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Abstract
In this article, we first demonstrate a fixed point result under certain contraction in
the setting of controlled b-Branciari metric type spaces.

• Thereafter, we specifically consider a following boundary value problem (BVP) for
a singular fractional differential equation of order α:

cDαv(t) + h(t, v(t)) = 0, 0 < t < 1,

v′′(0) = v′′′(0) = 0,

v′(0) = v(1) = β

∫ 1

0
v(s)ds,

where 3 < α < 4, 0 < β < 2, cDα is the Caputo fractional derivative and hmay be
singular at v = 0.

• Eventually, we investigate the existence and uniqueness of solutions of the
aforementioned boundary value problem of order α via a fixed point problem of
an integral operator.
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1 Introduction
As regards science and engineering disciplines, fractional differential equations occur in
the fields of aerodynamics, chemistry, physics, or polymer rheology electrodynamics, such
as the mathematical simulation of structures and processes. The derivatives of fractional
order [28, 35, 38] are concerned in this sort of equations. Exceedingly, fractional-order
differential equations often become tools for various perspectives on control systems, fluid
dynamics, and so forth.

The significance of studying fractional-order differential equations arises from the fac-
tuality that fractional-order models are more precise than integer-order models; it seems
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to be so that the fractional-order models have more degrees of freedom. Recent findings
can be found in [3, 4, 8, 14, 19, 34, 37, 45] on fractional differential equations.

Integral boundary conditions have several applications in the areas such as problems
with blood flow, thermo-elasticity, underground water supply, and population dynamics.
We refer the reader to certain recent publications [11, 17, 22, 36, 42–44, 46, 48] and the
references therein for a comprehensive explanation of the integral boundary conditions.

Many researchers have pointed out the importance of the existence and uniqueness of
fractional differential equations of different orders [29, 30, 32, 35, 40]. The existence of
positive solutions was considered especially in the context of cone metric spaces [9, 12, 47].

On the other hand, fixed point theory can be used as a definitive modeling method in nu-
merous fields and/or engineering to achieve solutions and/or research findings. In general,
it has become one of the most effective features of modern mathematics and in particular
of functional analysis. Fixed point theorems are concerned with the existence, uniqueness
and characteristics of a specified operator’s fixed points. The contraction mapping the-
orem due to Banach [10] is a very important and valuable finding on fixed point theory.
Recent advancement in exploring new generalized metric spaces (and/or related results)
has provoked great attention in metric fixed point theory (see [1, 5–7, 13, 16, 18, 20, 23–
27, 31, 39]).

2 Preliminaries
In the year 1993, Czerwik [15] initiated the idea of b-metric spaces as a generalization
of metric spaces by multiplying a constant b on the right side of the equation of triangle
inequality.

Definition 2.1 Let X �= ∅ and b ≥ 1 be a given real number. A function db : X × X →
[0, +∞) is a b-metric if and only if for each r, s, t ∈ X the following conditions are satisfied:

(1) db(r, s) ≥ 0 for all r, s ∈ X and db(r, s) = 0 if and only if r = s;
(2) db(r, s) = db(s, r) for all r, s ∈ X ;
(3) db(r, s) ≤ b[db(r, t) + db(t, s)] for all r, s, t ∈ X .

Then db is called a b-metric on X and (X, db) is called a b-metric space.

Nabil Mlaiki et al. [33] defined a new type of generalized b-metric spaces, namely con-
trolled metric type spaces, as follows:

Definition 2.2 Let X �= ∅ and ω : X × X → [1, +∞). A function dω : X × X → [0, +∞) is
called a controlled metric type if:

(1) dω(r, s) = 0 if and only if r = s;
(2) dω(r, s) = dω(s, r);
(3) dω(r, s) ≤ ω(r, t)dω(r, t) + ω(t, s)dω(t, s)

for all r, s, t ∈ X. The pair (X, dω) is called a controlled metric type space.

By concatenating the concepts of controlled metric type spaces [33] and extended-
Branciari b-distance spaces [2], the authors in [41] proposed a new sort of metric spaces,
namely controlled b-Branciari metric type spaces, that are defined now.

Definition 2.3 Let X �= ∅ and C : X × X → [1, +∞). A function dC : X × X → [0, +∞) is
called a controlled b-Branciari metric type if it satisfies:
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(1) dC(r, s) = 0 if and only if r = s for all r, s ∈ X ;
(2) dC(r, s) = dC(s, r) for all r, s ∈ X ;
(3) dC(r, s) ≤ C(r, t)dC(r, t) + C(t, w)dC(t, w) + C(w, s)dC(w, s),

for all r, s ∈ X and for all distinct points t, w ∈ X, each distinct from r and s, respectively.
The pair (X, dC) is named a controlled b-Branciari metric type space.

