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Abstract
In this paper, we aim to develop the averaging principle for stochastic differential
equations driven by G-Brownian motion (G-SDEs for short) with non-Lipschitz
coefficients. By the properties of G-Brownian motion and stochastic inequality, we
prove that the solution of the averaged G-SDEs converges to that of the standard one
in the mean-square sense and also in capacity. Finally, two examples are presented to
illustrate our theory.
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1 Introduction
The averaging principle for a dynamical system is important in problems of mechanics,
control, and many other areas. As is known to all, a lot of problems in theory of differential
systems can be solved effectively by the averaging principle. The first rigorous results were
obtained by Bogoliubov and Mitropolsky [3], and further developments were studied by
Hale [9]. With the developing of stochastic analysis theory, many authors began to study
the averaging principle for differential systems with perturbations and extended the av-
eraging theory to the case of stochastic differential equations (SDEs). We refer the reader
to Bao et al. [2], Chen et al. [5], Golec and Ladde [8], Khasminskii [11, 12], Liptser and
Stoyanov [14], Liu et al. [15], Stoyanov and Bainov [23], Wu and Yin [25], Xu et al. [28, 29],
Xu and Miao [26, 27], Luo et al. [16], and the references therein.

On the other hand, for the potential applications in uncertainty problems, risk measures,
and the superhedging in finance, the theory of nonlinear expectation has been developed.
Peng [20] established a framework of G-expectation theory and G-Brownian motion. De-
nis et al. [6] obtained some basic and important properties of several typical Banach spaces
of functions of G-Brownian motion paths induced by G-expectation. After that, the the-
ory of G-SDEs has drawn increasing attention and has been studied subsequently by many
authors. For example, Gao et al. [7] investigated the existence of the solution and large de-
viations for G-SDEs. Hu et al. [10] studied the regularity of the solution for the backward
SDEs driven by G-Brownian motion. Luo and Wang [17] studied the sample solution of
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G-SDEs and obtained a new kind of comparison theorem. In the G-framework, Zhang
and Chen [31] considered the quasi-sure exponential stability of semi-linear G-SDEs. By
means of G-Lyapunov function method, Li et al. [13], Ren et al. [22], and Yin et al. [30]
established the moment stability and the quasi-sure stability for nonlinear G-SDEs.

Compared with classical Brownian motion, the structure of G-Brownian motion is
very complex. G-Brownian motion is not defined on a probability space but on the G-
expectation space. A natural question is as follows: Is there an averaging principle for SDEs
driven by G-Brownian motion? In this paper, we shall investigate the averaging principle
of nonlinear G-SDEs

dx(t) = f
(
t, x(t)

)
dt + h

(
t, x(t)

)
d〈B〉t + g

(
t, x(t)

)
dBt , (1.1)

where Bt is one-dimensional G-Brownian motion, 〈B〉t is the quadratic variation process
of the G-Brownian motion Bt . Our main objective is to show that the solution of the aver-
aged equation converges to that of the standard equation in the sense of mean square and
capacity.

It is worth noting that most existing works of research on the averaging principle of SDEs
require that the coefficients of SDEs are global Lipschitz continuous. In fact, the global
Lipschitz condition imposed on [5, 8, 11, 14, 16, 23, 25, 28] is quite strong when one dis-
cusses practical applications in the real world. For the past few years, many scholars have
devoted themselves to finding some weaker conditions to study the averaging principle
of stochastic system. Recently, some works on the averaging principle of stochastic sys-
tem (see [18, 24, 29]) have been obtained under the Yamada–Watanabe condition: For any
x, y ∈ Rn and t ≥ 0,

∣∣f (t, x) – f (t, y)
∣∣2 ∨ ∣∣g(t, x) – g(t, y)

∣∣2 ≤ k
(|x – y|), (1.2)

where k(·) is a continuous increasing concave function from R+ to R+ such that k(0) = 0
and

∫
0+

1
k(x) dx = ∞. However, this condition is somewhat restrictive because it does re-

quire that the control function k(x) of the modules of the continuity of the coefficients is
concave, while this restriction excludes Eq. (4.4) of Example 4.3. In fact, f (t, x) of (4.4) does
not satisfy condition (1.2) because log x–1 < (log x–1)2 for x ≤ η. In this paper, we use the
non-Lipschitz condition which arose in the study of the Brownian motion on the group of
diffeomorphisms of the circle [1] to study the averaging principle for Eq. (1.1). Compared
with (1.2), one will find that in our paper the coefficients f , h, and g of Eq. (1.1) are not
assumed to be controlled by the concave functions. Thus, the conditions here are weaker
than those of [18, 24, 29], and some results in [18, 24, 29] are generalized and improved.

The rest of this paper is organized as follows. In Sect. 2, we introduce some preliminar-
ies about G-Brownian motion. In Sect. 3, we establish the stochastic averaging principle
of Eq. (1.1). By the Burkholder–Davis–Gundy inequality and some useful lemmas to be
established, we prove that the solution of the averaged equation will converge to that of
the standard equation in the sense of mean square and capacity. Finally, two illustrative
examples are given in Sect. 4.

2 Preliminaries
Let us first recall some basic definitions and lemmas about G-Brownian motions. For more
details, please see, e.g., [6, 7, 20].
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Let � be a given nonempty set, and let H be a linear space of real-valued functions
defined on �. We assume that H satisfies that c ∈H for any constant c and |X| ∈H for all
X ∈H.

