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1 Introduction

In the domain of g-analysis, much work is being carried out initiating from Euler in order
to attain adeptness in mathematics that constructs quantum computing q-calculus consid-
ered as a relationship between physics and mathematics. In different areas of mathematics,
it has numerous applications such as combinatorics, number theory, basic hypergeomet-
ric functions, orthogonal polynomials, and other sciences, mechanics, the theory of rela-
tivity, and quantum theory [1-5]. Apparently, Euler invented this important mathematics
branch. He used the g parameter in Newton’s work with infinite series. Later, in a method-
ical manner, the g-calculus that knew without limit calculus was firstly given by Jackson
[2]. In 1908-1909, the general form of the g-integral and g-difference operator is defined
by Jackson [4]. In 1969, for the first time Agarwal [6] defined the g-fractional deriva-
tive. In 1966-1967, Al-Salam [7] introduced a g-analog of the g-fractional integral and
q-Riemann-Liouville fractional. In 2004, Rajkovic [8] gave a definition of the Riemann-
type g-integral which was generalized to Jackson g-integral. In 2013, Tariboon introduced
s Dy-difference operator [9].

Many integral inequalities are well known in classical analysis, such as the Holder in-
equality, Simpson’s inequality, Newton’s inequality, the Hermite—Hadamard inequality
and the Ostrowski inequality, Cauchy—Bunyakovsky—Schwarz, Gruss, Gruss—Cebysev,
and other integral inequalities have been proved and applied in the setup of g-calculus
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using classical convexity. Many mathematicians have done studies in g-calculus analysis;
the interested reader can check [10-24].

Thomas Simpson has developed crucial methods for the numerical integration and es-
timation of definite integrals considered as Simpson’s rule during (1710-1761). Neverthe-
less, a similar approximation was used by Kepler almost 10 decades earlier, so it is also
known as Kepler’s rule. Simpson’s rule includes the three-point Newton—Cotes quadra-
ture rule, so an estimation based on a three steps quadratic kernel is sometimes called a
Newton-type result.

1. Simpson’s 1/3 formula is given as

1 /%2 0(x)dx~ é[gp(%l) + 4-g0<%1 - %2> + (/7(%2)].

¥y — 1 oy 2

2. Simpson’s 3/8 formula is given as follows

1 2 1 2 2
/ o0 ds~ —[w(m) ¥ 3«)(—’“ s ”2> ¥ sw(—”l i ”2) ¥ w(%z)].
Hy — 1 Pl 8 3 3

There are a large number of estimations related to these quadrature rules in the litera-

ture, one of them is the following estimation known as Simpson’s inequality:

Theorem 1 Let ¢ : [5c, 315] — R be a four times continuously differentiable function on
(%1, %2), ﬂl’ld

[0l = sup [¥Ca)] <o0.

2€(521,522)

Then we have the following inequality:

1[ @(se1) + 0(50) )+ 0 1 72
[ (25| [ e

1

< sas W] Ga - )"

In the recent era, Simpson’s type of inequalities has been emphasized by many authors
for numerous types of functions. Convexity is useful and potent for solving different prob-
lems that appear within various branches of applied and pure mathematics. For an in-
stance, Dragomir demonstrated novel Simpson’s type consequences and their applications
to quadratic formulas in numerical integration in [25]. Furthermore, Alomari [26] has pre-
sented Simpson’s type of inequalities for s-convex functions. The refinements of Simpson’s
type of inequalities depending on convexity have been visualized by Sarikaya et al. in [27].
For the further studies of this area, one can consult [28—-30].

The main objective of this paper is to study Newton’s and Simpson’s type inequalities
for preinvex functions by using the notions of quantum calculus.

2 Preliminaries of g-calculus and some inequalities

The basic notions and findings which are needed in the sequel to prove our crucial results
are reviewed in this section. Throughout this paper, we assume that ¢ < 2 and 0 < g < 1.
Let w be a nonempty closed set in R”, ¢ : @ — R be a continuous function, and 75(-,-) :

w X w — R” be a continuous bifunction.
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Definition 1 ([13]) A set w is called an invex set respecting a bifunction n(:, -) if
sy + (511, 30) Ew, V1,500 € w,t € [0,1].
The invex set w is more commonly referred to as n-connected set.

Definition 2 ([13]) A mapping ¢ is called a preinvex respecting an arbitrary bifunction
n(-,-) if the following inequality holds:

9 (50 + (0, 0)) <te(a) + (1-)e(a), Vi, cw,t€0,1].
The function g is called preconcave if —¢ is preinvex.

Remark 1 1f we set n(s¢1, 565) = 301 — 31, then the definition of preinvex function reduces
to the definition of a convex function given below;

<p(%2 + t(3e1 — %2)) <te()+ (1 -t)p(n), Vi, cwtel0,1].