The major aspect of controlled b-Branciari metric type space is the extension of the
rectangular inequality.

Example 2.4 ([41]) Let X = {1, 2, 3, 4}. Define dC : X × X → [0, +∞) as follows:
dC(r, r) = 0, ∀r ∈ X , dC(1, r) = dC(r, 1) = 50, ∀r ∈ X – {1},
dC(2, 3) = dC(3, 2) = dC(2, 4) = dC(4, 2) = 200,
dC(4, 3) = dC(3, 4) = 800.

Let C : X × X → [1, +∞) be symmetric and can be defined as follows:
C(r, r) = 1, ∀r ∈ X ,
C(1, 2) = 3, C(1, 3) = 4, C(1, 4) = C(2, 3) = 5, C(2, 4) = 6, C(3, 4) = 2.

Hence (X, dC) is a controlled b-Branciari metric type space. However, we can see that
(i) dC(3, 4) = 800 > C(3, 4)[dC(3, 1) + dC(1, 2) + dC(2, 4)] = 600,

(ii) dC(3, 4) = 800 > C(3, 1)dC(3, 1) + C(1, 4)dC(1, 4) = 450.
Thus (X, dC) is neither an extended Branciari b-distance space nor a controlled metric
type space.

For the reader’s convenience, we present some necessary definitions and lemmas from
the theory of fractional calculus.

Definition 2.5 ([21]) For a function v : [0,∞) → R, the Caputo derivative of fractional
order α > 0, n – 1 < α < n, n ∈N is defined as

cDαv(t) =
1

�(n – α)

∫ t

0

vn(s)
(t – s)α–n+1 ds, n = [α] + 1, (2.1)

where [α] denotes the integer part of the real number α.

Definition 2.6 ([21]) The Riemann–Liouville fractional integral of order α for a function
v is defined as

Iαv(t) =
1

�(α)

∫ t

0
(t – s)α–1v(s) ds, α > 0, (2.2)

provided that such an integral exists.

Lemma 2.7 [21] Given y ∈ C(0, 1) ∪ L(0, 1), 3 < α < 4 and 0 < β < 2, the unique solution of

cDαv(t) + y(t) = 0, 0 < t < 1,

v′′(0) = v′′′(0) = 0,

v′(0) = v(1) = β

∫ 1

0
v(s) ds,
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is

v(t) =
∫ 1

0
G(t, s)y(s) ds

where

G(t, s) =
1

α(2 – β)�(α)

⎧⎪⎪⎨
⎪⎪⎩

{α(2 – β) + 2βt(α – 1 + s)}(1 – s)α–1

– α(2 – β)(t – s)α–1, if 0 ≤ s ≤ t ≤ 1,

{α(2 – β) + 2βt(α – 1 + s)}(1 – s)α–1, if 0 ≤ t ≤ s ≤ 1.

(2.3)

Lemma 2.8 ([28]) If α > 0 and β > 0, then
1. cDαtβ–1 = �(β)

�(β–α) tβ–α–1, for β > n.
2. cDαtk = 0, for k = 0, 1, 2, . . . , n – 1.

Deeply influenced by the foregoing facts, we specifically discuss the following boundary
value problem (BVP) for a singular fractional differential equation of order α:

cDαv(t) + h
(
t, v(t)

)
= 0, 0 < t < 1,

v′′(0) = v′′′(0) = 0,

v′(0) = v(1) = β

∫ 1

0
v(s) ds,

(2.4)

where 3 < α < 4, 0 < β < 2, cDα is the Caputo fractional derivative given by (2.1) and h may
be singular at v = 0.

Ying He [21] takes into consideration the problem (2.4) for a continuous function h and
β ∈ (0,α). The outcomes in the paper correspond to the positive solutions to this prob-
lem. Ying He [21] first developed the accurate estimation of the below BVP of the Green’s
function, and unveiled some of its properties;

cDαv(t) + y(t) = 0, 0 < t < 1,

v′′(0) = v′′′(0) = 0,

v′(0) = v(1) = β

∫ 1

0
v(s) ds.

(2.5)

• In Sect. 3, we prove a fixed point theorem in the framework of controlled b-Branciari
metric type spaces.