Definition 2.1 A sublinear expectation E is a functional E : H → R satisfying
(i) Monotonicity: E[X] ≥ E[Y ] if X ≥ Y .

(ii) Constant preserving: E[C] = C for all C ∈ R.
(iii) Sub-additivity: E[X + Y ] ≤ E[X] + E[Y ].
(iv) Positive homogeneity: E[λX] = λE[X] for all λ ≥ 0.

The triple (�,H,E) is called a sublinear expectation space.

Definition 2.2 A random variable X on a sublinear expectation space (�,H,E) is called
G-normal distributed if

aX + bX̄ d=
√

a2 + b2X for a, b ≥ 0,

where X̄ is an independent copy of X, y d= z means y and z are identically distributed.

Definition 2.3 A process {Bt}t≥0 on a sublinear expectation space (�,H,E) is called a
G-Brownian motion if the following conditions are satisfied:

(i) B0 = 0.
(ii) For any t, s ≥ 0, the increment Bt+s – Bt is G-normal distributed.

(iii) For any n ≥ 1, 0 = t0 ≤ t1 ≤ · · · ≤ tn < ∞, the increment Btn – Btn–1 is independent
of Bt1 , Bt2 , . . . , Btn–1 .

Now, let � = C0(R+) be the space of all real-valued continuous paths (wt)t≥0 with w0 = 0
equipped with the distance

ρ
(
w1, w2) =

∞∑

k=1

2–k
((

max
t∈[0,k]

∣∣w1
t – w2

t
∣∣
)

∧ 1
)

, w1, w2 ∈ �.

Consider the canonical process Bt(w) = (wt)t≥0. For any T ≥ 0, we define

Lip(�T ) :=
{
ϕ(Bt1 , Bt2 , . . . , Btn ) : n ∈N, t1, t2, . . . , tn ∈ [0, T],ϕ ∈ Cb,Lip

(
Rn)}

and Lip(�) :=
⋃∞

n=1 Lip(�n), where Cb,Lip(Rn) is the space of all bounded, real-valued, and
Lipschitz continuous functions on Rn. Peng [20] defined the sublinear expectation Ê on
(�, Lip(�)) so that the canonical process Bt is a G-Brownian motion. This sublinear ex-
pectation is known as a G-expectation. For each p ≥ 1, Lp

G(�) denotes the completion of
Lip(�) under the norm ‖ · ‖p = (Ê| · |p)

1
p .

For a given pair of T > 0 and p ≥ 1, define

Mp,0
G (0, T) =

{

η : ηt(ω) =
N–1∑

i=0

ξi(ω)I[ti ,ti+1 (t), ξi ∈ Lp
G(�ti ), 0 = t0 < · · · < tN = T , N ≥ 1

}

.
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Denote by Mp
G(0, T) the completion of Mp,0

G (0, T) under the norm

‖η‖Mp
G(0,T) :=

(
Ê

∫ T

0
|ηt|p dt

) 1
p

.

Definition 2.4 For each η ∈ Mp,0
G (0, T), the Bochner integral and Itô integral are defined

by

∫ T

0
ηt dt =

N–1∑

i=0

ξi(ti+1 – ti) and
∫ T

0
ηt dBt =

N–1∑

i=0

ξi(Bti+1 – Bti ),

respectively.

Definition 2.5 ([20]) Let πN
t = {tN

0 , tN
1 , . . . , tN

N }, N = 1, 2, . . . , be a sequence of partitions of
[0, t]. For the G-Brownian motion, we define the quadratic variation process of Bt by

〈B〉t = lim
u(πN

t )→0

N–1∑

i=0

(BtN
i+1

– BtN
i

)2 = B2
t – 2

∫ t

0
Bs dBs,

where u(πN
t ) = max1≤i≤N |ti+1 – ti| → 0 as N → ∞.

Definition 2.6 Define a mapping M1,0
G (0, T)| → L1

G(�T ):

Q0,T (η) =
∫ T

0
ηt d〈B〉t :=

N–1∑

i=0

ξi
(〈B〉ti+1 – 〈B〉ti

)
.

Then Q0,T can be uniquely extended to M1
G(0, T). We still denote this mapping by

Q0,T (η) =
∫ T

0
ηt d〈B〉t , η ∈ M1

G(0, T).

Lemma 2.7 ([20]) Let p ≥ 1 and ηt ∈ Mp
G([0, T]), then we have

Ê

(∫ T

0
|ηt|p dt

)
≤

∫ T

0
Ê|ηt|p dt

and

Ê

(
sup

0≤t≤T

∣∣
∣∣

∫ t

0
ηs d〈B〉s

∣∣
∣∣

p)
≤ σ̄ 2pTp–1

∫ T

0
Ê|ηt|p dt,

where σ̄ 2 = Ê(X2).

Lemma 2.8 ([20]) Let p ≥ 1 and ηt ∈ M2
G([0, T]), then we have

Ê

(
sup

0≤t≤T

∣∣
∣∣

∫ t

0
ηs dBs

∣∣
∣∣

p)
≤ CpÊ

(∣∣
∣∣

∫ T

0
|ηt|2 d〈B〉t

∣∣
∣∣

p
2
)

.
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Let B(�) be a Borel σ -algebra of �. It was proved in [6] that there exists a weakly com-
pact family P of probability measures defined on (�,B(�)) such that

Ê(X) = sup
P∈P

EP(X), ∀X ∈ Lip(�).