Now we present some well-known concepts and theorems for g-derivatives and g-
integrals of a function ¢ on [, 555].

Definition 3 ([5, 9]) We assume that a function ¢ : [, 2] — R is continuous. Then the
4, -derivative of ¢ at ¢ € [51, 555] is defined by

(39) —p(qs + (1 - q)211)
(1-q)(5c— 1)

Do) = ¥ . xd. 2.1)

Since ¢ : [51, 23] — R is a continuous function, we can define
M1Dq§0(%1) = %li)H}zl%quq)(%)'

The function ¢ is called g.., -differentiable on [, 0] if .., D,p(5) exists for all s €
[5¢1, 25]. If we assume 7 = 0 in (2.1), then (D,¢(3) = Dy¢p(s2), where D () is the fa-
miliar g-derivative of ¢ at s € [0, 7r;] defined as follows (see [5]):

Dyg(>) = 4(/)(71) :j;)(z%)

. 20 (2.2)
Definition 4 ([31]) We assume that a function ¢ : [, 315] — R is continuous. Then the
4., -definite integral on [, 53] is defined by

/ Pty dt =1 =q)(e=30) Y _q"p(q"c+ (1-q")2a), € [s0,:a)]. (2.3)

> n=0

Remark 2 If ¢ = 0in (2.3), then [;* @(t)odyt = [y @(t) dgt, where [1° @(t) dyt is the famil-
iar g-definite integral (see, [5]) on [0, 5] defined by

[e¢}

| etonde= [ otrdye =g 3" qula). (2.4

n=0
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Definition 5 If ¢ € (571, ), then the g-definite integral on [c, ] is expressed as

/c %sv(t),{l dgt = / %ga(t)%l dgt - / ‘ @(t),., dyt. (2.5)

1 >1

Alp et al. [9] proved the following g-Hermite—Hadamard inequality:

Theorem 2 (g,-Hermite—Hadamard inequality) Weassume that a function ¢ : [, 365] —

R is convex differentiable on [, 35,] and 0 < q < 1. Then we have the following inequality:

g + % 1 2 qo(se) + @(32)
] d E - a1
‘”( 21, ) = f #oe)s dg3e 2L,

My — A1 Jsg

On the other hand, Bermudo et al. [32] gave the following new definitions of a quantum
integral and derivative. In the same paper, the authors proved a new variant of the quantum

Hermite—Hadamard type inequality linked to their newly defined quantum integral.

Definition 6 ([32]) Let ¢ : [51, 315] — R be a continuous function. Then the g*2-definite

integral on [, 5r] is given by

ot dpe-a-ata - Y delaa+ (1-a))
1 n=0
1
= (369 — %ﬂf go(t%l +(1- t)%z) dgt.
0

Definition 7 ([32]) Let ¢ : [51,3] — R be a continuous function. Then the g*2-

derivative of ¢ at s € [511, 255] is given by

plgr+ (1 -q)s0) — p(x)
(1-9)(0 — »)

2D p(52) = . xim

Theorem 3 (q”-Hermite—Hadamard inequality, [32]) We consider that a function ¢ :
[511, 215] — R is convex differentiable on (311, 5] and 0 < q < 1. Then we have the following

inequality:

M+ g 1 ) o W
<ﬂ< 2], >§ ) /%1 @(30)? dge < o, ) (2.6)

Let us set the following notations:

q"-1 _ n-1 _;
[, =4 @1~ i ds neN,
-1 necC,

and

n-1

(1-0)% =t =] [(1-4'2). (2.7)

i=0

Page 4 of 21
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Lemma 1 ([9]) For a € R\{-1}, the following formula holds:

» B ~ (%_%l)a+1
/%1 (t— %1) 21 dqt = W. (2.8)

3 Quantum integral identities

In this section, we will prove two equalities which will help us to obtain our main results.

Lemma 2 Let ¢ : I = [303 + (301, 552), 512] — R be a q***-differentiable function on I with
—n(01,50) = n(36, 501) > 0 and 0 < q < 1. If 2D, is continuous and integrable on I, then
the following identity holds for q**2-integrals:

71 f ’ ()" dyse (3.1)

77(%2» %1) 29 +1(321,502)

- ﬁ [co(%z + (a1, 30)) + [‘Hﬂf%W) + qw(%z)}
q q

1
= qn (o0, %1)/ W, (£)2 Dy (302 + tn(301, 202)) dyt,
0
where

1 ; 1
t— oo p ift €0, _[2]q)’
_Dlg 1
t 6l ifte [[2]q’1]‘

Proof Using the basic properties of g-integral and the definition of W,(t), we have
1
/ W, (6)2 Dy (502 + (51, %2)) dgt (3.2)
0

1
[5l-1 [oyg,, L
== [Z] / 1 qugo(%z +tn (0, %2)) dgt + / t 2Dq(p(%2 + (221, %2)) dgt
q 0 0

5]

1
- / 2D (502 + tn(51, 300)) dyt.
[6]q 0

From Definition 7, we have

2D (50 + (301, 50)) = pia+ tqn((zllf{;))zn_(;az(ijl; tn, %2)).