• In Sect. 4, an approximation for the Green’s function relevant to the problem is
presented and utilized for the solution of the given problem in the proof of the
existence and uniqueness theorem.

• Thereafter the BVP given in Eq. (2.4) is transformed into an integral equation and
analyzed as a fixed point problem.

• Criteria for the existence and uniqueness of a fixed point for an integral operator are
evaluated via complete controlled b-Branciari metric type spaces. Eventually in
Sect. 5, an exemplary example is offered to endorse the theoretical result.
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3 Fixed point theorem
Throughout this section, in the sense of controlled b-Branciari metric type spaces, we give
a fixed point result under specific contraction condition.

Theorem 3.1 Let (X, dC) be a complete controlled b-Branciari metric type space with co-
efficient function C(r, s) > 1 for any r, s ∈ X and F : X → X be a mapping satisfying

dC(Fr, Fs) ≤ ηC(r, s)dC(r, s), for all r, s ∈ X, (3.1)

where η ∈ [0, 1) is such that, for any r0 ∈ X, we have

lim sup
n,m→+∞

C(rn, rm)C(rn, rn+1) <
1
η2 (3.2)

and

lim sup
n,m→+∞

C(rn, rm)C(rn+1, rn+2) <
1
η2 (3.3)

and we assume lim supn→+∞ C(r, rn) and lim supn→+∞ C(rn, r) exist for any r ∈ X. Then F
has a fixed point in X. Moreover, suppose that, for any r, s ∈ X, we have

lim sup
n→+∞

C
(
Fnr, Fns

)
<

1
η

, (3.4)

where Fnr = Fn–1(Fr). Then the fixed point of F is unique.

Proof Let r0 ∈ X and define an iterative sequence {rn} by

r0, Fr0 = r1, Fr1 = r2 ⇒ r2 = F2r0 , . . . , rn+1 = Fn+1r0.

Consider

dC(rn, rn+1) = dC(Frn–1, Frn)

≤ ηC(rn–1, rn)dC(rn–1, rn)

...

≤ ηn
n∏

k=1

C(rk–1, rk)dC(r0, r1).

(3.5)

Similarly

dC(rn, rn+2) = dC(Frn–1, Frn+1)

≤ ηC(rn–1, rn+1)dC(rn–1, rn+1)

...

≤ ηn
n∏

k=1

C(rk–1, rk+1)dC(r0, r2).

(3.6)

Now to show that {rn} is Cauchy, we consider dC(rn, rn+p) in two cases.
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Case 1: If p is odd, say 2m + 1, then using (3.5), we obtain

dC(rn, rn+2m+1) ≤ C(rn, rn+1)dC(rn, rn+1) + C(rn+1, rn+2)dC(rn+1, rn+2)

+ C(rn+2, rn+2m+1)dC(rn+2, rn+2m+1)

...

≤ C(rn, rn+1)dC(rn, rn+1) + C(rn+1, rn+2)dC(rn+1, rn+2)

+

n+2m–2
2∑

i= n
2 +1

[
C(r2i, r2i+1)dC(r2i, r2i+1) + C(r2i+1, r2i+2)dC(r2i+1, r2i+2)

]

×
i∏

j= n
2 +1

C(r2j, rn+2m+1) +

n+2m
2∏

i= n
2 +1

C(r2i, rn+2m+1)dC(rn+2m, rn+2m+1)

≤
n+2m

2∑
i= n

2

C(r2i, r2i+1)dC(r2i, r2i+1)
i∏

j= n
2

C(r2j, rn+2m+1)

+

n+2m–2
2∑

i= n
2

C(r2i+1, r2i+2)dC(r2i+1, r2i+2)]
i∏

j= n
2

C(r2j, rn+2m+1)

≤
n+2m

2∑
i= n

2

C(r2i, r2i+1)
i∏

j= n
2

C(r2j, rn+2m+1)η2i
2i∏

k=1

C(rk–1, rk)dC(r0, r1)

+

n+2m–2
2∑

i= n
2

C(r2i+1, r2i+2)
i∏

j= n
2

C(r2j, rn+2m+1)η2i+1
2i+1∏
k=1

C(rk–1, rk)dC(r0, r1).

(3.7)

Let

ai = η2i
i∏

j= n
2

C(r2j, rn+2m+1)
2i+1∏
k=1

C(rk–1, rk)dC(r0, r1)

and

bi = η2i+1
i∏

j= n
2

C(r2j, rn+2m+1)
2i+2∏
k=1

C(rk–1, rk)dC(r0, r1).