Definition 2.9 The capacity Ĉ(·) associated with P is defined by Ĉ(A) = sup
P∈P P(A),

A ∈ B(�). A set A ⊂ � is called polar if Ĉ(A) = 0. A property is said to hold quasi-surely
(q.s.) if it holds outside a polar set.

Lemma 2.10 ([20]) Let X ∈ Lp
G and Ê|X|p < ∞ (p > 0). Then, for any δ > 0, we have

Ĉ
(|X| > δ

) ≤ Ê|X|p
δp .

3 Stochastic averaging principle
In this section, we study the averaging principle of G-SDEs. Let us consider the standard
form of Eq. (1.1):

xε(t) = xε(0) + ε

∫ t

0
f
(
s, xε(s)

)
ds +

√
ε

∫ t

0
h
(
s, xε(s)

)
d〈B〉s

+
√

ε

∫ t

0
g
(
s, xε(s)

)
dBs, q.s., (3.1)

with the initial condition xε(0) = x0 ∈ Rn. Here, f , h, g : R+ × Rn → Rn are given functions
and ε ∈ [0, ε0] is a positive small parameter with ε0 being a fixed number.

In this paper, the following hypotheses are imposed on the coefficients f , h, and g .

Assumption 3.1 For any x, y ∈ Rn and t ≥ 0,

∣∣f (t, x) – f (t, y)
∣∣ +

∣∣h(t, x) – h(t, y)
∣∣ ≤ L|x – y|k1

(|x – y|) (3.2)

and

∣∣g(t, x) – g(t, y)
∣∣2 ≤ L|x – y|2k2

(|x – y|), (3.3)

where L is a positive constant and ki(·) are two positive continuous functions bounded on
[1,∞) such that

lim
x↓0

ki(x)
log x–1 = ζi < ∞, i = 1, 2. (3.4)

Assumption 3.2 There exists a positive constant K such that

sup
t≥0

{∣∣f (t, 0)
∣∣ ∨ ∣∣h(t, 0)

∣∣ ∨ ∣∣g(t, 0)
∣∣} ≤ K . (3.5)

Let f̄ , h̄, ḡ : Rn → Rn be three functions, satisfying (3.2), (3.3), and (3.5) with respect to x.
We also assume that the following condition is satisfied.
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Assumption 3.3 There exists a positive bounded function ψ on R+ such that
limT1→∞ ψ(T1) = 0 and

1
T1

∫ T1

0

∣
∣f (t, x) – f̄ (x)

∣
∣2 dt +

1
T1

∫ T1

0

∣
∣h(t, x) – h̄(x)

∣
∣2 dt

+
1

T1

∫ T1

0

∣∣g(t, x) – ḡ(x)
∣∣2 dt ≤ ψ(T1)

(
1 + |x|2)

for T1 > 0, x ∈ Rn.

Then we have the averaging form of Eq. (3.1)

yε(t) = yε(0) + ε

∫ t

0
f̄
(
yε(s)

)
ds +

√
ε

∫ t

0
h̄
(
yε(s)

)
d〈B〉s

+
√

ε

∫ t

0
ḡ
(
yε(s)

)
dBs, q.s., (3.6)

where yε(0) = x0.

Remark 3.4 Under Assumptions 3.1–3.2, it is easy to conclude that the standard SDEs
driven by G-Brownian motion (3.1) and the averaged one (3.6) have a unique solution,
respectively (see Qiao [21]).

Now, we present our main results which are used for revealing the relationship between
the processes xε(t) and yε(t).

Theorem 3.5 Let Assumptions 3.1–3.3 hold. For a given arbitrary small number δ1 > 0
and arbitrary constants L̄ > 0, β ∈ ( 1

2 , 1), there exists a number ε1 ∈ (0, ε0] such that, for all
ε ∈ (0, ε1],

E
(

sup
t∈[0,L̄ε

1
2 –β ]

∣
∣xε(t) – yε(t)

∣
∣2

)
≤ δ1. (3.7)

In order to prove our main result, we need to introduce the following lemmas.

Lemma 3.6 ([19]) Let p ≥ 2 and a, b > 0. Then, for ε > 0,

ap–1b ≤ ε(p – 1)
p

ap +
1

pεp–1 bp (3.8)

and

ap–2b2 ≤ ε(p – 2)
p

ap +
2

pε
p–2

2
bp. (3.9)

Lemma 3.7 ([4]) Let ρ be a concave nondecreasing continuous function on R+ such that
ρ(0) = 0. Then γ (x) = ρr(x 1

s ) is also a concave nondecreasing continuous function on R+

with γ (0) = 0 for all s ≥ r ≥ 1.

In what follows, C > 0 is a constant which can change its value from line to line.
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Lemma 3.8 Let Assumptions 3.1 and 3.2 hold. Then, for every p ≥ 2,

Ê
∣∣yε(t)

∣∣p < ∞ on t ≥ 0. (3.10)

Proof By the G-Itô formula [20], we have

∣∣yε(t)
∣∣p =

∣∣yε(0)
∣∣p + pε

∫ t

0

∣∣yε(s)
∣∣p–2(yε(s)

)� f̄
(
yε(s)

)
ds

+ p
√

ε

∫ t

0

∣∣yε(s)
∣∣p–2(yε(s)

)�ḡ
(
yε(s)

)
dBs +

∫ t

0

(
p
√

ε
∣∣yε(s)

∣∣p–2(yε(s)
)�h̄

(
yε(s)

)

+
p(p – 1)

2
∣
∣yε(s)

∣
∣p–2∣∣√εḡ

(
yε(s)

)∣∣2
)

d〈B〉s, q.s. (3.11)

