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Abstract
In this work, a version of continuous stage stochastic Runge–Kutta (CSSRK) methods
is developed for stochastic differential equations (SDEs). First, a general order theory
of these methods is established by the theory of stochastic B-series and multicolored
rooted tree. Then the proposed CSSRK methods are applied to three special kinds of
SDEs and the corresponding order conditions are derived. In particular, for the single
integrand SDEs and SDEs with additive noise, we construct some specific CSSRK
methods of high order. Moreover, it is proved that with the help of different numerical
quadrature formulas, CSSRK methods can generate corresponding stochastic
Runge–Kutta (SRK) methods which have the same order. Thus, some efficient SRK
methods are induced. Finally, some numerical experiments are presented to
demonstrate those theoretical results.
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1 Introduction
Stochastic differential equations (SDEs) have wide applications in many disciplines like
biology, economics, medicine, engineering and finance (see, e.g., [1–3]). However, most
SDEs arising in practice are nonlinear, and cannot be solved explicitly. There has been
tremendous interests in developing effective and reliable numerical methods for SDEs
during the last few decades, for example see [4–14]. Runge–Kutta (RK) methods with
continuous stage were firstly presented by Butcher in 1970s [15], and they have been in-
vestigated and discussed by several authors recently because of the great advantages in
conserving symplecticity [16], preserving energy [17] and so on. So constructing continu-
ous stage stochastic Runge–Kutta (CSSRK) methods for SDEs is a valuable task. This paper
mainly aims to construct CSSRK methods for SDEs which can be written in integral form
as

dx(t) = g0
(
x(t)

)
dt +

d∑

k=1

gk
(
x(t)

) ◦ dWk(t), x(0) = x0 ∈R
m, (1.1)
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with a d-dimensional Winer process (W (t))t≥0 = ((W1(t), . . . , Wd(t))T )t≥0. Here gk : Rm �→
R

m, k = 1, . . . , d, are Borel measurable, satisfying Lipschitz condition and linear growth
condition, x(t) is the stochastic process which denotes the solution of (1.1).

In engineering, the convergence order of applied numerical methods plays an important
role in efficient operation. And B-series appear as a fundamental tool to do error analysis
on a wide range of problems. Therefore, a general order theory for CSSRK methods based
on stochastic B-series and multicolored rooted tree is developed. Then, for the above SDE
(1.1) with d = 1, we discuss the order conditions, and construct relevant CSSRK methods
of order 1.0. Furthermore, CSSRK methods are also constructed for problems with some
special structures, such as single integrand SDEs, SDEs with additive noise.

Single integrand SDEs are given by

dx(t) = λg(x) dt +
d∑

k=1

σkg(x) ◦ dWk(t), x(0) = x0 ∈R
m, (1.2)

where λ ∈ {0, 1} and σk ∈R, k = 1, 2, . . . , d, are given constants. Some well known examples
for single integrand SDEs are the SDE describing fatigue cracking [18], the stochastic Van
der Pol equation [19]. A theory for the derivation of B-series of the numerical approxima-
tion by CSSRK methods is given. Due to the single integrant, it is similar to the ordinary
differential equations (ODEs) case [20]. The deterministic continuous stage Runge–Kutta
(DCSRK) methods of deterministic order pd are corresponding with the CSSRK methods
of mean square pμ = �pd/2�, which can be viewed as the stochastic generalization of the
DCSRK methods.

Concerning the specific problems with additive noise, thus

dx(t) = f
(
x(t)

)
dt +

d∑

k=1

σk ◦ dWk(t), x(0) = x0 ∈R
m, (1.3)

where σk , i = 1, 2, . . . , d, are constants. Based on stochastic B-series, we propose a class
of CSSRK methods, totally derivative-free for (1.3), which are able to reach mean-square
order 1.5. Then we focus on the special second-order systems with additive noise of the
following form:

ẍ(t) = f (x) +
d∑

k=1

σk ◦ Ẇk(t), x(0) = x0 ∈R
m, ẋ(0) = y0 ∈R

m, (1.4)

the corresponding CSSRK methods are able to reach mean-square order 2.0.
Interestingly, it is verified that a great deal of SRK methods could be derived from the

CSSRK methods by means of the adoption of different numerical quadrature formulas.
Furthermore, the conditions on algebraic precision of the numerical quadrature formulas
and the degree of the coefficient polynomials of CSSRK methods are analyzed to guarantee
that SRK methods share the same order with the CSSRK one. Thus, some efficient SRK
methods are obtained.

The outline of this paper is organized as follows. In the next section, a family of CSSRK
methods is proposed. Based on the multicolored rooted tree and stochastic B-series, the
general order conditions are calculated. Up to strong global order 1.0 of SRK methods are
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proposed in Sect. 3. In Sect. 4, we consider a particular class of Stratonovich SDEs, single
integrand SDEs. Sections 5 is devoted to discuss the CSSRK methods solving SDEs with
additive noise. Finally, numerical experiments are reported in Sect. 6.

2 CSSRK methods and their order conditions
In this section, we first introduce the definition of CSSRK methods, then show some re-
sults which are useful in receiving the order theory.