By utilizing (3.2) and (3.3), we obtain

lim sup
i→+∞

ai+1

ai
= lim sup

i,m→+∞
η2
C(r2i+2, rn+2m+1)C(r2i+2, r2i+3) < 1

and

lim sup
i→+∞

bi+1

bi
= lim sup

i,m→+∞
η2
C(r2i+2, rn+2m+1)C(r2i+3, r2i+4) < 1.
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Thereby we deduce that

+∞∑
i= n

2

η2i
i∏

j= n
2

C(r2j, rn+2m+1)
2i+1∏
k=1

C(rk–1, rk)dC(r0, r1) < +∞

and

+∞∑
i= n

2

η2i+1
i∏

j= n
2

C(r2j, rn+2m+1)
2i+2∏
k=1

C(rk–1, rk)dC(r0, r1) < +∞.

Henceforth

( n+2m
2∑

i= n
2

η2i
i+1∏
j= n

2

C(r2j, rn+2m+1)
2i+1∏
k=1

C(rk–1, rk)dC(r0, r1)

)

and

( n+2m–2
2∑

i= n
2

η2i+1
i∏

j= n
2

C(r2j, rn+2m+1)
2i+2∏
k=1

C(rk–1, rk)dC(r0, r1)

)

are Cauchy sequences in R.
Case 2: If p is even, say 2m, using (3.5) and (3.6), we obtain

dC(rn, rn+2m) ≤ C(rn, rn+2)dC(rn, rn+2) + C(rn+2, rn+3)dC(rn+2, rn+3)

+ C(rn+3, rn+2m)dC(rn+3, rn+2m)

...

≤ C(rn, rn+2)dC(rn, rn+2) + C(rn+2, rn+3)dC(rn+2, rn+3)

+

n+2m–3
2∑

i= n+3
2

[
C(r2i, r2i+1)dC(r2i, r2i+1) + C(r2i+1, r2i+2)dC(r2i+1, r2i+2)

]

×
i∏

j= n+3
2

C(r2j, rn+2m) +

n+2m–1
2∏

i= n+3
2

C(r2i, rn+2m)dC(rn+2m–1, rn+2m) (3.8)

≤ C(rn, rn+2)dC(rn, rn+2)

+

n+2m–1
2∑

i= n+3
2

C(r2i, r2i+1)dC(r2i, r2i+1)
i∏

j= n+3
2

C(r2j, rn+2m)

+

n+2m–3
2∑

i= n+1
2

C(r2i+1, r2i+2)dC(r2i+1, r2i+2)]
i∏

j= n+1
2

C(r2j, rn+2m)

≤ C(rn, rn+2)ηn
n∏

i=1

C(ri–1, ri+1)dC(r0, r2)



Chandran et al. Advances in Difference Equations         (2021) 2021:56 Page 8 of 16

+

n+2m–1
2∑

i= n+3
2

C(r2i, r2i+1)
i∏

j= n+3
2

C(r2j, rn+2m)η2i
2i∏

i=1

C(rk–1, rk)dC(r0, r1)

+

n+2m–3
2∑

i= n+1
2

C(r2i+1, r2i+2)
i∏

j= n+1
2

C(r2j, rn+2m)η2i+1
2i+1∏
i=1

C(rk–1, rk)dC(r0, r1).

Let

ai = η2i
i∏

j= n+3
2

C(r2j, rn+2m)
2i+1∏
k=1

C(rk–1, rk)dC(r0, r1)

and

bi = η2i+1
i∏

j= n+1
2

C(r2j, rn+2m)
2i+2∏
k=1

C(rk–1, rk)dC(r0, r1).

By using (3.2) and (3.3), we get

lim sup
i→+∞

ai+1

ai
= lim sup

i,m→+∞
η2
C(r2i+2, rn+2m)C(r2i+2, r2i+3) < 1

and

lim sup
i→+∞

bi+1

bi
= lim sup

i,m→+∞
η2
C(r2i+2, rn+2m)C(r2i+3, r2i+4) < 1.

Hence, we deduce that

+∞∑
i= n+3

2

η2i
i∏

j= n+3
2

C(r2j, rn+2m)
2i+1∏
k=1

C(rk–1, rk)dC(r0, r1) < +∞

and

+∞∑
i= n+1

2

η2i+1
i∏

j= n+1
2

C(r2j, rn+2m)
2i+2∏
k=1

C(rk–1, rk)dC(r0, r1) < +∞.