Let T > 0 be arbitrary. For any t1 ∈ [0, T], taking the G-expectation on both sides of (3.11),
one gets

Ê sup
0≤t≤t1

∣
∣yε(t)

∣
∣p ≤ |x0|p + pεÊ

∫ t1

0

∣
∣yε(s)

∣
∣p–2(yε(s)

)� f̄
(
yε(s)

)
ds

+ p
√

εÊ sup
0≤t≤t1

∫ t

0

∣∣yε(s)
∣∣p–2(yε(s)

)�ḡ
(
yε(s)

)
dBs

+ Ê sup
0≤t≤t1

∫ t

0

(
p
√

ε
∣∣yε(s)

∣∣p–2(yε(s)
)�h̄

(
yε(s)

)

+
p(p – 1)

2
∣
∣yε(s)

∣
∣p–2∣∣√εḡ

(
yε(s)

)∣∣2
)

d〈B〉s = |x0|p +
3∑

i=1

Ii. (3.12)

By (3.8) with ε = 1, we have

I1 ≤ pεÊ

∫ t1

0

∣
∣yε(s)

∣
∣p–1∣∣f̄

(
yε(s)

)∣∣ds ≤ εÊ

∫ t1

0

(
(p – 1)

∣
∣yε(s)

∣
∣p +

∣
∣f̄

(
yε(s)

)∣∣p)ds.

Further, using the basic inequality |a + b|p ≤ 2p–1(|a|p + |b|p) and Assumptions 3.1, 3.2, we
get

∣∣f̄
(
yε(s)

)∣∣p ≤ 2p–1(∣∣f̄
(
yε(s)

)
– f̄ (0)

∣∣p +
∣∣f̄ (0)

∣∣p) ≤ 2p–1(Lp∣∣yε(s)
∣∣pkp

1
(∣∣yε(s)

∣∣) + Kp).

Then

I1 ≤ ε(p – 1)Ê
∫ t1

0

∣
∣yε(s)

∣
∣p ds + ε2p–1Lp

Ê

∫ t1

0

∣
∣yε(s)

∣
∣pkp

1
(∣∣yε(s)

∣
∣)ds + ε2p–1KpT . (3.13)

For the term I2. By Lemmas 2.7, 2.8 and the Young inequality, we have

I2 ≤ Ê sup
0≤t≤t1

∣∣
∣∣

∫ t

0
p
√

ε
∣
∣yε(s)

∣
∣p–2(yε(s)

)�ḡ
(
yε(s)

)
dBs

∣∣
∣∣

≤ pCÊ

[∫ t1

0
ε
∣
∣yε(s)

∣
∣2p–2∣∣ḡ

(
yε(s)

)∣∣2 d〈B〉s

] 1
2
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≤ pCÊ

[
sup

0≤s≤t1

∣∣yε(s)
∣∣p

∫ t1

0
ε
∣∣yε(s)

∣∣p–2∣∣ḡ
(
yε(s)

)∣∣2 d〈B〉s

] 1
2

≤ 1
2
Ê sup

0≤s≤t1

∣∣yε(s)
∣∣p + pCεÊ

∫ t1

0

∣∣yε(s)
∣∣p–2∣∣ḡ

(
yε(s)

)∣∣2 d〈B〉s.

≤ 1
2
Ê sup

0≤s≤t1

∣∣yε(s)
∣∣p + pCσ̄ 2εÊ

∫ t1

0

∣∣yε(s)
∣∣p–2∣∣ḡ

(
yε(s)

)∣∣2 ds.

By (3.9) with ε = 1, we have

I2 ≤ 1
2
Ê sup

0≤s≤t1

∣∣yε(s)
∣∣p + (p – 2)Cσ̄ 2√εÊ

∫ t1

0

∣∣yε(s)
∣∣p ds + 2Cσ̄ 2√εÊ

∫ t1

0

∣∣ḡ
(
yε(s)

)∣∣p ds

≤ 1
2
Ê sup

0≤s≤t1

∣∣yε(s)
∣∣p + (p – 2)Cσ̄ 2√εÊ

∫ t1

0

∣∣yε(s)
∣∣p ds

+ 2Cσ̄ 2√εÊ

∫ t1

0

[
2
∣∣ḡ

(
yε(s)

)
– ḡ(0)

∣∣2 + 2
∣∣ḡ(0)

∣∣2] p
2 ds.

Using the basic inequality |a + b| p
2 ≤ 2

p
2 –1(|a| p

2 + |b| p
2 ) and Assumptions 3.1, 3.2, we get

I2 ≤ 1
2
Ê sup

0≤s≤t1

∣∣yε(s)
∣∣p + (p – 2)Cσ̄ 2√εÊ

∫ t1

0

∣∣yε(s)
∣∣p ds

+ 2Cσ̄ 2√εÊ

∫ t1

0

[
2L2∣∣yε(s)

∣∣2k2
(∣∣yε(s)

∣∣) + 2K2] p
2 ds

≤ 1
2
Ê sup

0≤s≤t1

∣
∣yε(s)

∣
∣p + (p – 2)Cσ̄ 2√εÊ

∫ t1

0

∣
∣yε(s)

∣
∣p ds

+ 2pCσ̄ 2Lp√εÊ

∫ t1

0

∣
∣yε(s)

∣
∣pk

p
2

2
(∣∣yε(s)

∣
∣)ds + 2pCσ̄ 2√εKpT . (3.14)

