γ≤1

H
(
[ϕ]γ , [φ]γ

)
, (8)

it is a complete metric space, where H denote the well-known Hausdorff metric on the space
of intervals.

Definition 1 ([12]) A fuzzy-interval-valued map F : K ⊂ R → FC(R) is called a fuzzy-
interval-valued function. For each γ ∈ [0, 1], the γ -levels define the family of interval-
valued functions Fγ : K ⊂ R → KC given by Fγ (x) = [F∗(x,γ ),F∗(x,γ )] for all x ∈ K .
Here, for each γ ∈ [0, 1], the end point real functions F∗(·,γ ),F∗(·,γ ) : K → R are called
lower and upper functions of F .

Remark 3 Let F : K ⊂R → FC(R) be a fuzzy-interval-valued function. Then F (x) is said
to be continuous at x ∈ K if, for each γ ∈ [0, 1], both end point functions F∗(x,γ ) and
F∗(x,γ ) are continuous at x ∈ K .

From the above literature review, the following results can be concluded; see [12, 18, 24,
26].

Definition 2 The map F : [c, d] ⊂ R → FC(R) is called a fuzzy-interval-valued function.
The fuzzy integral of F over [c, d], denoted by (FR)

∫ d
c F (x) dx, it is defined level-wise by

[
(FR)

∫ d

c
F (x) dx

]γ

= (IR)
∫ d

c
Fγ (x) dx =

{∫ d

c
F (x,γ ) dx : F (x,γ ) ∈R[c,d]

}
, (9)

for all γ ∈ [0, 1], where R[c,d] is the collection of end point functions of interval-valued
functions; F is (FR)-integrable over [c, d] if (FR)

∫ d
c F (x) dx ∈ FC(R). Note that if both end

point functions are Lebesgue-integrable, then F is a fuzzy Annum integrable function;
see [18, 24, 26].

Theorem 5 Let F : [c, d] ⊂ R → FC(R) be a fuzzy-interval-valued function, whose γ -
levels define the family of interval-valued functions Fγ : [c, d] ⊂ R →KC given by Fγ (x) =
[F∗(x,γ ),F∗(x,γ )] for all x ∈ [c, d] and for all γ ∈ [0, 1]. Then F is (FR)-integrable over
[c, d] if and only if F∗(x,γ ) and F∗(x,γ ) both are R-integrable over [c, d]. Moreover, if F is
(FR)-integrable over [c, d], then

[
(FR)

∫ d

c
F (x) dx

]γ

=
[

(R)
∫ d

c
F∗(x,γ ) dx, (R)

∫ d

c
F∗(x,γ ) dx

]

= (IR)
∫ d

c
Fγ (x) dx,

(10)

for all γ ∈ [0, 1].

The families of all (FR)-integrable fuzzy-interval-valued functions and R-integrable
functions over [c, d] are denoted by IR([c,d],γ ) and R([c,d],γ ), respectively, for all γ ∈ [0, 1].
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3 (h1, h2)-Convex fuzzy-interval-valued functions
In this section, we put forward the definitions of (h1, h2)-convex fuzzy-interval-valued
functions and investigate their basic properties.

Definition 3 Let K be a convex set and h1, h2 : [0, 1] ⊆ K →R
+ such that h1, h2 �≡ 0. Then

a fuzzy-interval-valued function F : K → FC(R) is said to be:
• (h1, h2)-convex on K if

F
(
τx + (1 – τ )y

)
� h1(τ )h2(1 – τ )F (x) +̃ h1(1 – τ )h2(τ )F (y), (11)

for all x, y ∈ K , τ ∈ [0, 1] where F (x) � 0̃;
• (h1, h2)-concave on K if inequality (11) is reversed;
• affine (h1, h2)-convex on K if

F
(
τx + (1 – τ )y

)
= h1(τ )h2(1 – τ )F (x) +̃ h1(1 – τ )h2(τ )F (y), (12)

for all x, y ∈ K , τ ∈ [0, 1] where F (x) � 0̃.

Remark 4 The (h1, h2)-convex fuzzy-interval-valued functions have some very nice prop-
erties similar to those of convex fuzzy-interval-valued functions:

(1) If F is an (h1, h2)-convex fuzzy-interval-valued function, then ϒF is also
(h1, h2)-convex for ϒ ≥ 0.

(2) If F and T both are (h1, h2)-convex fuzzy-interval-valued functions, then
max(F (x),T (x)) is also an (h1, h2)-convex fuzzy-interval-valued function.

Now we discuss some special cases of (h1, h2)-convex fuzzy-interval-valued functions:
(i) If h2(τ ) ≡ 1, then an (h1, h2)-convex fuzzy-interval-valued function becomes

h1-convex fuzzy-interval-valued function, that is,

F
(
τx + (1 – τ )y

)
� h1(τ )F (x) +̃ h1(1 – τ )F (y), ∀x, y ∈ K , τ ∈ [0, 1].

(ii) If h1(τ ) = τ s, h2(τ ) ≡ 1, then an (h1, h2)-convex fuzzy-interval-valued function
becomes an s-convex fuzzy-interval-valued function, that is,

F
(
τx + (1 – τ )y

)
� τ sF (x) +̃ (1 – τ )sF (y), ∀x, y ∈ K , τ ∈ [0, 1].

(iii) If h1(τ ) = τ , h2(τ ) ≡ 1, then an (h1, h2)-convex fuzzy-interval-valued function
becomes a convex fuzzy-interval-valued function, that is,

F
(
τx + (1 – τ )y

)
� τF (x) +̃ (1 – τ )F (y), ∀x, y ∈ K , τ ∈ [0, 1].