Thereby

( n+2m–1
2∑

i= n+3
2

η2i
i∏

j= n+3
2

C(r2j, rn+2m+1)
2i+1∏
k=1

C(rk–1, rk)dC(r0, r1)

)

and

( n+2m–3
2∑

i= n+1
2

η2i+1
i∏

j= n+1
2

C(r2j, rn+2m+1)
2i+2∏
k=1

C(rk–1, rk)dC(r0, r1)

)
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are Cauchy sequences in R. By (3.7) and (3.8), it implies that {rn} is a Cauchy sequence in X
when n → +∞. Through completeness of (X, dC) there exists r ∈ X such that limn→+∞ rn =
r. We are now attempting to demonstrate that r is a fixed point of F . For n ∈N, we have

dC(rn+2, r) ≤ C(rn+2, rn+1)dC(rn+2, rn+1) + C(rn+1, rn)dC(rn+1, rn) + C(rn, r)dC(rn, r).

Passing n → +∞ in the aforementioned inequality, we find

lim
n→+∞ dC(rn+2, r) = 0, (3.9)

dC(r, Fr) ≤ C(r, rn+2)dC(r, rn+2) + C(rn+2, rn+1)dC(rn+2, rn+1) + C(rn+1, Fr)dC(rn+1, Fr)

= C(r, rn+2)dC(r, rn+2) + C(rn+2, rn+1)dC(rn+2, rn+1) + C(rn+1, Fr)dC(Frn, Fr)

≤ C(r, rn+2)dC(r, rn+2) + C(rn+2, rn+1)dC(rn+2, rn+1)

+ C(rn+1, Fr)ηC(rn, r)dC(rn, r).

By employing Eq. (3.9) and by the hypothesis of the theorem, we get dC(Fr, r) ≤ 0 as n →
+∞. Therefore dC(r, Fr) = 0 i.e., Fr = r. As a result we see that r is a fixed point of F .

Unicity:Let r, s be the two fixed points of F where r �= s, then Fr = r and Fs = s. Consider

dC(r, s) = dC(Fr, Fs) ≤ ηC(r, s)dC(r, s) = ηC
(
Fnr, Fns

)
dC(r, s).

Letting n → +∞ in the equation above and utilizing (3.4), we obtain dC(r, s) < dC(r, s),
which is a contradiction. Thereby, r is a unique fixed point of F . �

Corollary 3.2 Let (X, dr) be a complete rectangular b-metric space with b ≥ 1. Let F : X →
X be a mapping. Assume there exists l ∈ [0, 1) such that

dr(Fr, Fs) ≤ bldr(r, s)

for all r, s ∈ X. Assume that b2l < 1. Then F has a unique fixed point r∗.

Proof The proof follows from Theorem 3.1 by defining C : X × X → [1, +∞) as C(r, s) =
b. �

4 Existence–uniqueness of the solution of the BVP (2.4)
In this section, we confirm the existence and uniqueness of the solution of the nonlinear
BVP (2.4) within controlled b-Branciari metric type spaces.

We commence this section by proposing the Green’s function developed in Ying He [21]
relevant to the BVP corresponding to the linear fractional equation (2.5). Thereafter we
present an inequality fulfilled by the Green’s function to be utilized on the nonlinear BVP
(2.4) in our existence–unicity result. It is proved in Ying He [21] that linear problem (2.5)
has a unique solution in C[0, 1] given by

v(t) =
∫ 1

0
G(t, s)y(s) ds, (4.1)
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where G(t, s) is the Green’s function defined by

G(t, s) =
1

α(2 – β)�(α)

⎧⎪⎪⎨
⎪⎪⎩

{α(2 – β) + 2βt(α – 1 + s)}(1 – s)α–1

– α(2 – β)(t – s)α–1, if 0 ≤ s ≤ t ≤ 1,
{α(2 – β) + 2βt(α – 1 + s)}(1 – s)α–1, if 0 ≤ t ≤ s ≤ 1,

where 3 < α < 4 and 0 < β < 2. For the properties of the Green’s function, we refer to Ying
He [21].

In the following, we provide an estimation for the L2 norm of the Green’s function of a
fractional differential equation with integral boundary conditions specified in (2.4).