Now, we compute the integrals on the right side of (3.2). Using Definition 6, we obtain

1
2lq
/ ! ”qu(p(%g + tn (521, %2)) dgt (3.3)
0

1
B /W @0 + tqn(5a, %)) — 9 + In(a, 50)) At
= q
0

(1 = g)tn (50, 51)

3 1 e qn+1 ) qn
- m |:Z¢(”2 + E’?(%l, %2)> - Z(D(%z + @n(zl,zz))}

n=0 n=0
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_ 1 |:¢(%2) B g0([2]01%2 + (s, %2)>]
n (50, 501) (2], ,

1 1
/0 =Dy o+ (o, ) dyt = ——— [yl = oo + o, ) ) (3.4)

and

1
/ t"quw(%z +tn(s2, %2)) dgt (3.5)
0

fl (e + tqn(a, ) —pln + Ga, )
- q
0 (1—51)77(%2;%1)

1 1-g @ (503 + 1501, 562))
- - | -~4 "0 (500 + @121, 307)) — 2t DL 72
ﬁ(%z,%1)|: q ;q (p( 2T ) q
1 1 2 ,
— |: f (p(%)%z dq%_ ¢(%2 + 7](J'fl %2))]
n(se, 221) L qn (a2, 31) J oy in(oe,500) q

Finally, by substituting (3.3)—(3.5) in (3.2) and multiplying the resultant equality by
1(353, 711), we obtain the required identity, which completes the proof. O

Remark 3 If we set n(s¢o, 1) = 3¢5 — 301 and n(s¢1, 263) = 21 — 35 in Lemma 2, then we have
the following identity:

G i—%l) / 2 P(t)2 dyt - ﬁ |:¢(%1) +q° [4]q<p<—%1 [;]qm) + 61<P(%2)} (3.6)
] q q

1
=q(re - %1)/ \I’q(t);‘qugo(tzl +(1- t)%z) dgt,
0
where

1 : 1
t_W lfte[o,m),
. 1
ifte [m,l],

which is given by Ali et al. in [33].

Lemma 3 Let ¢ : I = [55; + 11(311, 353), 355] — R be a q**2-differentiable function on I with
—1n(01,50) = 9(36,521) > 0 and 0 < q < 1. If 2D, is continuous and integrable on I, then

one has the identity

1 &
/ 0302 dyn

77(%2r %1) 20 +1)(2¢1,59)
3 6 )
_ ﬁ [(/)(%2 +n(0,50)) + q[z[]jq ([3]q%2 Er3;7q(%l %2)>
42 [6]q [g]q%2 + [2]517](%1’ )
", “’( 31, ) ' q“’%)]

1
= g0 32) / A (072D (522 + (e, 22)) dyty
0

Page 6 of 21
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where

1 . 1
t-wy, lftG[O,@),
. [2]
A =t-r iftelpn gt

g eyl
8l zfte[[g]q,l].

Proof By the fundamental properties of g-integrals and the definition of A,(t), we obtain

1
/ Aq(t)%qu(%g + t?](%l, %2)) dqt
0

1
B,
/ 2Dq¢(%2 +tn(se1, %2)) dgt
0
2]
[3]

3lg

elg
/ "ZDq(p(%z + tn(521, %2)) dgt
0

— [8]q - [2]q
(8]4[2]¢

[7]q[2]q - [8]q
[814[2]4

! 7
+ /0 (t - %)”ZDqgo(%z + 11301, 50)) dgt.

Following arguments similar to those in the proof of Lemma 2, the required identity can

be proved. 0

Remark 4 If we set n(s¢y, 561) = 205 — 21 and 1(3¢1, 3) = 61 — 55 in Lemma 3, then we have

the following identity:

1 2
f (O d,t

(%2_%1) P2l
1 216l, <%1+q[21q%2)
[81(,["’(””+ 2, Y\ s,

1
= q(se — %1)/ A )2 Dyep(ts1 + (1 - £)35) gt
0

q2[6]q [Z]q%l + 42%2
T, "’( Bl )”‘”‘”2)}

where
t—@ ifte[O,ﬁ),
_ 1 . 1 [2]
Aq(t)— t—m ifte [m,ﬁ),
- [8]q lfte [[g]q: ]1

which is proved by Ali et al. in [33].