(iv) If h1(τ ) = h2(τ ) ≡ 1, then an (h1, h2)-convex fuzzy-interval-valued function
becomes a P-convex fuzzy-interval-valued function, that is,

F
(
τx + (1 – τ )y

)
�F (x) +̃ F (y), ∀x, y ∈ K , τ ∈ [0, 1].
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Theorem 6 Let K be a convex set, h1, h2 : [0, 1] ⊆ K →R
+ such that h1, h2 �≡ 0, and let F :

K → FC(R) be a fuzzy-interval-valued function whose γ -levels define the family of interval
valued functions Fγ : [c, d] ⊂R →K+

C given by

Fγ (x) =
[
F∗(x,γ ),F∗(x,γ )

]
, ∀x ∈ K , (13)

for all x ∈ [c, d] and for all γ ∈ [0, 1]. Then F is (h1, h2)-convex on K

if and only if, for all γ ∈ [0, 1],F∗(x,γ ) and F∗(x,γ ) are (h1, h2)-convex.
(14)

Proof Assume that for each γ ∈ [0, 1],F∗(x,γ ) andF∗(x,γ ) are (h1, h2)-convex on K . Then
from (11), we have

F∗
(
τx + (1 – τ )y,γ

) ≤ h1(τ )h2(1 – τ )F∗(x,γ ) + h1(1 – τ )h2(τ )F∗(y,γ ),

∀x, y ∈ K , τ ∈ [0, 1],

and

F∗(τx + (1 – τ )y,γ
) ≤ h1(τ )h2(1 – τ )F∗(x,γ ) + h1(1 – τ )h2(τ )F∗(y,γ ),

∀x, y ∈ K , τ ∈ [0, 1].

Then by (13), (3), and (5), we obtain

Fγ

(
τx + (1 – τ )y

)
=

[
F∗

(
τx + (1 – τ )y,γ

)
,F∗(τx + (1 – τ )y,γ

)]
≤ [

h1(τ )h2(1 – τ )F∗(x,γ ), h1(τ )h2(1 – τ )F∗(x,γ )
]

+
[
h1(1 – τ )h2(τ )F∗(y,γ ), h1(1 – τ )h2(τ )F∗(y,γ )

]
,

that is,

F
(
τx + (1 – τ )y

)
� h1(τ )h2(1 – τ )F (x) +̃ h1(1 – τ )h2(τ )F (y), ∀x, y ∈ K , τ ∈ [0, 1].

Hence, F is an (h1, h2)-convex fuzzy-interval-valued function on K .
Conversely, letF be an (h1, h2)-convex fuzzy-interval-valued function on K . Then for all

x, y ∈ K and τ ∈ [0, 1], we have F (τx + (1 – τ )y) � h1(τ )h2(1 – τ )F (x) +̃ h1(1 – τ )h2(τ )F (y).
Therefore, from (13), we have

Fγ

(
τx + (1 – τ )y

)
=

[
F∗

(
τx + (1 – τ )y,γ

)
,F∗(τx + (1 – τ )y,γ

)]
.

Again, from (13), (3), and (5), we obtain

h1(τ )h2(1 – τ )Fγ (x) +̃ h1(1 – τ )h2(τ )Fγ (x)

=
[
h1(τ )h2(1 – τ )F∗(x,γ ), h1(τ )h2(1 – τ )F∗(x,γ )

]
+

[
h1(1 – τ )h2(τ )F∗(y,γ ), h1(1 – τ )h2(τ )F∗(y,γ )

]
,
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for all x, y ∈ K and τ ∈ [0, 1]. Then by the (h1, h2)-convexity of F , we have for all x, y ∈ K
and τ ∈ [0, 1] that

F∗
(
τx + (1 – τ )y,γ

) ≤ h1(τ )h2(1 – τ )F∗(x,γ ) + h1(1 – τ )h2(τ )F∗(y,γ )

and

F∗(τx + (1 – τ )y,γ
) ≤ h1(τ )h2(1 – τ )F∗(x,γ ) + h1(1 – τ )h2(τ )F∗(y,γ ),

for each γ ∈ [0, 1]. Hence, the result follows. �

Example 1 We consider h1(τ ) = τ , h2(τ ) ≡ 1, for τ ∈ [0, 1] and the fuzzy-interval-valued
functions F : [0, 1] → FC(R) defined by

F (x)(σ ) =

⎧⎪⎪⎨
⎪⎪⎩

σ

2x2 , σ ∈ [0, 2x2],
4x2–σ

2x2 , σ ∈ (2x2, 4x2],

0, otherwise.

Then, for each γ ∈ [0, 1], we have Fγ (x) = [2γ x2, (4 – 2γ )x2]. Since the end point func-
tions F∗(x,γ ), F∗(x,γ ) are (h1, h2)-convex functions for each γ ∈ [0, 1], F (x) is an (h1, h2)-
convex fuzzy-interval-valued function.

Hermite–Hadamard-type inequalities for fuzzy-interval-valued functions

Theorem 7 Let F : [u,ϑ] → FC(R) be an (h1, h2)-convex fuzzy-interval-valued function
with h1, h2 : [0, 1] → R

+ and h1( 1
2 )h2( 1

2 ) �= 0, whose γ -levels define the family of interval
valued functions Fγ : [u,ϑ] ⊂ R → K+

C given by Fγ (x) = [F∗(x,γ ),F∗(x,γ )] for all x ∈
[u,ϑ] and for all γ ∈ [0, 1]. If F ∈ IR([u,ϑ],γ ), then

1
2h1( 1

2 )h2( 1
2 )
F

(
u + ϑ

2

)
� 1

ϑ – u
(FR)

∫ ϑ

u
F (x) dx

�
[
F (u) +̃ F (ϑ)

] ∫ 1

0
h1(τ )h2(1 – τ ) dτ .