Lemma 4.1 Let 3 < α < 4 and 0 < β < 2, α �= β hold. Then, for all t, s ∈ (0, 1), the Green’s
function G(t, ·) ∈ L2 obeys

∫ 1

0

∣∣G(t, s)
∣∣2 ds <

1
(�(α))2

[
4
5

+
12β

5|β – 2| +
20β2

21(β – 2)2

]
. (4.2)

Proof If 3 < α < 4 and 0 < β < 2, β �= α, the interpretation of the Green’s function specifies:
(1) For 0 ≤ s ≤ t ≤ 1,

∣∣G(t, s)
∣∣ ≤ 2α|β – 2| + 2βt(α – 1 + s)

α|β – 2|�(α)
(1 – s)α–1

≤ 1
�(α)

(
2 +

2β

α|β – 2| (α – 1 + s)
)

(1 – s)α–1.
(4.3)

(2) For 0 ≤ t ≤ s ≤ 1,

∣∣G(t, s)
∣∣ ≤ α|β – 2| + 2βt(α – 1 + s)

α|β – 2|�(α)
(1 – s)α–1

≤ 1
�(α)

(
1 +

2β

α|β – 2| (α – 1 + s)
)

(1 – s)α–1.
(4.4)

Therefore, by Eqs. (4.3) and (4.4), for all t, s ∈ (0, 1), we have

∣∣G(t, s)
∣∣2 ≤ 1

(�(α))2

(
4 +

8β(α – 1 + s)
α|β – 2| +

4β2(α – 1 + s)2

α2(β – 2)2

)
(1 – s)2α–2, (4.5)

which yields

∫ 1

0

∣∣G(t, s)
∣∣2 ds

≤ 1
(�(α))2

[∫ 1

0
4(1 – s)2α–2 ds +

8β

α|β – 2|
∫ 1

0
(α – 1 + s)(1 – s)2α–2 ds

+
4β2

α2(β – 2)2

∫ 1

0
(α – 1 + s)2(1 – s)2α–2 ds

]

=
1

(�(α))2

[
4

2α – 1
+

8β

α|β – 2|
(

2α2 – 2α + 1
2α(2α – 1)

)
+

4β2

α(β – 2)2

(
2α2 – 3α + 2

(2α – 1)(2α + 1)

)]

<
1

(�(α))2

[
4
5

+
12β

5|β – 2| +
20β2

21(β – 2)2

]
. �
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Let h(·, v(·)) ∈ L2 for any v ∈ C[0, 1] and define a mapping F : C[0, 1] → C[0, 1] as

Fv(t) =
∫ 1

0
G(t, s)h

(
s, v(s)

)
ds, t ∈ [0, 1], (4.6)

where s → G(t, s) is continuous from [0, 1] → L2. Let tn ∈ [0, 1] with tn → t.
As h(·, v(·)), G(t, ·) ∈ L2, for any v ∈ C[0, 1] and t ∈ [0, 1], the function G(t, ·)h(·, v(·)) is

integrable. Then, by the Lebesgue dominated convergence theorem, we have

lim
n→∞ Fv(tn) = lim

n→∞

∫ 1

0
G(tn, s)h

(
s, v(s)

)
ds

=
∫ 1

0
lim

n→∞ G(tn, s)h
(
s, v(s)

)
ds

=
∫ 1

0
G(t, s)h

(
s, v(s)

)
ds = Fv(t),

which implies Fv ∈ C[0, 1]. Hence the map F : C[0, 1] → C[0, 1] holds.
Let dC : C[0, 1] × C[0, 1] → [0, +∞) be defined by

dC(v, z) = sup
t∈[0,1]

∣∣v(t) – z(t)
∣∣2. (4.7)

Then dC is a complete controlled b-Branciari metric type on C[0, 1] with a controlled
function

C(v, z) =

⎧⎨
⎩

9 + supt∈[0,1] |v(t) – z(t)|2, if v(t) �= z(t),

1, if v(t) = z(t).

Lemma 4.2 Let v ∈ C[0, 1] and F be given by Eq. (4.6). Then v(t) is a solution of boundary
value problem (2.4) if and only if it is the fixed point of F .