Similarly, we have

I3 ≤ σ̄ 2
Ê

∫ t1

0

(
p
√

ε
∣∣yε(s)

∣∣p–1∣∣h̄
(
yε(s)

)∣∣ +
p(p – 1)

2
ε
∣∣yε(s)

∣∣p–2∣∣ḡ
(
yε(s)

)∣∣2
)

ds

≤
[

(p – 1)
√

ε +
(p – 1)(p – 2)

2
ε

]
σ̄ 2

Ê

∫ t1

0

∣
∣yε(s)

∣
∣p ds

+ 2p–1σ̄ 2Lp√εÊ

∫ t1

0

∣∣yε(s)
∣∣pkp

1
(∣∣yε(s)

∣∣)ds

+ (p – 1)ε2p–1σ̄ 2Lp
Ê

∫ t1

0

∣
∣yε(s)

∣
∣pk

p
2

2
(∣∣yε(s)

∣
∣)ds

+
[√

ε + (p – 1)ε
]
2p–1KpT σ̄ 2. (3.15)

Inserting (3.13)–(3.15) into (3.12) yields

Ê sup
0≤t≤t1

∣
∣yε(t)

∣
∣p ≤ C1 + C2Ê

∫ t1

0

∣
∣yε(s)

∣
∣p ds + 2pσ̄ 2Lpε0Ê

∫ t1

0

∣
∣yε(s)

∣
∣pkp

1
(∣∣yε(s)

∣
∣)ds

+ 2p(C + p)σ̄ 2Lpε0Ê

∫ t1

0

∣
∣yε(s)

∣
∣pk

p
2

2
(∣∣yε(s)

∣
∣)ds, (3.16)
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where C1 = 2|x0|p + (C + p)2pKpT σ̄ 2ε0, C2 = 2p(1 + C + p)σ̄ 2ε0. By condition (3.4), we can
find a η ∈ (0, e–1) such that

∣
∣yε(s)

∣
∣pkp

1
(∣∣yε(s)

∣
∣) ≤ ρp

η

(∣∣yε(s)
∣
∣) and

∣
∣yε(s)

∣
∣pk

p
2

2
(∣∣yε(s)

∣
∣) ≤ ρ

p
2
η

(∣∣yε(s)
∣
∣2),

where ρη : R+ → R+ is a concave function given by

ρη(x) :=

⎧
⎨

⎩
x log x–1, x ≤ η,

η logη–1 + (logη–1 – 1)(x – η), x > η.
(3.17)

Hence, we have

Ê sup
0≤t≤t1

∣
∣yε(t)

∣
∣p ≤ C1 + C2Ê

∫ t1

0

∣
∣yε(s)

∣
∣p ds + 2pσ̄ 2Lpε0Ê

∫ t1

0
ρp

η

(∣∣yε(s)
∣
∣)ds

+ 2p(C + p)σ̄ 2Lpε0Ê

∫ t1

0
ρ

p
2
η

(∣∣yε(s)
∣
∣2)ds

≤ C1 + C2Ê

∫ t1

0

∣∣yε(s)
∣∣p ds + 2pσ̄ 2Lpε0Ê

∫ t1

0
ρp

η

((∣∣yε(s)
∣∣p) 1

p
)

ds

+ 2p(C + p)σ̄ 2Lpε0Ê

∫ t1

0
ρ

p
2
η

((∣∣yε(s)
∣
∣p) 2

p
)

ds.

Since ρη(·) is a concave nondecreasing continuous function on R+, then by Lemma 3.7 we
can conclude that ρ

p
η (.

1
p ) and ρ

p
2
η (·) 2

p are two concave nondecreasing continuous functions
on R+. Then, by the Jensen inequality, we obtain

Ê sup
0≤t≤t1

∣
∣yε(t)

∣
∣p ≤ C1 + C2Ê

∫ t1

0

∣
∣yε(s)

∣
∣p ds + 2pσ̄ 2Lpε0

∫ t1

0
ρp

η

((
Ê

∣
∣yε(s)

∣
∣p) 1

p
)

ds

+ 2p(C + p)σ̄ 2Lpε0

∫ t1

0
ρ

p
2
η

((
Ê

∣
∣yε(s)

∣
∣p) 2

p
)

ds.

By the properties of the concave function, we can find some positive constants a1, b1, a2,
b2 such that ρ

p
η (x

1
p ) ≤ a1 + b1x, ρ

p
2
η (x)

2
p ≤ a2 + b2x. Consequently,

Ê sup
0≤t≤t1

∣
∣yε(t)

∣
∣p ≤ C3 + C4

∫ t1

0
Ê sup

0≤s≤t

∣
∣yε(s)

∣
∣p dt,

where C3 = C1 + 2pLpε0a1T σ̄ 2 + 2p(C + p)Lpε0a2T σ̄ 2, C4 = C2 + 2pε0b1Lpσ̄ 2 + 2p(C +
p)Lpε0b2σ̄

2. Then the Gronwall inequality gives

Ê sup
0≤t≤T

∣∣yε(t)
∣∣p ≤ C3eC4T .

The proof is therefore complete. �
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Proof of Theorem 3.5 From (3.1) and (3.6), we have

xε(t) – yε(t) = ε

∫ t

0

[
f
(
s, xε(s)

)
– f̄

(
yε(s)

)]
ds +

√
ε

∫ t

0

[
h
(
s, xε(s)

)
– h̄

(
yε(s)

)]
d〈B〉s

+
√

ε

∫ t

0

[
g
(
s, xε(s)

)
– ḡ

(
yε(s)

)]
dBs q.s.