4 Main results

In this section, we present some new Simpson’s and Newton’s type inequalities for prein-
vex functions by using Lemma 2 and Lemma 3, respectively. For brevity, we start this sec-
tion with some notations which will be used in our new results:

_2¢°12]; + [6]5([6]4 — [3],)
B [213[314(613

A1(g) . (4.1)

Page 7 of 21
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qBl,l6l,-4* 1 (q+q2 qz+2q)
Bi(g)=t204Pa =T~ - , )
=2 o Bl T REN Bl, 16l (42
27051 641+ [22) — [3],[5,(1 + [21%)
A — q q q .
9= 51,61, 068 * 21231,161], (+3)
5265l -2BE 2 ql5)
B = - .
A2 BleE T 2,3, 216l (4
_L[[5]q(2q+qz)_q+qz]
pEL ©, Bl )
2472312 + 8181121, - [3)
A = s 5
1) BEBRR, (5
gi8l,3, - BE-[2),
B = .6
M) =2 k01,6, T B, (+6)
1- 31,021,
81,3212],’
2 2P+ 1) - R+ [2)
A = .
9= G, * Bl (*7)
2 q ¢
By(q) = @ - @ - @ —Au(g), (4.8)
C2UE (2,081,123 + BF) - (7, 3R(212 + [32)
D= 5,8, ¢ B8], 2], ’ (+9)
and
dA7RBBlL -7 2 g7
B = — .
R N E R R N TR (410
2132 - 12 (g+g)17,12),
312 B12(8],

4.1 Simpson'’s type inequalities
In this subsection, we will prove some quantum Simpson’s type inequalities for preinvex

functions.

Theorem 4 We assume that the conditions of Lemma 2 hold. If |">D,¢| is preinvex and
integrable on I, then the following inequality holds for q***-integrals:

‘ ! / ’ 0(5)2 dy3 (4.11)

77(%2; %1) 20 +1)(3¢1,562)

- ﬁ [co(%z + (01, 30)) + [‘Hﬂ%(W) + qw(%z)}
q q

< qnGa, )| Dyp(30)|[A1(q) + A2(@)] + |72Dge(50)|[B1(q) + Ba(q)]},

where 0 < g <1 and A1(q), A2(q), B1(q), B2(q) are given as in (4.1)—(4.4), respectively.



Ali et al. Advances in Difference Equations (2021) 2021:64

Proof By taking the modulus in Lemma 2 and using the properties of the modulus, we

obtain

’é / L ) dy (4.12)

7’](%2: ) 20+ (3¢1,202)

! [‘P(%z +n(501,50)) + [4]qqzw(w> + 6190(%2):H

- [6l, [2],
M| 1],
< qn(sn, %1)/ t—— | 2Dq<p(%2 + tn (52, %2)) | dgt
0 [6]q
1
5
+qn(sn, 1) LlET % 2Dy (302 + tn (31, 503)) | dyt.
2y q

Since |*2Dg¢| is preinvex, by Lemma 1, we get

[21]
q
/

0

< I"Zqu(%l)l(

1

- — |"2Dqg0(%2 + tn (52, %2)) | dgt (4.13)
(6],

2471212 + [6]2([6], - [3]q)>
23(3],[6]2

. ql3l4l6l,-4* 1 (q+q2 q2+2q>>
2D Q4 - .
d q¢(%2>|< 21,81, T RE\ B, 16,

Similarly, using the preinvexity of |*2D,¢| and Lemma 1, we have

/]

[2]q

5
t— & |”2Dq<p(%2 + (30, 50)) | dgt (4.14)

(64

220513 [6lg(1+ [213) ~ [3],[5],(1 + [2]3,))
21,31, 1612 22(31,[6],

6,3, -4’5 4 _als),

(21,031,612 21,81, 12106l

~ L[[S]q(2q+q2) _ q+q2D
2Bl (6l Bl 1)

= |%2Dq(p(%l)| ( [

2
+ |%2Dq§0(%2)| <2Q[5]q

By putting (4.13) and (4.14) in (4.12), we obtain the inequality (4.11), which finishes the

proof. O

Corollary 1 In Theorem 4, if we take the limit g — 1~, then we obtain the following Simp-
son type inequality:

’#/}Q ore

7}(%2: ) 29+0(5¢1,202)

- é[%ﬂ(%z +n(0,50)) + 4<ﬂ<2%2++(%1’%2)> + <ﬂ(%2)]’

< 51(522, 211)

= ) [|¢/(%1)| + |§0/(%2)|],

which can be viewed as a special case of the inequality derived in [34].

Page 9 of 21
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Therefore, we can deduce the following results for convex functions.

Remark5 If we set (52, 71) = 205 — 2¢; and 1(3¢1, 763) = 21 — 1, in Theorem 4, then we have
the following inequality:

2

1 1
|(%2_%1) - @(32)? g[q%—@[(p(;«:l)+q2[4]q¢<%]z%2> +q¢(%2):H

< qGa - 5){|2 D0 (30)|[A1(q) + A2(@)] + |**Dy9(50)|[Bi(q) + B2(q)]},
which is given by Ali et al. [33].