(15)

Proof Let F : [u,ϑ] → FC(R) be an (h1, h2)-convex fuzzy-interval-valued function. Then,
by hypothesis, we have

1
h1( 1

2 )h2( 1
2 )
F

(
u + ϑ

2

)
�F

(
τu + (1 – τ )ϑ

)
+̃ F

(
(1 – τ )u + τϑ

)
.

Therefore, for every γ ∈ [0, 1], we have

1
h1( 1

2 )h2( 1
2 )
F∗

(
u + ϑ

2
,γ

)
≤F∗

(
τu + (1 – τ )ϑ ,γ

)
+ F∗

(
(1 – τ )u + τϑ ,γ

)
,

1
h1( 1

2 )h2( 1
2 )
F∗

(
u + ϑ

2
,γ

)
≤F∗(τu + (1 – τ )ϑ ,γ

)
+ F∗((1 – τ )u + τϑ ,γ

)
.
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Then

1
h1( 1

2 )h2( 1
2 )

∫ 1

0
F∗

(
u + ϑ

2
,γ

)
dτ

≤
∫ 1

0
F∗

(
τu + (1 – τ )ϑ ,γ

)
dτ +

∫ 1

0
F∗

(
(1 – τ )u + τϑ ,γ

)
dτ ,

1
h1( 1

2 )h2( 1
2 )

∫ 1

0
F∗

(
u + ϑ

2
,γ

)
dτ

≤
∫ 1

0
F∗(τu + (1 – τ )ϑ ,γ

)
dτ +

∫ 1

0
F∗((1 – τ )u + τϑ ,γ

)
dτ .

It follows that

1
h1( 1

2 )h2( 1
2 )
F∗

(
u + ϑ

2
,γ

)
≤ 2

ϑ – u

∫ ϑ

u
F∗(x,γ ) dx,

1
h1( 1

2 )h2( 1
2 )
F∗

(
u + ϑ

2
,γ

)
≤ 2

ϑ – u

∫ ϑ

u
F∗(x,γ ) dx.

That is,

1
h1( 1

2 )h2( 1
2 )

[
F∗

(
u + ϑ

2
,γ

)
,F∗

(
u + ϑ

2
,γ

)]

≤I
2

ϑ – u

[∫ ϑ

u
F∗(x,γ ) dx,

∫ ϑ

u
F∗(x,γ ) dx

]
.

Thus,

1
2h1( 1

2 )h2( 1
2 )
F

(
u + ϑ

2

)
� 1

ϑ – u
(FR)

∫ ϑ

u
F (x) dx. (16)

In a similar way as above, we have

1
ϑ – u

(FR)
∫ ϑ

u
F (x) dx �

[
F (u) +̃ F (ϑ)

]∫ 1

0
h1(τ )h2(1 – τ ) dτ . (17)

Combining (16) and (17), we have

1
2h1( 1

2 )h2( 1
2 )
F

(
u + ϑ

2

)
� 1

ϑ – u
(FR)

∫ ϑ

u
F (x) dx

�
[
F (u) +̃ F (ϑ)

]∫ 1

0
h1(τ )h2(1 – τ ) dτ .

Hence, the required result follows. �

Remark 5 If h2(τ ) ≡ 1, then Theorem 7 reduces to the result for h1-convex fuzzy-interval-
valued functions:

1
2h1( 1

2 )
F

(
u + ϑ

2

)
� 1

ϑ – u
(FR)

∫ ϑ

u
F (x) dx �

[
F (u) +̃ F (ϑ)

] ∫ 1

0
h1(τ ) dτ .
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If h1(τ ) = τ s and h2(τ ) ≡ 1, then Theorem 7 reduces to the result for s-convex fuzzy-
interval-valued functions:

2s–1F
(

u + ϑ

2

)
� 1

ϑ – u
(FR)

∫ ϑ

u
F (x) dx � 1

s + 1
[
F (u) +̃ F (ϑ)

]
.

If h1(τ ) = τ and h2(τ ) ≡ 1, then Theorem 7 reduces to the result for convex fuzzy-interval-
valued functions:

F
(

u + ϑ

2

)
� 1

ϑ – u
(FR)

∫ ϑ

u
F (x) dx � F (u) +̃ F (ϑ)

2
.

If h1(τ ) = h2(τ ) ≡ 1, then Theorem 7 reduces to the result for P-convex fuzzy-interval-
valued functions:

1
2
F

(
u + ϑ

2

)
� 1

ϑ – u
(FR)

∫ ϑ

u
F (x) dx �F (u) +̃ F (ϑ).

If F∗(u,γ ) = F∗(ϑ ,γ ) then Theorem 7 reduces to the result for (h1, h2)-convex functions:

1
2h1( 1

2 )h2( 1
2 )
F

(
u + ϑ

2

)
≤ 1

ϑ – u
(FR)

∫ ϑ

u
F (x) dx

≤ [
F (u) +̃ F (ϑ)

]∫ 1

0
h1(τ )h2(1 – τ ) dτ .