By the G-Itô formula [20], we have

∣
∣xε(t) – yε(t)

∣
∣2 =

∫ t

0
2ε

[
xε(s) – yε(s)

]�[
f
(
s, xε(s)

)
– f̄

(
yε(s)

)]
ds

+
∫ t

0
2
√

ε
[
xε(s) – yε(s)

]�[
g
(
s, xε(s)

)
– ḡ

(
yε(s)

)]
dBs

+
∫ t

0

(
2
√

ε
[
xε(s) – yε(s)

]�[
h
(
s, xε(s)

)
– h̄

(
yε(s)

)]

+ ε
∣∣g

(
s, xε(s)

)
– ḡ

(
yε(s)

)∣∣2)d〈B〉s q.s. (3.18)

Taking the expectation on both sides of (3.18), it follows that, for any u ∈ R+,

Ê sup
0≤t≤u

∣∣xε(t) – yε(t)
∣∣2 ≤ 2εÊ

∫ u

0

∣∣xε(s) – yε(s)
∣∣∣∣f

(
s, xε(s)

)
– f̄

(
yε(s)

)∣∣ds

+ 2
√

εÊ sup
0≤t≤u

∫ t

0

[
xε(s) – yε(s)

]�[
g
(
s, xε(s)

)
– ḡ

(
yε(s)

)]
dBs

+ Ê sup
0≤t≤u

∫ t

0

(
2
√

ε
[
xε(s) – yε(s)

]�[
h
(
s, xε(s)

)
– h̄

(
yε(s)

)]

+ ε
∣
∣g

(
s, xε(s)

)
– ḡ

(
yε(s)

)∣∣2)d〈B〉s =
3∑

i=1

Qi. (3.19)

By Assumption 3.1 and the basic inequality 2ab ≤ a2 + b2, we have

Q1 ≤ 2εÊ

∫ u

0

∣∣xε(s) – yε(s)
∣∣∣∣f

(
s, xε(s)

)
– f

(
s, yε(s)

)∣∣ds

+ 2εÊ

∫ u

0

∣
∣xε(s) – yε(s)

∣
∣
∣
∣f

(
s, yε(s)

)
– f̄

(
yε(s)

)∣∣ds

≤ 2LεÊ

∫ u

0

∣
∣xε(s) – yε(s)

∣
∣2k1

(∣∣xε(s) – yε(s)
∣
∣)ds + εÊ

∫ u

0

∣
∣xε(s) – yε(s)

∣
∣2 ds

+ εÊ

∫ u

0

∣∣f
(
s, yε(s)

)
– f̄

(
yε(s)

)∣∣2 ds.

Then Assumption 3.3 implies that

Q1 ≤ 2LεÊ

∫ u

0

∣∣xε(s) – yε(s)
∣∣2k1

(∣∣xε(s) – yε(s)
∣∣)ds

+ εÊ

∫ u

0

∣∣xε(s) – yε(s)
∣∣2 ds + εuψ(u)

(
1 + Ê sup

0≤s≤u

∣∣yε(s)
∣∣2

)
. (3.20)
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By Lemmas 2.7, 2.8 and the Young inequality, we get

Q2 ≤ C
√

εÊ

[∫ u

0

∣∣xε(s) – yε(s)
∣∣2∣∣g

(
s, xε(s)

)
– ḡ

(
yε(s)

)∣∣2 d〈B〉s

] 1
2

≤ C
√

εÊ

[
sup

0≤s≤u

∣
∣xε(s) – yε(s)

∣
∣2

∫ u

0

∣
∣g

(
s, xε(s)

)
– ḡ

(
yε(s)

)∣∣2 d〈B〉s

] 1
2

≤ 1
2
Ê sup

0≤s≤u

∣∣xε(s) – yε(s)
∣∣2 + Cσ̄ 2√εÊ

∫ u

0

∣∣g
(
s, xε(s)

)
– ḡ

(
yε(s)

)∣∣2 ds.

Similarly, by Assumptions 3.1 and 3.3, we have

Q2 ≤ 1
2
Ê sup

0≤s≤u

∣∣xε(s) – yε(s)
∣∣2 + 2Cσ̄ 2√εÊ

∫ u

0

∣∣g
(
s, xε(s)

)
– g

(
s, yε(s)

)∣∣2 ds

+ 2Cσ̄ 2√εÊ

∫ u

0

∣∣g
(
s, yε(s)

)
– ḡ

(
yε(s)

)∣∣2 ds

≤ 1
2
Ê sup

0≤s≤u

∣
∣xε(s) – yε(s)

∣
∣2 + 2Cσ̄ 2√εuψ(u)

(
1 + Ê sup

0≤s≤u

∣
∣yε(s)

∣
∣2

)

+ 2Cσ̄ 2L
√

εÊ

∫ u

0

∣
∣xε(s) – yε(s)

∣
∣2k2

(∣∣xε(s) – yε(s)
∣
∣)ds. (3.21)

By Lemma 2.7, Assumptions 3.1, 3.3, and the basic inequality 2ab ≤ a2 + b2, we have

Q3 ≤ σ̄ 2
Ê

∫ u

0

(
2
√

ε
∣
∣xε(s) – yε(s)

∣
∣
∣
∣h

(
s, xε(s)

)
– h̄

(
yε(s)

)∣∣

+ ε
∣
∣g

(
s, xε(s)

)
– ḡ

(
yε(s)