Remark 6 1If we set n(36, 1) = 260 — 321, N(3¢1, 32) = 21 — 353, and g — 17 in Theorem 4,
then Theorem 4 reduces to [26, Corollary 1].

Remark 7 In Theorem 4, if 1n(3ey, 301) = 369 — 321, n(521, 363) = 301 — 313, P(3¢1) = ‘/’(%) =
¢(s12), and ¢ — 17, then Theorem 4 reduces to [26, Corollary 3].

The corresponding version of Simpson’s inequality for powers in terms of the first g-
derivative is incorporated in the following result.

Theorem 5 We assume that the assumptions of Lemma 2 hold. If |*2D,p|P! is preinvex
1

and integrable on I, where p, > 1 with % + o

=1, then we have the following inequality:

‘; / ’ 0(5)2 dys (4.15)

77(%2; %1) s +1)(321,202)

- ﬁ [¢(%2 + (301, 50)) + th%(W) + qw(%z)”
B q2r1 [4];1 )%
Eqn( 2’%1)|:<[2];1+1[6];1

1

1. p1 q2+2q;¢ P\ "t
x(@! 2Dygall” + Lo D06

q
. ([21;“1[512; e ) 0

(217617
1
2 3 2 T
q-+2q,,, o 4 +q =4, P\
Dyp(sa)| + ———|"2Dy0(32) ,
( [2]2 | q | [2]2 { q |

where 0 < g < 1.

Proof From the integrals in the right side of (4.12) and applying the well-known quantum
Holder integral inequality, it is found that

1 2
‘ @(>) dy>

’7(%2; %l) 229 +1)(3¢1,3¢2)

- ﬁ [w(%z + (501, 50)) + [wa%W) + qw(%z)”
q q

Page 10 of 21
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1

(6]

< qn(5ey, 521) / t dqt)
0
1
[2] r1
X (f ! |%2Dq¢(%2 + 77(%1,%2))| ldqt> i|
0
1 1
n
X |:+qn(%2, %1)</1 t— dqt)

2l

1 1
x (/1 2Dy (502 + (321, 3)) [ dqt)p1 ]

2lg

(54
(6]

By using the preinvexity of |*2D,¢|”!, we obtain

|ﬁ/ S dqt—ﬁ[<p(%l)+q2[4]q¢<w> +q¢(%2)” (4.16)
P2l q

(2],
1 1
Pl TN
< qn(sa, %1)|:</ t d,,t)
0
1
p1
X (|”2Dq<p(%1)’p1/ td, t+| 2D ge( %2)’171/ ]q( —t)dqt) :|
0
1 3
+qn(%2,%1)[(/1 t— d,,t)

2l

1 1 o
X (|"2Dqgo(;f1)|pl/1 tdgt+ |}‘2Dqg0(%2)|pl‘/1 (l—t)dqt) j|

2y 2

1

(6]

[6]4

To calculate the integrals in the right side of (4.16), if we first use the definition of the
quantum integral, then we obtain

PRl 1| 1-gNn le? L
-— 1| d ] [ .
/0 | = ;q o (4.17)

1_q = 29 L _ L "

=, 27 |e

_ (L _ L)”L
[Z]q [6]q [2]q

_
217 el

Similarly, we have

1
[
1

[2]q

5, |

15, _ 1207750 - a4y
(6],

. 4.18
217 6] (419

q —

Page 11 of 21
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For the other integrals in the right side of (4.16) we consider the case when 37 = 0 of

Lemma 1, we find that

1
2y 1
tdt=—, (4.19)
fo TR
L 2
2y q° +2q
1-t)d,t = —. 4.20
[ a-nau= T (420

Similarly, we get

1 q*+2q
tdt=21 "1 (4.21)
/[zl]q (213
! P+q*—q
1-t)dt=2_"2 "9 (4.22)
fﬁ 1 (121,)3

By substituting (4.17)—(4.22) in (4.16), we obtain the desired inequality (4.15), which com-
pletes the proof. O

Remark 8 If we set n(s¢o, 51) = 305 — 2¢; and 1(3¢1, 262) = 21 — 1, in Theorem 5, then we have
the following inequality:
) B 1 ) 1 + gy
P(50)2 dyre — oL pGa) +q [4lgp| —7— | + a9 (2)
q

(502 = 5a1) Jony (2]

N )%
= q(%Z %l)|:<[2];1+1[6]21

1
1 q* +2q 1\ 7

x | ==|2Dge ()" + 2Dy (50)|
([2]2 [2]3

ri+lrern r114171 %
+<[2]q [5]q -9 [4']q>

217" 6]7
1
242 e 71
x (q sq‘me(P(%l)’pl +W|%2Dq(p(%2)|pl) i|’
212 212

which is given by Ali et al. in [33].

Another version of Simpson’s inequality for powers in terms of the first g-derivative is
obtained as follows.