2.1 CSSRK methods
We consider the following methods given by y0 = x0 and the step size h > 0, let A(i,k)

τ ,ξ be a
polynomial in τ and ξ , B(i,k)

τ be a polynomial in τ . The one-step method �h : y0 → y1 given
by

Yτ = y0 +
d∑

k=0

∫ 1

0

r̂∑

i=0

φ̄i,kA(i,k)
τ ,ξ gk(Yξ ) dξ , (2.1a)

y1 = y0 +
d∑

k=0

∫ 1

0

r̂∑

i=0

φ̄i,kB(i,k)
τ gk(Yτ ) dτ , (2.1b)

with φ̄0,0 = h, φ̄i,k , k = 0, . . . , d, i = 0, . . . , r̂, are random variables. Invoking Z(k)
τ ,ξ =

∑r̂
i=0 φ̄i,kA(i,k)

τ ,ξ , z(k)
τ =

∑r̂
i=0 φ̄i,kB(i,k)

τ , then another presentation can be obtained,

Yτ = y0 +
d∑

k=0

∫ 1

0
Z(k)

τ ,ξ gk(Yξ ) dξ , (2.2a)

y1 = y0 +
d∑

k=0

∫ 1

0
z(k)
τ gk(Yτ ) dτ , (2.2b)

the coefficients Z(k)
τ ,ξ and z(k)

τ include random variables that depend on the stepsize h. Then
it defines a m-dimensional approximation process yn with yn ≈ xn which called CSSRK
methods.

2.2 Order theory
The basic tool of constructing our numerical methods is the multicolored rooted tree
theory in [21]. Thus, we briefly list some definitions and theorems used in constructing
numerical schemes later. Our first goal is to find B-series representations of (2.2a)–(2.2b)
which can be written as a B-series,

B(φ, x0; h) =
∑

t∈T

α(t)φ(t)(h)F(t)(x0),

where T is the set of multicolored rooted tree, α(t) are combination terms, the elementary
weight functions φ(t)(h) are stochastic integrals or random variables, and F(t)(x0) are the
elementary differentials.
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Definition 2.1 (Trees and combinatorial coefficients) The set of multicolored rooted
trees

T = {∅} ∪ T0 ∪ T1 ∪ · · · ∪ Td,

is recursively defined as follows:
(a) The graph •k = [∅]k with only one vertex of color k belongs to Tk . Let

t = [t1, t2, . . . , tl]k be the tree formed by joining the subtrees t1, t2, . . . , tl each by a
single branch to a common root of color k.

(b) If t1, t2, . . . , tl ∈ T , then t = [t1, t2, . . . , tl]k ∈ Tk .
Thus, Tk is the set of trees with a k-colored root, and T is the union of these sets. Further,
we define α(t) as

α(∅) = 1, α(•k) = 1, α(◦) = 1, α
(
t = [t1, t2, . . . , tl]k

)
=

1
r1!r2! · · · rq!

l∏

j=1

α(tj),

where r1, r2, . . . , rq count equal trees among t1, t2, . . . , tl .

Definition 2.2 (Elementary differentials) For a tree t ∈ T , the elementary differential is a
mapping F(t) : Rm →R

m defined recursively by
(a) F(∅)(x0) = x0.
(b) F([∅k])(x0) = gk(x0).
(c) If t = [t1, t2, . . . , tl]k ∈ Tk , then F(t)(x0) = g(l)

k (F(t1)(x0), F(t2)(x0), . . . , F(tl)(x0)), t ∈ Tk .

The next lemma proves that, if Y (h) can be written as a B-series, then f (Y (h)) can be
written as a similar series. The lemma is fundamental for deriving B-series for the exact
and the numerical solution.

Lemma 2.1 ([21]) Assume that Y (h) = B(φ, x0; h) is stochastic B-series, and f ∈ C∞(Rm,
Rm̂), then f (Y (h)) can be indicated

f
(
Y (h)

)
=

∑

u∈Uf

β(u)
φ(u)(h)G(u)(x0), (2.3)

where Uf are the collection derived from T .
(a) [∅]f ∈ Uf , and if t1, t2, . . . , tl ∈ T , then [t1, t2, . . . , tl]f ∈ Uf ;
(b) G([∅]f )(x0) = f (x0), G(u = [t1, t2, . . . , tl]f )(x0) = f (l)(x0)(F(tl)(x0), . . . , F(tl)(x0));
(c) β(u = [t1, t2, . . . , tl]f ) = 1

r1!r2!···rq !
∏l

i=1 α(ti);
(d) 
φ([∅]f )(h) = 1, 
φ(u = [t1, t2, . . . , tl]f )(h) =

∏l
i=1 φ(ti)(h).

Lemma 2.2 ([21]) The exact solution x(h) of (1.1) can be written as a B-series x(h) =
B(φ, x0, h) with

φ(∅)(h) = 1, φ(•k)(h) = Wk(h),

φ
(
t = [t1, t2, . . . , tl]k

)
(h) =

∫ h

0

l∏

i=1

φ(ti)(s) ◦ dWk(s).
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A similar result can be found for the numerical solution of (1.1) by the CSSRK methods
(2.2a)–(2.2b).