Proof Let v(t) be a solution of the BVP (2.4). Then, by Lemma 2.7, the unique solution of
(2.4) can be represented as

v(t) =
∫ 1

0
G(t, s)h

(
s, v(s)

)
ds, t ∈ [0, 1],

where G(t, s) is defined in (2.3). Thereby v(t) is a fixed point of F .
On the other hand, let v(t) be a fixed point of F . As β < n – 1, by Lemma 2.8, we have

cDα
(
v(t)

)
= cDα

(∫ 1

0
G(t, s)h

(
s, v(s)

)
ds

)

=
1

α(2 – β)�(α)

[
cDα

(∫ t

0

[
–α(2 – β)(t – s)α–1

+
[
α(2 – β) + 2βt(α – 1 + s)

]
(1 – s)α–1]h

(
s, v(s)

)
ds

+
∫ 1

t

[
α(2 – β) + 2βt(α – 1 + s)

]
(1 – s)α–1h

(
s, v(s)

)
ds

)]
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= –h
(
t, v(t)

)
+ cDα

(
t0

�(α)

∫ 1

0
(1 – s)α–1h

(
s, v(s)

)
ds

+
2βt

α(2 – β)�(α)
(α – 1 + s)(1 – s)α–1h

(
s, v(s)

)
ds

)

= –h
(
t, v(t)

)
.

Therefore v(t) satisfies the differential equation (2.4). Moreover it is easy to verify that
v′′(0) = v′′′(0) = 0 and v′(0) = v(1) = β

∫ 1
0 v(s) ds, which implies v(t) is a solution for the BVP

(2.4). Since v(t) is a fixed point of F and F is continuous, v(t) is a continuous solution for
the given boundary value problem. Hence, every fixed point of F in C[0, 1] solves the BVP
(2.4). �

We propose the following existence–uniqueness theorem for the solution of the problem
(2.4).

Theorem 4.3 Let 3 < α < 4 and

η =
1

(�(α))2

[
4
5

+
12β

5|β – 2| +
20β2

21(β – 2)2

]
< 1 (4.8)

hold for any 0 < β < 2, β �= α. Suppose that for the function h(·, v(·)) ∈ L2 for any v ∈ C[0, 1]
and for any v, z ∈ C[0, 1], the inequality

∣∣h(
s, v(s)

)
– h

(
s, z(s)

)∣∣2 ≤ (
9 +

∣∣v(s) – z(s)
∣∣2)∣∣v(s) – z(s)

∣∣2, s ∈ [0, 1], (4.9)

holds. Therefore the map F specified in Eq. (4.6) has a unique fixed point, and correspond-
ingly, the BVP (2.4) has a unique solution in C[0, 1].

Proof Through utilizing the Cauchy–Schwarz inequality and the definition of the map F
described in Eq. (4.6), we get

∣∣Fv(t) – Fz(t)
∣∣2 ≤

∣∣∣∣
∫ 1

0
G(t, s)

[
h
(
s, v(s)

)
– h

(
s, z(s)

)]
ds

∣∣∣∣
2

≤
(∫ 1

0

∣∣G(t, s)
∣∣2 ds

)(∫ 1

0

∣∣h(
s, v(s)

)
– h

(
s, z(s)

)∣∣2 ds
)

≤ η

∫ 1

0

(
9 +

∣∣v(s) – z(s)
∣∣2)∣∣v(s) – z(s)

∣∣2 ds.

(4.10)

Taking the supremum over [0, 1] along with the definition of the metric (4.7) and a con-
trolled function C, we obtain

dC(Fv, Fz) ≤ ηC(v, z)dC(v, z)

and the inequalities (3.2), (3.3) and (3.4) hold for any r0 ∈ X. Thus, it appears to follow
that the map F defined in Eq. (4.6) meets the criteria of Theorem 3.1 and henceforth has a
unique fixed point. Hence by Lemma 4.2, the BVP (2.4) has a unique solution in C[0, 1]. �
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5 Example
In this section, we add an example to Theorem 3.1.

Example 5.1 Consider the following differential equation of fractional order:

cD
7
2 v(t) + h

(
t, v(t)

)
= 0, 0 < t < 1, (5.1)

where h is defined by

h
(
t, v(t)

)
=

⎧⎨
⎩

1
v(t)(1–v(t)) , if – 1 ≤ v < 1,

1
v(t)(1+v(t)) , otherwise,

which is singular at v = 0 with the boundary conditions

v′′(0) = v′′′(0) = 0, v′(0) = v(1) =
1
2

∫ 1

0
v(s) ds.