Theorem 6 Suppose that the assumptions of Lemma 2 hold. If |2 D,@|P* is preinvex and

integrable on I, where p; > 1, then we have the following inequality:

e L

9(3)*2 dy> (4.23)
7)(%2; %l) st +1(3¢1,3¢2)

- ﬁ [</’(%2 +n(501,50)) + [‘HM%(W) + Q‘P(%z)”
q q
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2 PBl—q\
Sqn(%z,m)[( + g )
21,0612 " (61,212

% (A1(@)|2Dypa)|"* + Bi(@)| 2 Dy (o)) 71

1

(2 52 1 5], [S]qm;—[eJq)lp—l
2]

TR0 2, 6y (614121

x (A2(q) Dy (o) " + 32(4)|%2Dq<ﬂ(%2)|p1)”11:|,

where 0 < g < 1 and A1(q), A2(q), B1(q), B2(q) are given as in (4.1)—(4.4), respectively.

Proof Utilizing the results in the proof of Theorem 4, after applying the well-known power
mean inequality to the integrals in the right side of (4.12), owing to the preinvexity of
|”2D,lPt, we find that

‘;/ ’ ()2 dyse (4.24)

'7(%2; %1) 20 +1)(3¢1,519)

L [co(%z + (301, 50)) + [4]qq2w<M) + qw(%z)”

el 2],
zlq 1_1%1
EW?(M»M)[(/(;H [6] dt)
q
x (|"2Dq¢(m)|"‘/0mq t|t— ﬁ dgt
q

anl)’]

|2D¢%2|P1/ 1_)‘
0

: ,p%
o (o~ )
P P1 @
(| Dy (s)| ﬁtlt—[6]th
o o B
+["2D9(50)| /[21][1(1 )|t [6]th
ane| ([P e= L ]ae)
e [(/o [61q )

< (A4(@) 2Dy e) | + Br(@)| 2Dy o)) ]

1 -k
+ [6177(%2; %1)(/1 d t)

2l
x (Aa(q) |2 Dggpoer) ™ +Bz<q)|%2Dq<p(%2)|m)A],

_ [Blg
(6]
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We also observe that

1
2lg

/ -

0

1

w1 a7 1
dqtzzfo” (@—t)dqt+‘/(;” <t—@>dqt (4.25)

2q +613[3],1—61
21,0612 " (61,123

1
(6],

and by using similar operations, we have

J;

[2]q

18l
(6],

B2 1 (5, [5l212- (6],
dt=2 a 44 - .26
e T2l 6l 16,2 (426

t

By substituting (4.25) and (4.26) in (4.24), we obtain the required inequality (4.23). Hence,
the proof is completed. d

Corollary 2 Ifwe take the limit g — 1~ in Theorem 6, then we have the following inequal-
ity:

‘; [ et

(362, 511) 2y +1)(5¢1,202)
1 2509 + (321, 5%2)
g [90(%2 + 77(%1,%2)) + 4‘P<% + (%)
5 p
<
72

1
61 29 P1
+ (1—8|<ﬂ/(%1)|p1 + —|<;0’(%2)|pl)p1 :|,

1
29 61 p1
1 (520, %1)|:(1—8|(p/(%1)|p1 + |§0,(%2)|p1)p1

18

which can be viewed as a special case of the inequality derived in [34].

Remark 9 If we set (53, 5¢1) = 3¢5 — 3¢1 and n(5¢1, 2¢3) = 21 — 75 in Theorem 6, then we have

the following inequality:

2

1 1 3
‘(%2_%1) - (p(%)”ﬂdq%—@[(p(%1)+q2[4]q(p(%)+q(p(%2)iH

2 Bl-q\
=q(n - W[([z]qmg " (6141212 )

% (A1()| 2 Dgp ()| + Br(@)| 2Dy )| ) 71

+<2q[ (512 1[5, [5]q[2]§—[6],,)1-pﬁ

20,062 "2, 6, (61,1283

X (A2(@) [ Dy (e[ +Bz(q)’”2Dqgo(%2)|pl)PL1],

which is proved by Ali et al. in [33].
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Remark 10 In Theorem 6, if we take 1(s, 301) = 565 — 201, (521, 762) = 301 — 25, and g — 17,
then we have the following inequality:

1 1 2
kbwm+w<”;m>+Mmﬂ—m_m/;wWM4

1
51 pP1
<

- 72

1
61 29 7
+ (E|90/(%1)|p1 + E|<ﬂ/(%2)|m) :|,

(%2_%1)[<§i(p/(%l)|171 +%|¢/(%2)|p1>1’1

which can be proved as a special case of inequality derived in [26].

4.2 Newton’s type inequalities
In this subsection, we will present some quantum Newton’s type inequalities for preinvex

functions.

