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1 Introduction

For more than a quarter century, the theory of time scales, whose founder was German
mathematician Stefan Hilger [1], played an important role in differential calculus, differ-
ence calculus, and quantum calculus. Later, this theory was quickly developed by many
mathematicians, who added many innovations to the literature by using integral-type in-
equalities and dynamic equations on time scales [2—-12]. Wong et al. [6, 7] expressed some
integral equations on time scales. Ozkan et al. [10] demonstrated extensions of some in-
tegral inequalities on time scales. Yang [13] obtained a extension of ¢, -integral Holder’s
inequality. Georgiev et al. [14] demonstrated two dimensional integral inequalities on time
scales. Anderson [15, 16] demonstrated some dynamic integral inequalities in two inde-
pendent variables on time scales. Tuna and Kutukcu [17] reached some general conclu-
sions about Hardy’s integral inequalities by using Holder inequalities with delta integral
on time scales. Chen [18] demonstrated some generalizations of the Minkowski’s integral
inequality. Akin [19] showed new properties of fractional inequalities by using fractional
maximal integral operators and synchronous functions on time scales. Recently, numerous
applications have had an accelerating effect on the development of mathematical inequali-
ties. These applications also attracted the attention of researchers from various disciplines,
for example, quantum mechanics, phsical problems, wave equations, heat transfer, and
economic problems [20-24].

The organization of this paper is as follows. In Sect. 2, we give necessary definitions,
lemmas, and theorems. In Sect. 3, we demonstrate some innovations of n-dimensional
Minkowski’s integral-type inequalities on time scales via {,-integral.
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2 Mathematical background
Let us give basic information about time scales in general. For more detailed information,
we refer the readers to [1-38].

The time scale T is a nonempty closed subset of R. [4, b] is an arbitrary interval on time
scale T, and by [a, b]r we denote [a,b] N T.

Definition 2.1 ([31]) The mappingso,p: T — T definedby o (¢) = inf{s € T : s> t}, p(¢) =
sup{s € T :s >t} for ¢t € T. Respectively, o (¢) is the forward jump operator and p(¢) is the

backward jump operator.

If o (¢) > ¢, then t is right-scattered, and if o' (t) = ¢, then ¢ is called right-dense. If p(t) < ¢,
then t is left-scattered, and if p(f) = ¢, then ¢ is called left-dense.

Definition 2.2 ([31]) The mappings p, 9 : T — R* defined as u(t) = o () —t, 9 () = t— p(¢)

are called graininess mappings.

If T has a left-scattered maximum 1, then T = T — {m}. Otherwise, T = T. Briefly,

T\ (psupT,supT] if supT < oo,

T =
T if sup T = oco.
Similarly,
T T\ [infT,o (infT)], [infT| < oo,
=

T, infT = —o0.

Let #1: T — R, and let ¢ € T* (¢ # minT). If & is A-differentiable at point ¢, then / is
continuous at point ¢, and if / is left continuous at point ¢ and ¢ is right-scattered, then 4

is A-differentiable at point ¢, and

he () — h(t
OG0
wu(t)
Let ¢ be right-dense. If /1 is A-differentiable at point ¢ and lim,_,, %, then
h(t) - h(s)

K2 () = lim —————=,
s—t t—s
and if /1 is A-differentiable at point ¢, then 4° (£) = h(t) + u(£)h* (£).
Remark 2.3 If T =R, then #2(¢) = ¥ (¢), and if T = Z, then #*(¢) reduces to Ah(z).

Letne N.Fori={1,2,...,n}, we denote by T; a time scale.

Definition 2.4 ([14]) The set 8" =Ty x Ty x --- x T, = {t = (t1,t2,...,t,) : &; € T,i =
1,2,...,n} is called an n-dimensional time scale.
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Definition 2.5 ([14]) For a = (a1,4y,...,a,) € R" and b = (b1, b,,...,b,) € R”, we write
a > bwhenevera; > b; foralli=1,2,...,n.

Definition 2.6 ([25]) If H: T — R is a A-antiderivative of #: T — R, then H* = h(¢) for
all £ € T, and we define the A-integral of /1 by

/th(r)At =H(t) - H(s)
fors,t € T.

Proposition 2.7 ([25]) Let u,v,a,t € T and c e R.Iff(y) and g(y) are A-integrable func-
tions on [u, V], then the following statements are valid:
0 LU0)+e0NAy = [Lf Ay + [,e()Ay,
(i) [, Ay =c [, f()Ay,
(i) [, /Ay == ['f(r)Ay,
W) [,f0)AY = [,f0)AY + [, f(1)Ay,
v [ f(y)Ay =o0.