Theorem 2.1 The numerical solution y1 as well as the continuous stage values can be
written in terms of B-series

Yτ = B(�τ , y0; h), y1 = B(ϕ, y0; h),

for τ ∈ [0, 1], with

�τ (∅)(h) = 1, �τ (•k)(h) =
∫ 1

0
Z(k)

τ ,ξ dξ ,

�τ

(
t = [t1, t2, . . . , tl]k

)
(h) =

∫ 1

0
Z(k)

τ ,ξ

l∏

i=1

�ξ (ti)(h) dξ ,
(2.4)

ϕ(∅)(h) = 1, ϕ(•k)(h) =
∫ 1

0
z(k)
τ dξ ,

ϕ
(
t = [t1, t2, . . . , tl]k

)
(h) =

∫ 1

0
z(k)
τ

l∏

i=1

�τ (ti)(h) dτ .
(2.5)

Proof Write Yτ as a B-series, that is,

Y (τ ) =
∑

t∈T

α(t)�τ (t)(h)F(t)(y0),

for τ ∈ [0, 1], use the definition of the method (2.2a) and the term by term comparison
yielding (2.2a) to obtain

Yτ = y0 +
d∑

k=0

∫ 1

0
Z(k)

τ ,ξ gk(Yξ ) dξ

= y0 +
d∑

k=0

∫ 1

0
Z(k)

τ ,ξ gk
(
B(�ξ , y0; h)

)
dξ

= y0 +
d∑

k=0

∫ 1

0
Z(k)

τ ,ξ

∑

t∈Tk

α(t)�′
ξ ,k(t)(h)F(t)(y0) dξ

= y0 +
d∑

k=0

∫ 1

0

∑

t∈Tk

α(t)
(
Z(k)

τ ,ξ�
′
ξ ,k(t)(h)

)
dξF(t)(y0)

= y0 +
∑

t∈T/{∅}
α(t)

(∫ 1

0
Z(k)

τ ,ξ

l∏

i=1

�ξ (ti)(h) dξ

)

F(t)(y0)

=
∑

t∈T

α(t)�τ (t)(h)F(t)(y0),

where t = [t1, t2, . . . , tl]k ∈ Tk . The proof of (2.5) is similar. �

Now, the local order of accuracy of the CSSRK methods can be decided by comparing
the B-series of the exact and the numerical solution. First, we need to define the tree order.
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Definition 2.3 The order of a tree t ∈ T is defined by

ρ(∅) = 0, ρ
(
t = [t1, t2, . . . , tl]k

)
=

l∑

j=1

ρ(tj) +

⎧
⎨

⎩
1, k = 0,
1
2 , k �= 0.

The following lemma relates the global order of accuracy to the local order. Here, we
assume that (2.5) is constructed such that ϕ(t)(h) = O(hρ(t)) for all t ∈ T for mean square
convergence.

Lemma 2.3 ([21]) The method has mean square global order p if

(
E
∥∥ϕ(t)(h) – φ(t)(h)

∥∥2) 1
2 = O

(
hp+ 1

2
)
, ∀t ∈ T ,ρ(t) ≤ p, (2.6)

E
(
ϕ(t)(h)

)
= E

(
φ(t)(h)

)
+ O

(
hp+1), ∀t ∈ T ,ρ(t) ≤ p +

1
2

. (2.7)

Here, the O(·)-notation refers to h → 0 and, especially in (2.6), to the L2-norm.

3 Construction of CSSRK methods for SDEs with one random variable
Without loss of generality, we restrict consideration to autonomous systems (the coeffi-
cients of SDEs do not depend on t explicitly) in this part. We write

dx(t) = f
(
x(t)

)
dt + g

(
x(t)

) ◦ dW (t), x(0) = x0, (3.1)

then the CSSRK methods for system (3.1) are given by

Yτ = y0 + h
∫ 1

0
A(0)

τ ,ξ f (Yξ ) dξ + J1

∫ 1

0
A(1)

τ ,ξ g(Yξ ) dξ , (3.2a)

y1 = y0 + h
∫ 1

0
B(0)

τ f (Yτ ) dτ + J1

∫ 1

0
B(1)

τ g(Yτ ) dτ , (3.2b)

where J1 = �Wn = W (tn+1) – W (tn) is an independent N(0, h)-distributed Gaussian ran-
dom variable. Based on the multicolored rooted tree theory in Sect. 2, we are able to obtain
a set of order conditions guaranteeing that CSSRK methods (3.2a)–(3.2b) of mean-square
order 1.0 as detailed below. A list of all trees with ρ(t) ≤ 1.5 and their corresponding func-
tions are given in Table 1.