Theorem 7 We assume that the assumptions of Lemma 3 hold. If |*>D,p| is preinvex and
integrable on I, then the following inequality holds for q**-integrals:

1 %z . )
‘W /%W](%Wz) @(2)? dyr - P [f/)(%z + (501, 5)) (4.27)
q°[6], <[3]q%2 + 77(%1,%2)) q*16], ([3]q%2 + [2]qn(%1,%2)> ]‘

* 2], v [3]4 * (2], ¢ 31, +qo(s2)

< qnGa, 2){ D0 (30)|[A3(q) + Aalq) + As(q)]

+|"2D,9(50)|[B3(q) + Ba(q) + B5(9)]},

where 0 < q < 1 and As(q), Aa(q), As(q), Bs(q), Ba(q), Bs(q) are given as in (4.5)—(4.10),
respectively.

Proof Following arguments similar to those in the proof of Theorem 4, by taking into
account Lemma 3, the desired inequality (4.27) can be obtained. 0

Corollary 3 If we take the limit q — 1~ in Theorem 7, then we have the following inequal-
ity:

P—L—/M ore

7](%2; J41) 220 +1(3¢1,5¢2)
1 320 + 1(3e1, 30)
- Qﬂ(%2+77(%1’%2))+3(p &
8 3
350y + 20(501, 723)
+ 3¢ - 3 +¢(50)

< 257’(%2: %1)
- 576

I

[|@'Ga)| + ¢ (Ge2)

which can be viewed as a special case of the inequality given in [34].
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Remark 11 If we set 1n(3cy, 301) = 3¢5 — 321 and (521, 363) = 3c1 — 3¢5 in Theorem 7, then we
have the following inequality:

2 s 1 al6l; [ +ql2l0
‘ ooy ), PN, [g"(”” ", “’( 31, )
q [6]q ([Z]q}fl +612%2) ]’
[2]q @ [3]q + q(p(%Z)

< q(se — 30){|2 Dy (50)|[A3(q) + As(q) + As(q)]

+ |2 Dy9(3)|[Bs(q) + Bu(q) + Bs(9)]},
which is proved by Ali et al. in [33].

Remark 12 If we set n(3ey, 501) = 3¢5 — 311, (321, 303) = 3¢1 — 355, and ¢ — 1~ in Theorem 7,
then we have the following inequality:

1 »2
/ () dsx
My — A1 Sy

- %[ﬂm) + 3¢<%2%2> + 3¢(@) + w(%z)”

< 2500y — 511)
- 576

[|¢'Ga)| + @' )],
which was derived as a special case of an inequality proved in [30].

Theorem 8 We assume that the assumptions of Lemma 3 hold. If |>D,|P* is preinvex
and integrable on I, where p; > 1 with % + L =1, then we have the following inequality:

p1
‘ S (9 dy3e — — [( 101, )) (4.28)
_— @(s¢ = ——| (500 + n(3e1, 3¢ .
’7(%2; %1) 20 +1)(3¢1,319) 7 [8]q 2 b

q°l6l, < g%+ 77(%1»%2))
[2]q
6]q 770 + (2141 (501, 202)
[2]q ( ) + ‘1‘.0(%2)”
3r1 5 r1 ,—
<qn(e, <[3 r1+[1 17 )

1

1 P p1 [3]‘1[] 29
X(B]é[z]q' Daw bl + Zgpnr, Dt )

( )<q” (2], — 4™ ) 0
Tqn\o, )\ T i
317 217

q2+ ) p1 q[S]q[Z]q—(q2+2q)
([312[]‘ DapCall”™ + =,

7" 121(7g[3), - [81q[2]q>f1)%
(817 (817 1317

1

‘zqu(p(%z)’PI)pl

+ qn(%Z) %1)(
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[317-[217 .., o B2+ 22-1812 A7
(B]ZIT]q| DypGa)|™ + BP0, | qu(%z)lp) ,

where 0 < g < 1.

Proof If the techniques used in the proof of Theorem 5 are applied by taking into account
the Lemma 3, the desired inequality (4.28) can be obtained. O

Corollary 4 In Theorem 8, if we take the limit q — 17, then we have the following inequal-
ity:

‘; /%2 o) dx (4.29)

'7(%2; %1) 20 +1)(3¢1,512)

- %[w(m + (501, 50)) + 3‘/’(

N 3¢<3%2 +21(s7, %2)> + ‘/’(%2)]'

3500 + (o1, %2)>
3

3

= 3 8 6

10, ) [5 (Icv/(%l)lpl +51¢/ o) )
8

1
7

2.3 1\ 7 (¢ Ga)P + ¢ Ga) P\ 71
+
6’1 2

3.7 2\ 7 (5l¢/Ga)lP! + ¢ (ep) P\ o1
+ .
8n1 6

Remark 13 If we set (e, 5¢1) = 300 — 21 and 1(5¢1, 502) = 31 — 525 in (4.29), then the inequal-

ity (4.29) reduces to the inequality presented in [12, Remark 4].