Example 2 We consider h1(τ ) = τ , h2(τ ) ≡ 1, for τ ∈ [0, 1], and the fuzzy function F :
[u,ϑ] = [0, 2] → FC(R) defined by

F (x)(σ ) =

⎧⎪⎪⎨
⎪⎪⎩

σ

2x2 , σ ∈ [0, 2x2],
4x2–σ

2x2 , σ ∈ (2x2, 4x2],

0, otherwise.

Then, for each γ ∈ [0, 1], we have Fγ (x) = [2γ x2, (4 – 2γ )x2]. Since the end point functions
F∗(x,γ ) = 2γ x2, F∗(x,γ ) = (4 – 2γ )x2 are (h1, h2)-convex functions for each γ ∈ [0, 1],
F (x) is an (h1, h2)-convex fuzzy-interval-valued function. We verify the following by com-
puting appropriate quantities:

1
2h1( 1

2 )h2( 1
2 )
F∗

(
u + ϑ

2
,γ

)
≤ 1

ϑ – u

∫ ϑ

u
F∗(x,γ ) dx

≤ [
F∗(u,γ ) + F∗(ϑ ,γ )

] ∫ 1

0
h1(τ )h2(1 – τ ) dτ ,

1
2h1( 1

2 )h2( 1
2 )
F∗

(
u + ϑ

2
,γ

)
= F∗(1,γ ) = 2γ ,

1
ϑ – u

∫ ϑ

u
F∗(x,γ ) dx =

1
2

∫ 2

0
2γ x2 dx =

8γ

3
,

[
F∗(u,γ ) + F∗(ϑ ,γ )

] ∫ 1

0
h1(τ )h2(1 – τ ) dτ = 4γ ,



Khan et al. Advances in Difference Equations        (2021) 2021:149 Page 11 of 20

for all γ ∈ [0, 1]. This means

2γ ≤ 8γ

3
≤ 4γ .

Similarly, it can be easily show that

1
2h1( 1

2 )h2( 1
2 )
F∗

(
u + ϑ

2
,γ

)
≤ 1

ϑ – u

∫ ϑ

u
F∗(x,γ ) dx

≤I
[
F∗(u,γ ) + F∗(ϑ ,γ )

] ∫ 1

0
h1(τ )h2(1 – τ ) dτ ,

for all γ ∈ [0, 1], such that

1
2h1( 1

2 )h2( 1
2 )
F∗

(
u + ϑ

2
,γ

)
= F∗(1,γ ) = (4 – 2γ ),

1
ϑ – u

∫ ϑ

u
F∗(x,γ ) dx =

1
2

∫ 2

0
(4 – 2γ )x2 dx =

4(4 – 2γ )
3

,

[
F∗(u,γ ) + F∗(ϑ ,γ )

] ∫ 1

0
h1(τ )h2(1 – τ ) dτ = 2(4 – 2γ ),

from which it follows that

(4 – 2γ ) ≤ 4(4 – 2γ )
3

≤ 2(4 – 2γ ),

that is,

[
2γ , (4 – 2γ )

] ≤I

[
8γ

3
,

4(4 – 2γ )
3

]
≤I

[
4γ , 2(4 – 2γ )

]
, for all γ ∈ [0, 1].

Hence,

1
2h1( 1

2 )h2( 1
2 )
F

(
u + ϑ

2

)
� 1

ϑ – u
(FR)

∫ ϑ

u
F (x) dx

�
[
F (u) +̃ F (ϑ)

]∫ 1

0
h1(τ )h2(1 – τ ) dτ .

Theorem 8 Let F : [u,ϑ] → FC(R) be an (h1, h2)-convex fuzzy-interval-valued function
with h1, h2 : [0, 1] → R

+ and h1( 1
2 )h2( 1

2 ) �= 0, whose γ -levels define the family of interval
valued functions Fγ : [u,ϑ] ⊂ R → K+

C given by Fγ (x) = [F∗(x,γ ),F∗(x,γ )] for all x ∈
[u,ϑ] and for all γ ∈ [0, 1]. If F ∈ IR([u,ϑ],γ ), then

1
4[h1( 1

2 )h2( 1
2 )]2

F
(

u + ϑ

2

)

� �2 � 1
ϑ – u

(FR)
∫ ϑ

u
F (x) dx � �1

�
[
F (u) +̃ F (ϑ)

][1
2

+ h1

(
1
2

)
h2

(
1
2

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ ,
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where

�1 =
[F (u) +̃ F (ϑ)

2
+̃ F

(
u + ϑ

2

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ ,

�2 =
1

4h1( 1
2 )h2( 1

2 )

[
F

(
3u + ϑ

4

)
+̃ F

(
u + 3ϑ

4

)]
,

and �1 = [�1∗, �
∗
1], �2 = [�2∗, �

∗
2].

Proof Taking [u, u+ϑ
2 ], we have

1
h1( 1

2 )h2( 1
2 )
F

(
τu + (1 – τ ) u+ϑ

2
2

+
τu + (1 – τ ) u+ϑ

2
2

)

�F
(

τu + (1 – τ )
u + ϑ

2

)
+̃ F

(
(1 – τ )u + τ

u + ϑ

2

)
.