Above all, the following conditions need to be satisfied:
(a)

∫ 1
0 z(0)

τ dτ = h + O(h 3
2 );

(b)
∫ 1

0 z(1)
τ dτ = W1(h) + O(h 3

2 );
(c)

∫ 1
0 z(1)

τ

∫ 1
0 Z(1)

τ ,ξ dξ dτ =
∫ h

0 W1(s) ◦ dW1(s) + O(h 3
2 );

(d) E(
∫ 1

0 z(0)
τ dτ ) = E(h) + O(h2);

(e) E(
∫ 1

0 z(1)
τ dτ ) = E(W1(h)) + O(h2);

(f ) E(
∫ 1

0 z(1)
τ

∫ 1
0 Z(1)

τ ,ξ dξ dτ ) = E(
∫ h

0 W1(s) ◦ dW1(s)) + O(h2).
Through calculation, if the coefficients of CSSRK methods (3.2a)–(3.2b) satisfy the con-
ditions

∫ 1

0
B(0)

τ dτ = 1,
∫ 1

0
B(1)

τ dτ = 1,
∫ 1

0
B(1)

τ

∫ 1

0
A(1)

τ ,ξ dξ dτ =
1
2

, (3.3)
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Table 1 Multicolored rooted trees for (3.2a)–(3.2b) with order less than or equal to 1.5

No. t ρ(t) φ(t) ϕ(t)

1 •i 0.5 Wi(h)
∫ 1
0 z(i)τ dτ

2 0 1 W0(h) = h
∫ 1
0 z(0)τ dτ

3 i

j

1
∫ h
0 Wj(s) ◦ dWi(s)

∫ 1
0 z(i)τ

∫ 1
0 Z(j)τ ,ξ dξ dτ

4 i

j k

1.5
∫ 1
0 Wj(s)Wk (s) ◦ dWi(s)

∫ 1
0 z(i)τ

∫ 1
0 Z(j)τ ,ξ dξ

∫ 1
0 Z(k)τ ,ς dς dτ

5 i

j

k

1.5
∫ h
0

∫ s
0 Wi(s1) ◦ dWj(s1) ◦ dWk (s)

∫ 1
0 z(i)τ

∫ 1
0 Z(j)τ ,ξ

∫ 1
0 Z(k)ξ ,ς dς dξ dτ

6 i

0

1.5
∫ h
0 s ◦ dWi(s)

∫ 1
0 z(i)τ

∫
Z(0)τ ,ξ dξ dτ

7 0

i

1.5
∫ h
0 Wi(s)ds

∫ 1
0 z(0)τ

∫ 1
0 Z(i)τ ,ξ dξ dτ

then it is of mean-square order 1.0. We can choose some polynomials satisfying (3.3), for
example

B(0)
τ = 1, B(1)

τ = 1, A(0)
τ ,ξ = γ (0), A(1)

τ ,ξ =
1
2

, (3.4)

by B(i)
τ = λ(i), A(i)

τ ,ξ = γ (i), i = 0, 1,

B(0)
τ = 1, B(1)

τ = 1, A(0)
τ ,ξ = γ

(0)
1 τ + γ

(0)
2 ξ + γ

(0)
3 ,

A(1)
τ ,ξ = γ

(1)
1

(
τ –

1
2

)
+ γ

(1)
2

(
ξ –

1
2

)
+

1
2

,
(3.5)

by B(i)
τ = λ(i), A(i)

τ ,ξ = γ
(i)
1 τ + γ

(i)
2 ξ + γ

(i)
3 , i = 0, 1,

B(0)
τ = λ

(0)
1

(
τ –

1
2

)
+ 1, B(1)

τ = λ
(1)
1

(
τ –

1
2

)
+ 1, A(0)

τ ,ξ = γ (0), A(1)
τ ,ξ =

1
2

, (3.6)

by B(i)
τ = λ

(i)
1 τ + λ

(i)
2 , A(i)

τ ,ξ = γ (i), i = 0, 1,

B(0)
τ = λ

(0)
1

(
τ –

1
2

)
+ 1, B(1)

τ = λ
(1)
1

(
τ –

1
2

)
+ 1,

A(i)
τ ,ξ = γ

(i)
1 τ + γ

(i)
2 ξ + γ

(i)
3 , A(1)

τ ,ξ = γ
(1)
1

(
τ –

2
3

)
+ γ

(1)
2

(
ξ –

1
2

)
+

1
2

,
(3.7)

by A(i)
τ ,ξ = γ

(i)
1 τ + γ

(i)
2 ξ + γ

(i)
3 , B(i)

τ = λ
(i)
1 τ + λ

(i)
2 , i = 0, 1.