Remark 14 1f we set 1(3e3, 321) = 35 — 211 and 1(3¢1, 363) = 361 — 3¢5 in Theorem 8, then we
have the following inequality:

2 s 1 a6, (1 +ql2l0
l(%z—%l) e dq”‘@[g”(”l“ 2], “’( 3], )
g*6l; (250 + ¢
", ‘”( 3], )”’*"(”2)]’
3r1[5]V1 %
=qb- (%)
TP\ B s
[3],[2], - 1 g

|%2Dq¢(%l)|pl + |%2Dq¢(%2)|p1)1’1

x ( !
312021,

(2, -\ T
(b- (%)
+4 ﬂ) [B]ql 1 [Z]ql

312121,

1

oL 0220 g )
q

B2[2],

q2+2 29 p1
X([g]g[z]q‘ Dq(p(%l)’ +

(817 (8] [3]¢"

st £ Dl ISl )5
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1

[317-[217 .., n 4[81g2)g+ 27 - [8]7 L\ 7
(jﬁﬂj—ﬁ Dyp(a)|™ + BEL, |l%w%g|> ,

which is given by Ali et al. in [33].

Theorem 9 Suppose that the assumptions of Lemma 3 hold. If |2 D,@|P* is preinvex and

integrable on I, where p; > 1, then we have the following inequality:

o |

77(%2: 1) 2+1(5¢1,302)
qg [6]q [B]q%2 + (221, 72) q2[6]q [3]q%2 + [2]q7](%1’ )
21, < B ) ", ( 3], ) * q‘p("”]‘

2 [8l,- [][2]q>1‘m
812121, [31212],18]

@30 dg — L [(0(%2 + 1501, 7)) (4.30)
(8]¢

= 517)(%2: %l)|:(
x (A3(@)|*Dap(sa1)|”" + Bs(q)| 2Dy (52a) |”! )_
( 2q L1- [3],,[2],,)1‘
(2] 2[2],, (3]2[2]
(

x A4(q)|”2Dq§0(%1)|pl + Ba(q)| 2Dy o)) 71

2+ 22 (71,3, + [2],) )1‘

q p—
2 sz[z1q [z] 312 (814131,

% (A5(@) [ Dyp )" + Bs(@)| Dy o)) 1 ]

where 0 < q < 1 and As(q), Aa(q), As(q), Bs(q), Ba(q), Bs(q) are given as in (4.5)—(4.10),

respectively.

Proof The proof follows along the same lines used in the proof of Theorem 6 by taking

into account Lemma 3. 0

Corollary 5 In Theorem 9, if we take the limit g — 1°, then we have the following Newton-
type inequality:

‘; /%2 0()dsx (4.31)

77(%2; %1) s +1)(321,202)

- %[40(%1 + (501, 50)) + 3‘/’(

. 3(/7(3%2 + 27;(%1, %2)> . 90(%2)]'

(e, 30) [ ( 17\ 1 / 251 ,
<27 ¢ Ga)[" +
36 16 1152 1152

1
+ (W(m)m + |<p/(%2)|m>m
2

3500 + (o1, %2)>
3

L
|m>
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l
17\ "1 [ 973 N 251 N Pr
+<16) <1152|‘”( W+ 1 lo/ G2l ) '
Remark 15 If we set n(se3, 361) = 300 — 01 and 1(521, 362) = 511 — 715 in (4.31), then the inequal-
ity (4.31) reduces to the inequality presented in [12, Remark 5].

Remark 16 If we set 1(s6, 21) = 365 — 31 and n(s¢1, 363) = 261 — 3¢5 in Theorem 9, then we
have the following inequality:

R RV o qu<m+ﬂ%ﬂﬂ
’(%2—%1) w7 dye [S]q[")(’““ 21, 3],

q2 [6]q [2]61%1 + 42%2

P ‘”( 3, )*q“’(”z’]’

) 2q (8]4 — [3]q[2]‘1)1_
<q(n %1)[<[8];[2]q * (31221484

x (A3(q)|*Dgp(oar) " + Bs(qr)|”2Dq</>(%z)\’”)"’1*1

(z +1_Bhph>hﬁ
(2] 2[2]q (312[2]

x (A4(q)|”2Dq¢(%1)|pl + Ba(q)| 2Dy o)) 71

(2 ql7l; B+ 127 [7Jq([3]q+[2]q))1ﬁ
81 [21q (21,312 (81431,

+

+

1
% (As(@] Dy o)l + Bo(@)] Dy o)1) ]
which is derived by Ali et al. in [33].

5 Conclusion

In this paper, we proved some new inequalities of Simpson’s and Newton’s type for g-
differentiable preinvex functions by using the notion of g*2-quantum integral. It is also
shown that some classical results can be obtained by the results presented in the current
research by taking the limit ¢ — 1~. It will be an interesting problem to prove similar
inequalities for the functions of two variables.
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