Therefore, for every γ ∈ [0, 1], we have

1
h1( 1

2 )h2( 1
2 )
F∗

(
τu + (1 – τ ) u+ϑ

2
2

+
(1 – τ )u + τ u+ϑ

2
2

,γ
)

≤F∗
(

τu + (1 – τ )
u + ϑ

2
,γ

)
+ F∗

(
(1 – τ )u + τ

u + ϑ

2
,γ

)
,

1
h1( 1

2 )h2( 1
2 )
F∗

(
τu + (1 – τ ) u+ϑ

2
2

+
(1 – τ )u + τ u+ϑ

2
2

,γ
)

≤F∗
(

τu + (1 – τ )
u + ϑ

2
,γ

)
+ F∗

(
(1 – τ )u + τ

u + ϑ

2
,γ

)
.

As a consequence, we obtain

1
4h1( 1

2 )h2( 1
2 )
F∗

(
3u + ϑ

4
,γ

)
≤ 1

ϑ – u

∫ u+ϑ
2

u
F∗(x,γ ) dx,

1
4h1( 1

2 )h2( 1
2 )
F∗

(
3u + ϑ

4
,γ

)
≤ 1

ϑ – u

∫ u+ϑ
2

u
F∗(x,γ ) dx.

That is,

1
4h1( 1

2 )h2( 1
2 )

[
F∗

(
3u + ϑ

4
,γ

)
,F∗

(
3u + ϑ

4
,γ

)]

≤I
1

ϑ – u

[∫ u+ϑ
2

u
F∗(x,γ ) dx,

∫ u+ϑ
2

u
F∗(x,γ ) dx

]
.

It follows that

1
4h1( 1

2 )h2( 1
2 )
F

(
3u + ϑ

4

)
� 1

ϑ – u

∫ u+ϑ
2

u
F (x) dx. (18)
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In a similar way as above, we have

1
4h1( 1

2 )h2( 1
2 )
F

(
u + 3ϑ

4

)
� 1

ϑ – u

∫ ϑ

u+ϑ
2

F (x) dx. (19)

Combining (18) and (19), we have

1
4h1( 1

2 )h2( 1
2 )

[
F

(
3u + ϑ

4

)
+̃ F

(
u + 3ϑ

4

)]
� 1

ϑ – u

∫ ϑ

u
F (x) dx.

By using Theorem 7, we have

1
4[h1( 1

2 )h2( 1
2 )]2

F
(

u + ϑ

2

)
=

1
4[h1( 1

2 )h2( 1
2 )]2

F
(

1
2

.
3u + ϑ

4
+

1
2

.
u + 3ϑ

4

)
.

Therefore, for every γ ∈ [0, 1], we have

1
4[h1( 1

2 )h2( 1
2 )]2

F∗
(

u + ϑ

2
,γ

)
=

1
4[h1( 1

2 )h2( 1
2 )]2

F∗
(

1
2

.
3u + ϑ

4
+

1
2

.
u + 3ϑ

4
,γ

)
,

1
4[h1( 1

2 )h2( 1
2 )]2

F∗
(

u + ϑ

2
,γ

)

=
1

4[h1( 1
2 )h2( 1

2 )]2
F∗

(
1
2

.
3u + ϑ

4
+

1
2

.
u + 3ϑ

4
,γ

)

≤ 1
4[h1( 1

2 )h2( 1
2 )]2

[
h1

(
1
2

)
h2

(
1
2

)
F∗

(
3u + ϑ

4
,γ

)

+ h1

(
1
2

)
h2

(
1
2

)
F∗

(
u + 3ϑ

4
,γ

)]

≤ 1
4[h1( 1

2 )h2( 1
2 )]2

[
h1

(
1
2

)
h2

(
1
2

)
F∗

(
3u + ϑ

4
,γ

)

+ h1

(
1
2

)
h2

(
1
2

)
F∗

(
u + 3ϑ

4
,γ

)]

= �2∗

= �2
∗

≤ 1
ϑ – u

∫ ϑ

u
F∗(x,γ ) dx

≤ 1
ϑ – u

∫ ϑ

u
F∗(x,γ ) dx

≤
[F∗(u,γ ) + F∗(ϑ ,γ )

2
+ F∗

(
u + ϑ

2
,γ

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ

≤
[F∗(u,γ ) + F∗(ϑ ,γ )

2
+ F∗

(
u + ϑ

2
,γ

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ

= �1∗

= �1
∗
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≤
[F∗(u,γ ) + F∗(ϑ ,γ )

2
+ h1(τ )h2(1 – τ )

(
F∗(u,γ ) + F∗(ϑ ,γ )

)]

·
∫ 1

0
h1(τ )h2(1 – τ ) dτ

≤
[F∗(u,γ ) + F∗(ϑ ,γ )

2
+ h1(τ )h2(1 – τ )

(
F∗(u,γ ) + F∗(ϑ ,γ )

)]

·
∫ 1

0
h1(τ )h2(1 – τ ) dτ

=
[
F∗(u,γ ) + F∗(ϑ ,γ )

][1
2

+ h1

(
1
2

)
h2

(
1
2

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ

=
[
F∗(u,γ ) + F∗(ϑ ,γ )

][1
2

+ h1

(
1
2

)
h2

(
1
2

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ ,

that is,

1
4[h1( 1

2 )h2( 1
2 )]2

F
(

u + ϑ

2

)

� �2 � 1
ϑ – u

(FR)
∫ ϑ

u
F (x) dx � �1

�
[
F (u) +̃ F (ϑ)

][1
2

+ h1

(
1
2

)
h2

(
1
2

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ ,

hence the result follows. �

Example 3 If we consider h1(τ ) = τ , h2(τ ) ≡ 1, for τ ∈ [0, 1], and the fuzzy-interval-valued
function F : [u,ϑ] = [0, 2] → FC(R) defined by Fγ (x) = [2γ x2, (4 – 2γ )x2], as in Example 2,
then F (x) is and (h1, h2)-convex fuzzy-interval-valued function satisfying inequality (15).
We have F∗(x,γ ) = γ x and F∗(x,γ ) = (4 – 2γ )x. We now compute the following:

[
F∗(u,γ ) + F∗(ϑ ,γ )

][1
2

+ h1

(
1
2

)
h2

(
1
2

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ = 4γ ,

[
F∗(u,γ ) + F∗(ϑ ,γ )

][1
2

+ h1

(
1
2

)
h2

(
1
2

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ = 4(2 – γ ),

�1∗ =
[F∗(u,γ ) + F∗(ϑ ,γ )

2
+ F∗

(
u + ϑ

2
,γ

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ = 3γ ,

�1
∗ =

[F∗(u,γ ) + F∗(ϑ ,γ )
2

+ F∗
(

u + ϑ

2
,γ

)]∫ 1

0
h1(τ )h2(1 – τ ) dτ = 3(2 – γ ),

�2∗ =
1

4[h1( 1
2 )h2( 1

2 )]2

[
h1

(
1
2

)
h2

(
1
2

)
F∗

(
3u + ϑ

4
,γ

)

+ h1

(
1
2

)
h2

(
1
2

)
F∗

(
u + 3ϑ

4
,γ

)]
=

5
2
γ ,

�2
∗ =

1
4[h1( 1

2 )h2( 1
2 )]2

[
h1

(
1
2

)
h2

(
1
2

)
F∗

(
3u + ϑ

4
,γ

)

+ h1

(
1
2

)
h2

(
1
2

)
F∗

(
u + 3ϑ

4
,γ

)]
=

5
2

(2 – γ ).
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Then we obtain

2γ ≤ 5
2
γ ≤ 8γ

3
≤ 3γ ≤ 4γ ,

2(2 – γ ) ≤ 5
2

(2 – γ ) ≤ 8(2 – γ )
3

≤ 3(2 – γ ) ≤ 4(2 – γ ).

Hence, Theorem 8 is verified.

Theorem 9 Let F ,J : [u,ϑ] → FC(R) be two (h1, h2)-convex fuzzy-interval-valued func-
tions with h1, h2 : [0, 1] →R

+ and h1( 1
2 )h2( 1

2 ) �= 0, whose γ -levels define the family of inter-
val valued functions Fγ ,Jγ : [u,ϑ] ⊂ R → K+

C given by Fγ (x) = [F∗(x,γ ),F∗(x,γ )] and
Jγ (x) = [J∗(x,γ ),J ∗(x,γ )] for all x ∈ [u,ϑ] and for all γ ∈ [0, 1]. If F , J and FJ ∈
IR([u,ϑ],γ ), then

1
ϑ – u

(FR)
∫ ϑ

u
F (x)J (x) dx

�M(u,ϑ)
∫ 1

0

[
h1(τ )h2(1 – τ )

]2 dτ +̃ N (u,ϑ)
∫ 1

0
h1(τ )h2(τ )h1(1 – τ )h2(1 – τ ) dτ ,

where M(u,ϑ) = F (u)J (u) +̃ F (ϑ)J (ϑ), N (u,ϑ) = F (u)J (ϑ) +̃ F (ϑ)J (u), and Mγ (u,
ϑ) = [M∗((u,ϑ),γ ),M∗((u,ϑ),γ )] and Nγ (u,ϑ) = [N∗((u,ϑ),γ ),N ∗((u,ϑ),γ )].

Example 4 We consider h1(τ ) = τ , h2(τ ) ≡ 1, for τ ∈ [0, 1], and the fuzzy-interval-valued
functions F ,J : [u,ϑ] = [0, 1] → FC(R) defined by

F (x)(σ ) =

⎧⎪⎪⎨
⎪⎪⎩

σ

2x2 , σ ∈ [0, 2x2],
4x2–σ

2x2 , σ ∈ (2x2, 4x2],

0, otherwise,

J (x)(σ ) =

⎧⎪⎪⎨
⎪⎪⎩

σ
x , σ ∈ [0, x],
2x–σ

x , σ ∈ (x, 2x],

0, otherwise.

Then, for each γ ∈ [0, 1], we have Fγ (x) = [2γ x2, (4 – 2γ )x2] and Jγ (x) = [γ x, (2 – γ )x].
Since the end point functions F∗(x,γ ) = 2γ x2, F∗(x,γ ) = (4 – 2γ )x2 and J∗(x,γ ) = γ x,
J ∗(x,γ ) = (2 – γ )x are (h1, h2)-convex functions for each γ ∈ [0, 1], F , J are also (h1, h2)-
convex fuzzy-interval-valued functions. We now compute the following:

1
ϑ – u

∫ ϑ

u
F∗(x,γ )J∗(x,γ ) dx =

∫ 1

0
(γ x) dx =

γ 2

2
,

1
ϑ – u

∫ ϑ

u
F∗(x,γ )J ∗(x,γ ) dx =

∫ 1

0

(
(4 – 2γ )x2)((2 – γ )u

)
dx =

(2 – γ )2

2
,

M∗
(
(u,ϑ),γ

)∫ 1

0

[
h1(τ )h2(1 – τ )

]2 dτ =
2γ 2

3
,

M∗((u,ϑ),γ
)∫ 1

0

[
h1(τ )h2(1 – τ )

]2 dτ =
2(2 – γ )2

3
,
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N∗
(
(u,ϑ),γ

)∫ 1

0
h1(τ )h2(τ )h1(1 – τ )h2(1 – τ ) dτ = 0,

N ∗((u,ϑ),γ
)∫ 1

0
h1(τ )h2(τ )h1(1 – τ )h2(1 – τ ) dτ = 0,

for each γ ∈ [0, 1], which means

γ 2

2
≤ 2γ 2

3
+ 0 =

2γ 2

3
,

(2 – γ )2

2
≤ 2(2 – γ )2

3
+ 0 =

2(2 – γ )2

3
,

hence Theorem 9 is demonstrated.