It is almost mandatory that the practical implementation of the CSSRK methods (3.2a)–
(3.2b) uses a numerical quadrature formula. By applying the quadrature formula (bi, ci)s

i=1
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to (3.2a)–(3.2b), we use of the notations Yi = Yci , deriving the SRK methods

Yi = y0 + h
s∑

j=1

bjA(0)
ci ,cj

f (Yj) + J1

s∑

j=1

bjA(1)
ci ,cj

g(Yj), i = 1, 2, . . . , s, (3.8a)

y1 = y0 + h
s∑

i=1

biB(0)
ci

f (Yi) + J1

s∑

i=1

biB(1)
ci

g(Yi), (3.8b)

where

A(0)
ci ,cj

= A(0)
τ ,ξ |τ=ci ,ξ=cj , A(1)

ci ,cj
= A(1)

τ ,ξ |τ=ci ,ξ=cj ,

B(0)
ci

= B(0)
τ |τ=ci , B(1)

ci
= B(1)

τ |τ=ci ,

which can be formulated by the following Butcher tableau:

(bjA(0)
ci ,cj )s×s (bjA(1)

ci ,cj )s×s

(biB(0)
ci )1×s (biB(1)

ci )1×s
. (3.9)

The following result implies that we can construct SRK methods with the same order of
CSSRK methods with the help of suitable numerical quadrature formulas.

Theorem 3.1 If the CSSRK methods (3.2a)–(3.2b) satisfy the order conditions (3.3), and
A(1)

τ ,ξ is a m1-order polynomial of τ and ξ , B(0)
τ , B(1)

τ are m2-, m3-order polynomials of τ ,
respectively. Then the associated SRK methods (3.9) derived by using the quadrature for-
mulas (bi, ci)s

i=1 with accuracy up to degree max{m2, m1 + m3} are also of order 1.0.

Proof Recall that A(1)
τ ,ξ is m1-order polynomial, B(0)

τ , B(1)
τ are m2-, m3-order polynomial,

based on algebra analysis, the numerical quadrature formulas (bi, ci)s
i=1 with accuracy up

to degree max{m2, m1 + m3} are exactly established for (3.3). Then we have

s∑

i=1

biB(0)
ci

= 1,
s∑

i=1

biB(1)
ci

= 1,
s∑

i=1

s∑

j=1

bibjB(1)
ci

A(1)
ci ,cj

=
1
2

,

thus, the associated SRK methods (3.9) are of order 1.0. �

As an application, for the constructed CSSRK methods of mean-square order 1.0, if we
use more quadrature points then we can get lots of new SRK methods which are not found
in the literature. For example, it gives the SRK schemes shown in the following.

A SRK method of order 1.0 derived by B(i)
τ = λ(i), A(i)

τ ,ξ = γ (i), i = 0, 1, using the left rect-
angle quadrature,

γ (0) 1
2

1 1
. (3.10)
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A SRK method of order 1.0 derived by B(i)
τ = λ(i), A(i)

τ ,ξ = γ
(i)
1 τ + γ

(i)
2 ξ + γ

(i)
3 , i = 0, 1, using the

trapezium quadrature formula,

1
2γ

(0)
3

1
2 (γ (0)

2 + γ
(0)
3 )

1
2 (γ (0)

1 + γ
(0)
3 ) 1

2 (γ (0)
1 + γ

(0)
2 + γ

(0)
3 )

1
2

1
2

1
2 ( 1

2 – 1
2γ

(1)
1 – 1

2γ
(1)
2 ) 1

2 – 1
2γ

(1)
1

1
2 ( 1

2 + 1
2γ

(1)
1 – 1

2γ
(1)
2 ) 1

2 ( 1
2 + 1

2γ
(1)
1 + 1

2γ
(1)
2 )

1
2

1
2

. (3.11)

A SRK method of order 1.0 derived by B(i)
τ = λ(i), A(i)

τ ,ξ = γ
(i)
1 τ + γ

(i)
2 ξ + γ

(i)
3 , i = 0, 1, using the

Lobatto quadrature formula,

1
6γ

(0)
3

2
3 ( 1

2γ
(0)
2 + γ

(0)
3 ) 1

6 (γ (0)
2 + γ

(0)
3 )

1
12γ

(0)
1 + 1

6γ
(0)
3

2
3 ( 1

2γ
(0)
2 + 1

2γ
(0)
1 + γ

(0)
3 ) 1

6 ( 1
2γ

(0)
1 + γ

(0)
2 + γ

(0)
3 )

1
6 (γ (0)

1 + γ
(0)
3 ) 2

3 ( 1
2γ

(0)
2 + γ

(0)
1 + γ

(0)
3 ) 1

6 (γ (0)
1 + γ

(0)
2 + γ

(0)
3 )

1
6

2
3

1
6

1
12 – 1

3γ
(1)
1 + 1

3 – 1
12γ

(1)
1 + 1

12γ
(1)
2 + 1

12

– 1
12γ

(1)
2 + 1

12
1
3

1
12γ

(1)
2 + 1

12
1

12γ
(1)
1 – 1

12γ
(1)
2 + 1

12
1
3γ

(1)
1 + 1

3
1

12γ
(1)
1 + 1

12γ
(1)
2 + 1

12
1
6

2
3

1
6

. (3.12)

A SRK method of order 1.0 derived by B(i)
τ = λ

(i)
1 τ +λ

(i)
2 , A(i)

τ ,ξ = γ (i), i = 0, 1, using the trapez-
ium quadrature formula,

1
2γ (0) 1

2γ (0) 1
4

1
4

1
2γ (0) 1

2γ (0) 1
4

1
4

1
2 (1 – 1

2λ
(0)
1 ) 1

2 (1 + 1
2λ

(0)
1 ) 1

2 (1 – 1
2λ

(1)
1 ) 1

2 (1 + 1
2λ

(1)
1 )