Lemma 2.8 ([25]) Let u,v,«,t € T with u < v. Suppose that h(y), g(y) are A-integrable
functions on [u,v]r. Then we have

(@) Ifh(y) =0 forally € [u,v]r, then fuv h(y)Ay >0,

(b) Ifh(y) <g(y) forall y € [u,vlr, then [ h(y)Ay < [ g(y)Ay,

(©) Ifh(y)=0forall y € [u,vly, then h(y)=0 zﬁ"fuv h(y)Ay =0.

Definition 2.9 ([25]) Let 4 : Ty — R be V-differentiable at ¢ € Ty. If £ > 0, then there
exists a neighborhood V of ¢ such that

|1(p(8)) = h(s) = KV () (p() - s)| < &|p(t) -
forallse V.

Definition 2.10 ([25]) Let H: T — R be a V-antiderivative of 1: T — R. Then we define

/th(t)Vt = H(t) — H(s)
foralls,t e T.
Let f(t) be differentiable on T for all £ € T. Then we define £« (t) by
fo@=af 50 + 1 -a)f ¥ (@)
forO0<a<1.

Proposition 2.11 ([25]) Iff,h: T — R are Oy -differentiable for all o,t € T, then
(i) f+h:T — Ris Qq-differentiable for t € T with

(f +B)(6) = O () + h% (2).
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(ii) Fork € R, kf : T — R is Oo-differentiable for all o, t € T with
(kF)O= () = kf (1),

(iii) fl: T — R is Qo-differentiable for all ., t € T with
(O (&) = £ O (B)h(e) + of " (VB (8) + (1 = ) ()" (8).

Definition 2.12 ([25]) For «,b,t € Tand f: T — R, we have

[ 1005 =a [ 6185+ 1-a) [ 6105
forO<a<1.

Definition 2.13 ([31, p. 6]) Iff € C,4(T,R) and ¢ € T, then we have

o(t)
f FOAT = n(Bf ).

Theorem 2.14 ([31, Theorem 1.1.2]) Iff is A-integrable on [a, D], then |f| is A-integrable
onla,b), and | [} f(1)Ay| <[] IF()|Ay.

Theorem 2.15 ([38]) If two functions g,h: 1 — R are A-integrable on I = [a,b] € T with
O<l<gl, W <L<oo.Ifp>1,then we have

b , b 5o L\F[ [ 5
(/a ’g(y)’pA)/) +(/‘Z ‘h()/)’pAJ/> 52(7) </; |g(y)+h(y)’pAy> .

3 Main results

In this section, we state and prove our main results.

Theorem 3.1 Iftwo mappings g,h:1 — R are O4-integrable on I =[a,b] € T with0< 1 <
g, WP <L <oo,p>1,then we have

b ; b i
(/ Ig(y)lpoay> +(f Ih(y)|p<>a)/>

Lo ;
<2 257) ([ lemsmmPour ) (1)

Proof We know that (Theorem 3.1, [38]) if 0 </ < g” < L < 00, then
1 1
Ir <g<Lb. 2)
Similarly, if 0 </ < /#” < L < 00, then

P <h<Lp. ®3)
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Multiplying both sides of inequalities (2) and (3) by ( fab |g(y)|1’<>ay)ll’

(fab [h(Y) 1P Ou y)!l’ , respectively, we have

11 b }7 1 b 1%
(p—l)"lp</ \g(y)!poay> SLP(f |g(y)|’”<>ay>

1 1 b P%
<p?Lv (/ lg(y) + h(y)}poay)

and

11 b 5 1 b 7
(p—l)p1n< / |h<y)|"<>ay) su( / |h<y)|‘“<>ay)

1 1 b }9
<p?L? </ g(y) + h()/)l”%)/) :

Now, if we add inequalities (4) and (5) to each other, then we have

L b 7 b v
<p—1>fﬁ[< f |g<y)|"<>ay> +( / |g(y>|”<>ay) ]

1
p

1 1 b
<2prLr (/ lg(y) + h(y)|’”<>ay) :

Thus we have proved inequality (1).

and

(5)

(6)

O

Theorem 3.2 Let g,h : [a1,b1] X [a1,b1] X -+ X [a;,b;] — R be rd-continuous for I =

[a;, b)) e T, 1<i<n.lIfp>1,then we have

b1 by bi 7
(/ f / \g(yl,yz,m,m)+h(y1,yz,m,yi)\p<>an>
a an a;
p L1 b1 by b; » ,l;
< 2 r e ) yeeer Vi a Vi
<%0 P[(/al /ﬂz /ai lgvi, 2 )0 J/;)
b1 by b; ) ;
+ (/ / / |h()/1:7/2~--,3/i)| anz’) i|
ail a aj

forl<i<n.