Theorem 10 LetF ,J : [u,ϑ] → FC(R) be two (h1, h2)-convex fuzzy-interval-valued func-
tions with h1, h2 : [0, 1] →R

+ and h1( 1
2 )h2( 1

2 ) �= 0, whose γ -levels define the family of inter-
val valued functions Fγ ,Jγ : [u,ϑ] ⊂ R → K+

C given by Fγ (x) = [F∗(x,γ ),F∗(x,γ )] and
Jγ (x) = [J∗(x,γ ),J ∗(x,γ )] for all x ∈ [u,ϑ] and for all γ ∈ [0, 1]. If F , J and FJ ∈
IR([u,ϑ],γ ), then

1
2[h1( 1

2 )h2( 1
2 )]2

F
(

u + ϑ

2

)
J

(
u + ϑ

2

)

� 1
ϑ – u

(FR)
∫ ϑ

u
F (x)J (x) dx +̃ N (u,ϑ)

∫ 1

0

[
h1(τ )h2(1 – τ )

]2 dτ

+̃ M(u,ϑ)
∫ 1

0
h1(τ )h2(τ )h1(1 – τ )h2(1 – τ ) dτ ,

where M(u,ϑ) = F (u)J (u) +̃ F (ϑ)J (ϑ), N (u,ϑ) = F (u)J (ϑ) +̃ F (ϑ)J (u), and Mγ (u,
ϑ) = [M∗((u,ϑ),γ ),M∗((u,ϑ),γ )] and Nγ (u,ϑ) = [N∗((u,ϑ),γ ),N ∗((u,ϑ),γ )].

Proof By hypothesis, for each γ ∈ [0, 1], we have

F∗
(

u + ϑ

2
,γ

)
J∗

(
u + ϑ

2
,γ

)
,

F∗
(

u + ϑ

2
,γ

)
J ∗

(
u + ϑ

2
,γ

)

≤
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣F∗

(
τu + (1 – τ )ϑ ,γ

)
J∗

(
τu + (1 – τ )ϑ ,γ

)
+ F∗

(
τu + (1 – τ )ϑ ,γ

)
J∗

(
(1 – τ )u + τϑ ,γ

)
⎤
⎦

+
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣F∗

(
(1 – τ )u + τϑ ,γ

)
J∗

(
τu + (1 – τ )ϑ ,γ

)
+ F∗

(
(1 – τ )u + τϑ ,γ

)
J∗

(
(1 – τ )u + τϑ ,γ

)
⎤
⎦

≤
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣F∗(τu + (1 – τ )ϑ ,γ

)
J ∗(τu + (1 – τ )ϑ ,γ

)
+ F∗(τu + (1 – τ )ϑ ,γ

)
J ∗((1 – τ )u + τϑ ,γ

)
⎤
⎦

+
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣F∗((1 – τ )u + τϑ ,γ

)
J ∗(τu + (1 – τ )ϑ ,γ

)
+ F∗((1 – τ )u + τϑ ,γ

)
J ∗((1 – τ )u + τϑ ,γ

)
⎤
⎦
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≤
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣F∗

(
τu + (1 – τ )ϑ ,γ

)
J∗

(
τu + (1 – τ )ϑ ,γ

)
+ F∗

(
(1 – τ )u + τϑ ,γ

)
J∗

(
(1 – τ )u + τϑ ,γ

)
⎤
⎦

+
[

h1

(
1
2

)
h2

(
1
2

)]2

⎡
⎢⎢⎢⎢⎢⎢⎣

(
h1(τ )h2(1 – τ )F∗(u,γ ) + h1(1 – τ )h2(τ )F∗(ϑ ,γ )

)
(
h1(1 – τ )h2(τ )J∗(u,γ ) + h1(τ )h2(1 – τ )J∗(ϑ ,γ )

)
+

(
h1(1 – τ )h2(τ )F∗(u,γ ) + h1(τ )h2(1 – τ )F∗(ϑ ,γ )

)
(
h1(τ )h2(1 – τ )J∗(u,γ ) + h1(1 – τ )h2(τ )J∗(ϑ ,γ )

)

⎤
⎥⎥⎥⎥⎥⎥⎦

≤
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣F∗(τu + (1 – τ )ϑ ,γ

)
J ∗(τu + (1 – τ )ϑ ,γ

)
+ F∗((1 – τ )u + τϑ ,γ

)
J ∗((1 – τ )u + τϑ ,γ

)
⎤
⎦

+
[

h1

(
1
2

)
h2

(
1
2

)]2

⎡
⎢⎢⎢⎢⎢⎢⎣

(
h1(τ )h2(1 – τ )F∗(u,γ ) + h1(1 – τ )h2(τ )F∗(ϑ ,γ )

)
(
h1(1 – τ )h2(τ )J ∗(u,γ ) + h1(τ )h2(1 – τ )J ∗(ϑ ,γ )