. (3.13)

A SRK method of order 1.0 derived by B(i)
τ = λ

(i)
1 τ + λ

(i)
2 , A(i)

τ ,ξ = γ
(i)
1 τ + γ

(i)
2 ξ + γ

(i)
3 , i = 0, 1,

using the Gaussian quadrature formula,

1
2 (1 – 1

2
√

3 (γ (0)
1 + γ

(0)
2 ) + γ

(0)
3 ) 1

2 (1 – 1
2
√

3 (γ (0)
1 – γ

(0)
2 ) + γ

(0)
3 )

1
2 (1 + 1

2
√

3 (γ (0)
1 – γ

(0)
2 ) + γ

(0)
3 ) 1

2 (1 + 1
2
√

3 (γ (0)
1 + γ

(0)
2 ) + γ

(0)
3 )

1
2 (1 – 1

2
√

3λ
(0)
1 ) 1

2 (1 + 1
2
√

3λ
(0)
1 )

1
4 (1 – 1

6γ
(1)
1 λ

(1)
1 – 1√

3 (γ (1)
1 + γ

(1)
2 )) 1

4 (1 – 1
6γ

(1)
1 λ

(1)
1 – 1√

3 (γ (1)
1 – γ

(1)
2 ))

1
4 (1 – 1

6γ
(1)
1 λ

(1)
1 + 1√

3 (γ (1)
1 – γ

(1)
2 )) 1

4 (1 – 1
6γ

(1)
1 λ

(1)
1 + 1√

3 (γ (1)
1 + γ

(1)
2 ))

1
2 (1 – 1

2
√

3λ
(1)
1 ) 1

2 (1 + 1
2
√

3λ
(1)
1 )

. (3.14)
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A SRK method of order 1.0 derived by A(i)
τ ,ξ = γ

(i)
1 τ + γ

(i)
2 ξ + γ

(i)
3 , B(i)

τ = λ
(i)
1 τ + λ

(i)
2 , i = 0, 1,

using the Lobatto quadrature formula,

1
6γ

(0)
3

2
3 ( 1

2γ
(0)
2 + γ

(0)
3 ) 1

6 (γ (0)
2 + γ

(0)
3 )

1
12γ

(0)
1 + 1

6γ
(0)
3

2
3 ( 1

2γ
(0)
2 + 1

2γ
(0)
1 + γ

(0)
3 ) 1

6 ( 1
2γ

(0)
1 + γ

(0)
2 + γ

(0)
3 )

1
6 (γ (0)

1 + γ
(0)
3 ) 2

3 ( 1
2γ

(0)
2 + γ

(0)
1 + γ

(0)
3 ) 1

6 (γ (0)
1 + γ

(0)
2 + γ

(0)
3 )

1
6 (1 – 1

2λ
(0)
1 ) 2

3
1
6 (1 + 1

2λ
(0)
1 )

1
6γ

(1)
3

2
3 ( 1

2γ
(1)
2 + γ

(1)
3 ) 1

6 (γ (1)
2 + γ

(1)
3 )

1
12γ

(1)
1 + 1

6γ
(1)
3

2
3 ( 1

2γ
(1)
2 + 1

2γ
(1)
1 + γ

(1)
3 ) 1

6 ( 1
2γ

(1)
1 + γ

(1)
2 + γ

(1)
3 )

1
6 (γ (1)

1 + γ
(1)
3 ) 2

3 ( 1
2γ

(1)
2 + γ

(1)
1 + γ

(1)
3 ) 1

6 (γ (1
1 + γ

(1)
2 + γ

(1)
3 )

1
6 (1 – 1

2λ
(1)
1 ) 2

3
1
6 (1 + 1

2λ
(1)
1 )

. (3.15)

4 High order CSSRK methods for single integrand SDEs
In this section, we consider a particular class of Stratonovich SDEs, single integrand SDEs
(1.2). All results in this section can straightforwardly be considered as the case of one-
dimensional Wiener process,

dx(t) = λg(x) dt + σ g(x) ◦ dW (t), x(0) = x0 ∈R, (4.1)

with

W (t) :=
1
σ

d∑

k=1

σkWk(t), σ =

√√√
√

d∑

k=1

σ 2
k .

Then (4.1) is solved by (3.2a)–(3.2b), we can obtain

Yτ = y0 + �μ

∫ 1

0
Aτ ,ξ g(Yξ ) dξ , (4.2a)

y1 = y0 + �μ

∫ 1

0
Bτ g(Yτ ) dτ , (4.2b)

where �μ = μ(t + h) – μ(t) = λh + σ (W (t + h) – W (t)), h > 0.
Due to the following lemmas, the main result is that the B-series of the exact and the

numerical solution are exactly as in the ODEs case, with the exception that integration is
now performed with respect to μ instead of h.