)∣∣2)ds

≤ 2Lσ̄ 2√εÊ

∫ u

0

∣∣xε(s) – yε(s)
∣∣2k1

(∣∣xε(s) – yε(s)
∣∣)ds

+ σ̄ 2√εÊ

∫ u

0

∣∣xε(s) – yε(s)
∣∣2 ds + σ̄ 2√εuψ(u)

(
1 + Ê sup

0≤s≤u

∣∣yε(s)
∣∣2

)

+ 2Lσ̄ 2εÊ

∫ u

0

∣∣xε(s) – yε(s)
∣∣2k2

(∣∣xε(s) – yε(s)
∣∣)ds

+ 2σ̄ 2εuψ(u)
(

1 + Ê sup
0≤s≤u

∣
∣yε(s)

∣
∣2

)
. (3.22)

Combining with (3.19)–(3.22), we get

1
2
Ê sup

0≤t≤u

∣
∣xε(t) – yε(t)

∣
∣2

≤ (
2Lε + 2Lσ̄ 2√ε

)
Ê

∫ u

0

∣∣xε(s) – yε(s)
∣∣2k1

(∣∣xε(s) – yε(s)
∣∣)ds

+
(
ε + σ̄ 2√ε

)
Ê

∫ u

0

∣∣xε(s) – yε(s)
∣∣2 ds

+
(
2Cσ̄ 2L

√
ε + 2Lσ̄ 2ε

)
Ê

∫ u

0

∣
∣xε(s) – yε(s)

∣
∣2k2

(∣∣xε(s) – yε(s)
∣
∣)ds

+
[(

1 + 2σ̄ 2)ε + (1 + 2C)σ̄ 2√ε
]
uψ(u)

(
1 + Ê sup

0≤s≤u

∣∣yε(s)
∣∣2

)
. (3.23)
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Similarly, by condition (3.4), we can find a η ∈ (0, e–1) such that

∣
∣xε(s) – yε(s)

∣
∣2ki

(∣∣xε(s) – yε(s)
∣
∣) ≤ ρη

(∣∣xε(s) – yε(s)
∣
∣2), i = 1, 2,

where ρη(·) is defined by (3.17). Consequently, by Lemma 3.8 and the boundedness of
ψ(u), we have

Ê sup
0≤t≤u

∣
∣xε(t) – yε(t)

∣
∣2

≤ 4L(1 + C)
(
1 + σ̄ 2)(ε +

√
ε)Ê

∫ u

0
ρη

(∣∣xε(s) – yε(s)
∣∣2)ds

+ 2
(
1 + σ̄ 2)(ε +

√
ε)Ê

∫ u

0

∣
∣xε(s) – yε(s)

∣
∣2 ds + 2(1 + 2C)

(
1 + 2σ̄ 2)M(ε +

√
ε)u

≤ C5(ε +
√

ε)
∫ u

0

(
Ê sup

0≤t≤s

∣
∣xε(t) – yε(t)

∣
∣2 + ρη

(
Ê sup

0≤t≤s

∣
∣xε(t) – yε(t)

∣
∣2

))
ds

+ C6(ε +
√

ε)u,

where C5 = 4L(1 + C)(1 + σ̄ 2) and C6 = 2(1 + 2C)(1 + 2σ̄ 2)M. Let ρ̃η(x) = x +ρη(x), we obtain
that

Ê sup
0≤t≤u

∣
∣xε(t) – yε(t)

∣
∣2 ≤ C5(ε +

√
ε)

∫ u

0
ρ̃η

(
Ê sup

0≤t≤s

∣
∣xε(t) – yε(t)

∣
∣2

)
ds

+ C6(ε +
√

ε)u. (3.24)

Obviously, ρ̃η(x) is a concave function on R+. Hence, by the properties of the concave
function, we can find a pair of positive constants a and b such that

ρ̃η(x) ≤ a + bx for any x ≥ 0.

Therefore, (3.24) will become

Ê sup
0≤t≤u

∣
∣xε(t) – yε(t)

∣
∣2 ≤ C5b(ε +

√
ε)

∫ u

0
Ê sup

0≤t≤s

∣
∣xε(t) – yε(t)

∣
∣2 ds

+ (C5a + C6)(ε +
√

ε)u.

Hence, the Gronwall inequality implies that

Ê sup
0≤t≤u

∣
∣xε(t) – yε(t)

∣
∣2 ≤ [

(C5a + C6)(ε +
√

ε)u
]
eC5b(ε+

√
ε)u.

Choose β ∈ ( 1
2 , 1) and L̄ > 0 such that, for every t ∈ [0, L̄ε

1
2 –β ] ⊆ R+,

Ê sup
0≤t≤L̄ε

1
2 –β

∣∣xε(t) – yε(t)
∣∣2 ≤ NL̄ε1–β ,
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where N = (C5a + C6)(1 + √
ε0)eC5bL̄(ε

3
2 –β

0 +ε
1–β
0 ). Consequently, given any number δ1 > 0, we

can choose ε1 ∈ (0, ε0] such that, for each ε ∈ (0, ε1] and for every t ∈ [0, L̄ε
1
2 –β ],

Ê

(
sup

t∈[0,L̄ε
1
2 –β ]

∣
∣xε(t) – yε(t)

∣
∣2

)
≤ δ1. (3.25)

This completes the proof. �

With Theorem 3.5, we can show the convergence in capacity between the processes xε(t)
and yε(t).