)
+

(
h1(1 – τ )h2(τ )F∗(u,γ ) + h1(τ )h2(1 – τ )F∗(ϑ ,γ )

)
(
h1(τ )h2(1 – τ )J ∗(u,γ ) + h1(1 – τ )h2(τ )J ∗(ϑ ,γ )

)

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣F∗

(
τu + (1 – τ )ϑ ,γ

)
J∗

(
τu + (1 – τ )ϑ ,γ

)
+ F∗

(
(1 – τ )u + τϑ ,γ

)
J∗

(
(1 – τ )u + τϑ ,γ

)
⎤
⎦

+ 2
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣h1(τ )h2(τ )h1(1 – τ )h2(1 – τ )M∗

(
(u,ϑ),γ

)
+

[
h1(τ )h2(1 – τ )

]2N∗
(
(u,ϑ),γ

)
⎤
⎦

=
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣F∗(τu + (1 – τ )ϑ ,γ

)
J ∗(τu + (1 – τ )ϑ ,γ

)
+ F∗((1 – τ )u + τϑ ,γ

)
J ∗((1 – τ )u + τϑ ,γ

)
⎤
⎦

+ 2
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣h1(τ )h2(τ )h1(1 – τ )h2(1 – τ )M∗((u,ϑ),γ

)
+

[
h1(τ )h2(1 – τ )

]2N ∗((u,ϑ),γ
)

⎤
⎦ ,

that is,

=
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣F

(
τu + (1 – τ )ϑ

)
J

(
τu + (1 – τ )ϑ

)
+ F

(
(1 – τ )u + τϑ

)
J

(
(1 – τ )u + τϑ

)
⎤
⎦

+̃ 2
[

h1

(
1
2

)
h2

(
1
2

)]2
⎡
⎣h1(τ )h2(τ )h1(1 – τ )h2(1 – τ )M(u,ϑ)

+
[
h1(τ )h2(1 – τ )

]2N (u,ϑ)

⎤
⎦ ,

FR-integrating over [0, 1], we have

1
2[h1( 1

2 )h2( 1
2 )]2

F
(

u + ϑ

2

)
J

(
u + ϑ

2

)

� 1
ϑ – u

(FR)
∫ ϑ

u
F (x)J (x) dx +̃ N (u,ϑ)

∫ 1

0

[
h1(τ )h2(1 – τ )

]2 dτ

+̃ M(u,ϑ)
∫ 1

0
h1(τ )h2(τ )h1(1 – τ )h2(1 – τ ) dτ ,

hence the required result follows. �
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Example 5 If we consider h1(τ ) = τ , h2(τ ) ≡ 1, for τ ∈ [0, 1], and the fuzzy-interval-
valued functions F ,J : [u,ϑ] = [0, 1] → FC(R) defined, for each γ ∈ [0, 1], by Fγ (x) =
[2γ x2, (4 – 2γ )x2] and Jγ (x) = [γ x, (2 – γ )x], as in Example 4, then F , J both are (h1, h2)-
convex fuzzy-interval-valued functions. We have F∗(x,γ ) = 2γ x2, F∗(x,γ ) = (4 – 2γ )x2,
and J∗(x,γ ) = γ x, J ∗(x,γ ) = (2 – γ )x. We now compute the following:

1
2[h1( 1

2 )h2( 1
2 )]2

F∗
(

u + ϑ

2
,γ

)
J∗

(
u + ϑ

2
,γ

)
=

γ 2

4
,

1
2[h1( 1

2 )h2( 1
2 )]2

F∗
(

u + ϑ

2
,γ

)
J ∗

(
u + ϑ

2
,γ

)
=

(2 – γ )2

4
,

1
ϑ – u

∫ ϑ

u
F∗(x,γ )J∗(x,γ ) dx =

γ 2

2
,

1
ϑ – u

∫ ϑ

u
F∗(x,γ )J ∗(x,γ ) dx =

(2 – γ )2

2
,

N∗
(
(u,ϑ),γ

)∫ 1

0

[
h1(τ )h2(1 – τ )

]2 dτ = 0,

N ∗((u,ϑ),γ
)∫ 1

0

[
h1(τ )h2(1 – τ )

]2 dτ = 0,

M∗
(
(u,ϑ),γ

)∫ 1

0
h1(τ )h2(τ )h1(1 – τ )h2(1 – τ ) dτ =

γ 2

3
,

M∗((u,ϑ),γ
)∫ 1

0
h1(τ )h2(τ )h1(1 – τ )h2(1 – τ ) dτ =

(2 – γ )2

3
,

for each γ ∈ [0, 1], which means

γ 2

4
≤ γ 2

2
+ 0 +

γ 2

3
=

5γ 2

6
,

(2 – γ )2

4
≤ (2 – γ )2

2
+ 0 +

(2 – γ )2

3
=

5(2 – γ )2

6
,

hence the result follows.

4 Conclusion
In this work, we introduce the concept of (h1, h2)-convex fuzzy-interval-valued func-
tions. With the new concept, we construct new versions of Hermite–Hadamard inequali-
ties, called fuzzy-interval Hermite–Hadamard-type inequalities for (h1, h2)-convex fuzzy-
interval-valued functions by means of a fuzzy order relation. Some special cases are also
discussed, which can be viewed as applications. Useful examples that verify the applicabil-
ity of the theory developed in this study are presented. We intend to use various types of
convex fuzzy-interval-valued functions to construct fuzzy-interval inequalities for fuzzy-
interval-valued functions. The concepts and techniques of this paper may be a starting
point for further research in this area.
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