Lemma 4.1 [20] n ∈N, for all h > 0, we have

∫ h

0
μn ◦ dμ =

1
1 + n

μ(h)n+1.

Lemma 4.2 ([20]) For n ∈N, then we have

Eμ(h)n =

⎧
⎨

⎩
O(hn/2), if n is even,

O(h(n+1)/2), if n is odd.



Xin et al. Advances in Difference Equations         (2021) 2021:61 Page 11 of 22

Lemma 4.3 ([20]) Let γ : T →R be given by

γ (∅) = 1, γ (•) = 1, γ
(
[t1, t2, . . . , tl]

)
= ρ̂

(
[t1, t2, . . . , tl]

) l∏

i=1

γ (ti),

with ρ̂(t) denotes the number of nodes in a tree t, then the solution of (4.1) can be written
as B-series B(φ, x0; h)

φ(t)(h) =
μ(h)ρ̂(t)

γ (t)
, t ∈ T .

For the numerical approximation (4.2a)–(4.2b), the following results hold.

Theorem 4.1 The numerical solution y1 as well as the continuous stage values Yτ can be
written in terms of B-series

Yτ = B(�τ , y0; h), y1 = B(ϕ, y0; h),

where t = [t1, t2, . . . , tl] ∈ T , and

�τ (t) = �μρ̂(t)�̂τ (t), �̂τ (∅) = 1, ϕ(t) = �μρ̂(t), ϕ̂(∅) = 1,

�̂τ (•) =
∫ 1

0
Aτ ,ξ dξ , �̂τ (t) =

∫ 1

0
Aτ ,ξ

l∏

i=1

�̂ξ (ti) dξ ,

ϕ̂(•) =
∫ 1

0
Bτ dτ , ϕ̂(t)

∫ 1

0
Bτ

l∏

i=1

�̂τ (ti) dτ .

Proof Write Yτ as a B-series, that is,

Yτ = B(�τ , x0; h) =
∑

t∈T

α(t)�τ (t)(h)F(t)(y0).

Use (4.2a) to obtain

Yτ = y0 + �μ

∫ 1

0
Aτ ,ξ g(Yξ ) dξ

= y0 + �μ

∫ 1

0
Aτ ,ξ

∑

t∈Tg

α(t)�′
ξ (t)(h)F(t)(y0) dξ

= y0 +
∑

t∈Tg

α(t)
(

�μ

∫ 1

0
Aτ ,ξ�

′
ξ (t)(h) dξ

)
F(t)(y0),

where

�′
ξ (•) = 1, �τ (∅) = 1, �′

ξ (t)(h) =
l∏

i=1

�ξ (ti)(h),

�τ (t)(h) = �μ

∫ 1

0
Aτ ,ξ�

′
ξ (t)(h) dξ = �μ

∫ 1

0
Aτ ,ξ

l∏

i=1

�ξ (ti)(h) dξ ,
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�̂τ (t)(h) =
∫ 1

0
Aτ ,ξ

l∏

i=1

�̂ξ (ti)(h) dξ , t = [t1, t2, . . . , tl]g ∈ Tg ∈ T ,

thus �τ (t)(h) = �μρ̂(t)�̂τ (t)(h). Analogous to y1. �

In the following, the main results of this section are presented.

Theorem 4.2 The DCSRK methods of deterministic order pd is corresponding with the
CSSRK methods (4.2a)–(4.2b) of mean square pμ = �pd/2�, under the condition that �μ

is either sampled from the exact distribution or chosen such that at least the first 2pμ + 1
moments are considered with the ones of the exact distribution.

Proof With all the B-series in place, we can now present the order conditions for the mean
square global order pμ if and only if

E
(
φ(t)(h) – ϕ(t)(h)

)2 = O
(
h2pμ+1), t ∈ T , (4.3)

E
(
φ(t)(h) – ϕ(t)(h)

)
= O

(
hpμ+1), t ∈ T , (4.4)

and all elementary differentials F(t) fulfill the linear growth condition. Assume that �μ

is either sampled from the exact distribution or chosen such that at least the first 2pμ + 1
moments coincided with the ones of the exact distribution. Due to E(μ(h)2ρ̂(t)) = O(hρ̂(t))
by Lemma 4.3, (4.3) is then by Lemma 4.2 and Theorem 4.1 automatically fulfilled for all
t ∈ T with ˆρ(t) ≥ 2pμ + 1, and satisfying the remaining trees if and only if

ϕ(t) =
1

γ (t)
, t ∈ T , ρ̂(t) ≤ 2pμ. (4.5)

Note that (4.5) is just the condition that for the order pd of the DCSRK methods applied
to a deterministic system (σ = 0) with pd = 2pμ. Similarly, (4.4) is automatically fulfilled
for all t ∈ T with

ρ̂(t) ≥
⎧
⎨

⎩
2pμ + 2, if ρ̂(t) is even,

2pμ, if ρ̂(t) is odd,

satisfying the remaining trees if and only if

ϕ(t) =
1

γ (t)
, t ∈ T , ρ̂(t) ≤

⎧
⎨

⎩
2pμ + 1, if ρ̂(t) is even,

2pμ, if ρ̂(t) is odd.