@)

Proof Let g,k : [ay,b1] X [a1,b1] X -+ X [a;,b;] — R be rd-continuous and finite for

la;,b;] € T; C R. We know that [36]

lg(v,0) + h(y,0)| < |g(y,0)| + |n(y,0)].

Taking the pth power of both sides, we obtain

|g()’1,7/2,m, Y +h(yi,va,-- s Vi)|p = 2p_1[|g()/1,7/2,...,)/i)|p + |h(J/1, )/2,...,%')|p]

forl<i<n.

8)

)

Page 5 of 10
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Taking the two-dimensional {,-integral over [a;, b;] of both sides of inequality (9) and
the power of order 119, we obtain

by by b; 11_7
(/ / .../ |g()/1;1/2,m;7/i) +h()/1;)/2,~-,)/i)|p<>a)/i)
ay Jay a;
by phy b b
SR "oun)
< 215 gV, v V)| OaVi
(p_l) ai a aj | |
by pby b; » P%
+(/ / .../ |h()/1;)/2,u.,)/i)| ani) }'
a; Jay a;

Thus the proof of Theorem 3.2 is completed. d

Theorem 3.3 LetM((ylr V2reeos yi); (91) 921 o ,6[)), g(yl! V2reees yi)¢ h(gl; 921 ooy Qi)t (D(yl! Y2,
e Vi) W(01,0,,...,0;) be nonnegative functions, and let g,h : [ay,b1] x [a1,b1] x --- X
[ai,b;] — R be rd-continuous and finite for [a;, b;] € T; CR. Let

H(o,,0 6) /b1/b2 /bi M((Vlyl/z,...:Vi),(91,92,...,9i))<> y
1,92,...,Ui) = Y
l al ar a; \IJ(QI’QZP-')GL')p o

b b2 b M((y1, V2r -+ -» Vi) (01,6, ..., 6,))
K(J/l,)/zu..;l/i):/ / / 1; n i? == Oub;
al an a; (V ) VZ’-"ryi)

forla;, bl € T;CRand 1 <i<n.lIfp>1, then we have the following inequalities:

by by b;
(/ / / M(()/l,}/2,...,]/,‘),(91,92,...,9,‘))
ay as a;

X |1, V2r- s ¥i) + h(61,62,...,0) " Ouvi

by pby b;
+/ / "'/ M((VI:VZIH'ryl'),(elyebunei))
a; Jay a;

1

r
X |g(V1: V2seees VL) + h(elv 92’ e 9i)|p<>ot0i)

p 1 by by b;
= a [(f / / Oy, ¥2- - VIV K1, ¥25- -5 v2)
-1 o Je )
1

X |g(y1, sz-..,)/i)|p<>a)’i)p

b1 by b;
+(/ / / \11(91,92,...,Qi)pH(Gl,Qz,...,Qi)
a; Jay a;

1

» P
x |h(61,63,....0) [ 0ab; ) |, (10)
b1 by b;
f f / H(61,05,...,0) P (6y,6,,...,6,P1P)
al ay aj

by by bi p
X (/ / / M((VhJ/z,m,Vi),(91,92,~~~,9i))g()/1,J/2,~.,7/i)<>a1/i> o
a1 Jay a;

=
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p
S -1

X |g()’1>)/2,»-~,)/t)| anb (11)
b1 pby b;
/ / / I(()/l,)/z,...,yi)17p®(y1,yz,...,yi)p(lip)
al az aj

by b bi
X (f / / M((J/l,J/z,...,Vi),(91;92,..-,9i))
a1 Jay a;

»
X |g(91,92y«~:9i)|<>a'9i) QuVi

by
= (p 1) " / / lI’(91»92; )pH(el)QZ’ LS )

x |g(61,02...,6)|" Qubi. (12)

by
/ / CD(VI» ]/2, )Vl)pl<(yl) VZ: . yz)
ai

Proof First, let us prove inequality (10).