Theorem 3.9 Let Assumptions 3.1–3.3 hold. For a given arbitrary small number δ2 > 0
and arbitrary constants L̄ > 0, β ∈ ( 1

2 , 1), there exists a number ε1 ∈ [0, ε0] such that, for all
ε ∈ (0, ε1],

lim
ε→0

Ĉ

(
sup

0<t≤L̄ε
1
2 –β

∣∣xε(t) – yε(t)
∣∣ > δ2

)
= 0.

Proof By Lemma 2.10, for any given number δ2 > 0, we can obtain that

Ĉ

(
sup

0<t≤L̄ε
1
2 –β

∣∣xε(t) – yε(t)
∣∣ > δ2

)
≤ 1

δ2
2
Ê

(
sup

0<t≤L̄ε
1
2 –β

∣∣xε(t) – yε(t)
∣∣2

)
≤ NL̄ε1–β

δ2
2

.

Let ε → 0 and the required result follows. The proof is therefore complete. �

Remark 3.10 Let σ 2 = Ê(–X2), if σ 2 = σ̄ 2, then Eq. (1.1) will become SDEs which have
been studied by [8, 11, 14, 24]. Under our assumptions, we can obtain the convergence of
the averaged solution and the standard one to G-SDEs. Hence, the corresponding results
in [8, 11, 14, 24] are generalized and improved.

4 Examples
In this section, we construct two examples to illustrate our theory.

Remark 4.1 If we let k1(·) = k2(·) = 1, then Assumption 3.1 will reduce to the Lipschitz
condition: For any x, y ∈ Rn and t ≥ 0, there exists a positive constant L such that

∣∣f (t, x) – f (t, y)
∣∣ +

∣∣h(t, x) – h(t, y)
∣∣ ≤ L|x – y|

and

∣
∣g(t, x) – g(t, y)

∣
∣2 ≤ L|x – y|2.

Clearly, under the Lipschitz condition and Assumptions 3.2–3.3, we can conclude that
Theorems 3.5 and 3.9 also hold.

Example 4.2 Consider the linear SDEs driven by G-Brownian motion

dxε(t) = ε sin txε(t) dt +
√

ε sin txε(t) d〈B〉t + 2
√

ε sin2(t)xε(t) dBt , (4.1)
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with the initial data xε(0) = x0. Here,

f
(
t, xε(t)

)
= ε sin txε(t), h

(
t, xε(t)

)
=

√
ε sin txε(t), g

(
t, xε(t)

)
= 2

√
ε sin2 txε(t).

Let

f̄
(
yε(t)

)
=

1
π

∫ π

0
f
(
t, yε(t)

)
dt = εyε(t), h̄

(
yε(t)

)
=

1
π

∫ π

0
h
(
t, yε(t)

)
dt =

√
εyε(t)

and

ḡ
(
yε(t)

)
=

1
π

∫ π

0
g
(
t, yε(t)

)
dt =

√
εyε(t),

we obtain the corresponding averaged equation as follows:

dyε(t) = εyε(t) dt +
√

εyε(t) d〈B〉t +
√

εyε(t) dBt . (4.2)

Obviously, Eq. (4.2) is also a linear G-SDEs and its solution can be given by

yε(t) = x0 exp

(
εt +

(√
ε –

1
2
ε

)
〈B〉t +

√
εBt

)
. (4.3)

By Theorems 3.5 and 3.9, we can obtain that the solution of averaged G-SDEs (4.3) will
converge to that of the standard one (4.1) in the sense of mean square and in capacity.

Example 4.3 Consider the standard form of SDEs driven by G-Brownian motion

dxε(t) = ε cos2 t
∑

k≥1

sin(kxε(t))
k2 dt +

√
ε
∑

k≥1

sin(kxε(t))√
k3

dBt , (4.4)

with the initial data xε(0) = x0. Here,

f (t, x) = cos2 t
∑

k≥1

sin(kx)
k2 , h(t, x) = 0, and g(t, x) =

∑

k≥1

sin(kx)√
k3

.

Let

f̄
(
yε(t)

)
=

1
π

∫ π

0
f
(
t, yε(t)

)
dt =

1
2

∑

k≥1

sin(kyε(t))
k2

and

ḡ
(
yε(t)

)
=

1
π

∫ π

0
g
(
t, yε(t)

)
dt =

∑

k≥1

sin(kyε(t))√
k3

,

we have the corresponding averaged equation

dyε(t) =
ε

2
∑

k≥1

sin(kyε(t))
k2 dt +

√
ε
∑

k≥1

sin(kyε(t))√
k3

dBt . (4.5)
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In fact, Eq. (4.5) is not a linear stochastic equation, and we cannot obtain its analytic so-
lution. By [1], we have

∣∣f (t, x) – f (t, y)
∣∣ ≤

∑

k≥1

| sin(kx) – sin(ky)|
k2

≤ 2
∑

k≥1

| sin kx–ky
2 |

k2 ≤ L|x – y|ρ̄(|x – y|)

and

∣
∣g(t, x) – g(t, y)

∣
∣2 ≤

∑

k≥1

| sin(kx) – sin(ky)|2
k3

≤ 4
∑

k≥1

| sin kx–ky
2 |2

k3 ≤ L|x – y|2ρ̄(|x – y|),

where

ρ̄(x) :=

⎧
⎨

⎩
log x–1, x ≤ η,

logη–1 – 1 + η

x , x > η.

It is easily found that the conditions of Theorems 3.5 and 3.9 are satisfied, then the solution
of averaged G-SDEs (4.5) will converge to that of the standard one (4.4) in the sense of
mean square and in capacity.
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