The solution of the BVP provided in the example can be verified to fulfil the following
integral equation:

v(t) =
∫ 1

0
G(t, s)h

(
s, v(s)

)
ds,

where the Green’s function G(t, s) is given by

G(t, s) =
4

21�( 7
2 )

⎧⎨
⎩

{ 21
4 + t( 5

2 + s)}(1 – s)5/2 – 21
4 (t – s)5/2, if 0 ≤ s ≤ t ≤ 1,

{ 21
4 + t( 5

2 + s)}(1 – s)5/2, if 0 ≤ t ≤ s ≤ 1.
(5.2)

Note that, in this example, α = 7
2 , β = 1

2 which fulfill the requirement (4.8), and by
Lemma 4.1, we have

η =
∫ 1

0

∣∣G(t, s)
∣∣2 ds ≤ 103,168

212,625π
≈ 0.15 < 1. (5.3)

For the Green’s function acquired in Eq. (5.2) and the related map F defined by Eq. (4.6),
we use the Cauchy–Schwarz inequality to derive

∣∣Fv(t) – Fz(t)
∣∣2 ≤

∣∣∣∣
∫ 1

0
G(t, s)

[
h
(
s, v(s)

)
– h

(
s, z(s)

)]
ds

∣∣∣∣
2

≤
(∫ 1

0

∣∣G(t, s)
∣∣2 ds

)(∫ 1

0

∣∣h(
s, v(s)

)
– h

(
s, z(s)

)∣∣2 ds
)

= η

(∫ 1

0

∣∣h(
s, v(s)

)
– h

(
s, z(s)

)∣∣2 ds
)

,

(5.4)
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where η < 1 and

∣∣h(
s, v(s)

)
– h

(
s, z(s)

)∣∣

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

| 1
v(s)(1–v(s)) – 1

z(s)(1–z(s)) |, if v, z ∈ [–1, 1),

| 1
v(s)(1+v(s)) – 1

z(s)(1+z(s)) |, if v, z ∈ (–∞, –1) ∪ [1, +∞),

| 1
v(s)(1–v(s)) – 1

z(s)(1+z(s)) |, if v ∈ [–1, 1), z ∈ (–∞, –1) ∪ [1, +∞),

| 1
v(s)(1+v(s)) – 1

z(s)(1–z(s)) |, if v ∈ (–∞, –1) ∪ [1, +∞), z ∈ [–1, 1).

For v, z ∈ [–1, 1), we see that

∣∣Fv(t) – Fz(t)
∣∣2 ≤ η

∫ 1

0

∣∣∣∣ 1
v(s)(1 – v(s))

–
1

z(s)(1 – z(s))

∣∣∣∣
2

ds

= η

∫ 1

0

∣∣∣∣ (v(s))2 – (z(s))2 – (v(s) – z(s))
v(s)z(s)(1 – v(s))(1 – z(s))

∣∣∣∣
2

ds

= η

∫ 1

0

∣∣v(s) – z(s)
∣∣2

(
(v(s) + z(s)) – 1)

v(s)z(s)(1 – v(s))(1 – z(s))

)2

ds

≤ η

∫ 1

0

∣∣v(s) – z(s)
∣∣2

(
(v(s) + z(s)) + 1)

v(s)z(s)

)2

ds

= η

∫ 1

0

∣∣v(s) – z(s)
∣∣2

(
(v(s) + z(s))2 + 2(v(s) + z(s)) + 1)

v(s)z(s)

)2

ds

≤ η

∫ 1

0

∣∣v(s) – z(s)
∣∣2

(
(v(s) – z(s))2 + 4v(s)z(s) + 2(v(s) + z(s)) + 1)

v(s)z(s)

)2

ds

≤ η

∫ 1

0

∣∣v(s) – z(s)
∣∣2(9 +

∣∣v(s) – z(s)
∣∣2)ds.

(5.5)

By taking the supremum over t ∈ [0, 1] and taking into consideration the metric definition
given in (4.7), one has

dC(Fv, Fz) ≤ ηC(v, z)dC(v, z), (5.6)

where

C(v, z) = 9 + sup
t∈[0,1]

∣∣v(t) – z(t)
∣∣2.

Similarly, we can prove the other cases. Therefore the map F specified by (4.6) has a unique
fixed point and perhaps the BVP provided in the example does have a unique solution in
C[0, 1].

6 Conclusion
Following up Sevinik Adigüzel et al. [40], in this study, we dealt with problem (2.4) in the
context of controlled b-Branciari metric type spaces, which is a stronger concept than the
concept of extended-Branciari b-distance spaces [2] and controlled metric type spaces
[33], providing a disparate approach to the existence and uniqueness of the solution. This
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method can also be used for different α-derivative intervals. The theorem of existence–
uniqueness in this study strengthens the current research as it provides quite requisites
not only for positive solutions but also for any continuous solutions to the problem.
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