Let g, h: [a1,b1] X [a1,b1] X -+ X [a;,b;] = R be rd-continuous and finite for [a;,b;] €
T; C R, and let M((y1,¥2,---» i), (61,62,...,0;)) be nonnegative kernel functions. Let us
consider the equation

b1 by b;
(/ / f M((ybyZ:-~~ryi)1(01’02;---;9i))
al a a;

X |g()’1: 7/2!"'1%') +h(91792¢ |p<>ozyz

by by b;
+/ / / M((yl:yZ;'u!yi)!(01’921~'19i))
a1 Jay a;

1

iz
X |g()’1, V2o Vi) + 161,02, ~u9i)|p<>a9i>

_ (p’jl)((/:l /:2.../aibiM(()/l,)/Q,...,yi),(01,92,...,9,-))

‘g(yl,yz, SVDPWL Ve Vi) . h(yu v, V) W(61,0,...,6
yl) Y2r.. ;yz) \p(91$92!~-79i)

(/bl /bz / (1, V25, i), (01,03, ..., 67))

‘g(l/l, Y2reees yz')q)(yh Y2reees )’z) n h(yh Y2reees Vi)“lj(eheb .. -;91
(I)(Vly)/Zru':yi) \Ij(elrebuwei)

)

)

(13)

Applying the Minkowski inequality to the right side of inequality (13), by Theorem 3.2
we complete the proof of inequality (10).
Now let us prove inequality (11). Let us consider the equation

b1 by b;
f f / H(61,05,...,0) P (6y,6,,...,6,P1P)
al ay aj

b,‘ V2
X (/ M((J/b)/2,~-,J/i),(91»92,~~,9i))|g(1/1,Vz,.,,,yi)|<>al/i) Qi

Page 7 of 10
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P bi b b N
(p—l)/ / / M1 72571 (01,60,...,6)) 7
by by b; )
X (/ / / M((J/b)/2,...,)/1‘),9)|g()/1,)/2,...,yi)|<>ayi) Oub. (14)

Applying the Holder inequality to the right side of equality (14), we obtain

by pby b;
/ f / H(61,05,...,0) P (6y,6,...,6,P1P)
a as aj;

by by b,' p
x(/ f / M((yl,yz,.‘.,y,->,<91,92,...,ei))igm,yz,...,yi>|<>am) 0ubl

p by by b;
< M()/1,)/2,...,]/1'),(91,92,...,01')
(p_l) /al \/az /’;i ( )

b1 by b; }7 b by b; %
X |:<f / / |g(ylry2!~-7yi)’p<>ayi) (/ / / ani) i|<>oz0i

p by by b;
=< v M (yl)y2r~~-ryi):(91)92;“';61')
(p_ 1) /;1 /;2 ‘/;i ( )

b1 by bi 1%
x[(/ [ |g<y1,y2,...,yi)|"<>ay,-) }oa@

P by pby by ,
= —/ / / D1, V2 VK1 Var o V) |2V1 v2r - ) [ Qi
(P— 1) ay a a;

Thus we have completed the proof of Theorem 3.3. The reader can see the proof of
inequality (12), similar to the proof of inequality (11). d

Remark 3.4 Let f(017921---;9i); g(Vl; VZ;"')Vi); h(91:927---;0i)! q)(yl: VZ)'iji)! ‘11(91;92,
...,0;) be nonnegative functions. If we put

_ f(61,62,...,6), (Vi,ve..., V) <(01,02,...,6:),

M((Vl; V2reeos J/i), (01’ 92; o ,0;‘))
O’ (Vl: )’2v~¢)/i) > (91)927---;9i)1

and

_ f(el)eb'“rei)’ ()’1; VZ)H':J/Z') > (91’92,'“;@)1

M((Vl; V2reeos J/i), (61’92; .. .,0;‘))
O: (VI:VZ)"'¢VL') < (01’9%“"0[):

then the inequalities in Theorem 3.3 are provided.

4 Conclusion

Recently, the concept of inequalities in time scales has gained an important place in the
scientific literature. Mathematicians have emphasized many aspects of integral inequali-
ties. For example, transformations, inverse conversions, extensions, and so on. However,
we found that little work has been done on multidimensional inequalities in time scales.
In this paper, we proved some innovations of n-dimensional Minkowski’s {,-integral in-
equality in time scales. We think that our method is applicable to different integral-type
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inequalities as well. As a result, we predict that new versions of known inequalities may
be obtained.
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