Thus, the methods will be mean-square consistent of order pμ if the deterministic order
is

pd =

⎧
⎨

⎩
2pμ, pμ ∈ N,

2pμ + 1, pμ + 1
2 ∈ N,

or, vice versa, the methods of deterministic order pd will converge with mean-square order
of � pd

2 �. �
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As is well known, when solving the deterministic differential equation, the DCSRK
method with the polynomial

Aτ ,ξ = τ +
√

3
2

(
6τ 2 – 6τ + 1

)
(2τ – 1) – ξ +

1
2

, Bτ = 1, (4.6)

is of mean-square order 4.0 [22]. Hence, the corresponding CSSRK method is of order 2.0.
We can also choose multiple numerical quadrature formulas to get different SRK methods
of high order.

5 CSSRK methods for SDEs with additive noise
Concerning the specific problems with additive noise, thus (1.3) is solved by (2.1a)–(2.1b)
defined by

Yτ = y0 + h
∫ 1

0
A(0)

τ ,ξ f (Yξ ) dξ +
d∑

k=1

Jk

∫ 1

0
A(1)

τ ,ξ σk dξ

+
d∑

k=1

Jk0

h

∫ 1

0
A(2)

τ ,ξ σk dξ ,

(5.1a)

y1 = y0 + h
∫ 1

0
B(0)

τ f (Yτ )τ +
d∑

k=1

Jk

∫ 1

0
B(1)

τ σk dτ

+
d∑

k=1

Jk0

h

∫ 1

0
B(2)

τ σk dτ ,

(5.1b)

where J1 = �Wk , Jk0 =
∫ h

0
∫ s

0 dWk(s) ds. Because the noise terms are additive, we find that a
elementary differential vanishes if its multicolored rooted tree contains a node following
a stochastic node directly except if the deterministic node t0 is the only succeeding end
node. Table 2 consists of multicolored rooted trees whose elementary differentials are non-
zero. We are able to obtain a set of order conditions guaranteeing that the CSSRK methods
(5.1a)–(5.1b) obtained mean-square order 1.5 as detailed below.

Table 2 Multicolored rooted trees for (5.1a)–(5.1b) with order less than or equal to 2.0

No. t ρ(t) φ(t) ϕ(t)

1 •i 0.5 Ji
∫ 1
0 JiB

(1)
τ dτ +

∫ 1
0

Ji0
h B(2)τ dτ

2 •0 1 J0
∫ 1
0 hB(0)τ dτ

3 0

i

1.5
∫ h
0 s ◦ dWi(s)

∫ 1
0 hB(0)τ (

∫ 1
0 JiA

(1)
τ ,ξ dξ +

∫ 1
0

Ji0
h A(2)τ ,ξ dξ )dτ

4 0

0

2
∫ 1
0 sds

∫ 1
0 hB(0)τ

∫ 1
0 hA(0)τ ,ξ dξ dτ

5 0

i j

2
∫ h
0 Wi(s)Wj(s)ds

∫ 1
0 hB(0)τ (

∫ 1
0 JiA

(1)
τ ,ξ dξ +

∫ 1
0

Ji0
h A(2)τ ,ξ dτ )(

∫ 1
0 JjA

(1)
τ ,ξ dξ +

∫ 1
0

Jj0
h A(2)τ ,ξ dτ )dτ

6 0

i i

2
∫ h
0 Wi(s)2 ds

∫ 1
0 hB(0)τ (

∫ 1
0 JiA

(1)
τ ,ξ dξ +

∫ 1
0

Ji0
h A(2)τ ,ξ dξ )2 dτ
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Theorem 5.1 Suppose that (1.3) with d independent additive noises is approximated by
the CSSRK methods (5.1a)–(5.1b). If coefficients B(0)

τ , B(1)
τ , B(2)

τ , A(0)
τ ,ξ , A(1)

τ ,ξ , A(2)
τ ,ξ of the CSSRK

methods (5.1a)–(5.1b) satisfy conditions

∫ 1

0
B(0)

τ dτ = 1,
∫ 1

0
B(1)

τ dτ = 1,
∫ 1

0
B(2)

τ = 0,

∫ 1

0
B(0)

τ

∫ 1

0
A(0)

τ ,ξ dξ dτ =
1
2

,

∫ 1

0
B(0)

τ

∫ 1

0
A(1)

τ ,ξ dξ dτ = 0,

∫ 1

0
B(0)

τ

∫ 1

0
A(2)

τ ,ξ dξ dτ = 1,

∫ 1

0
B(0)

τ

((∫ 1

0
A(1)

τ ,ξ dτ

)2

+
1
3

(∫ 1

0
A(2)

τ ,ξ dξ

)2

+
∫ 1

0
A(1)

τ ,ξ dξ

∫ 1

0
A(2)

τ ,ξ dξ

)
dτ =

1
2

,

(5.2)

then they are of mean-square order 1.5.

Proof First, we have these facts for the increments:

E(Ji) = E(Ji0) = 0, E
(
J2
i
)

= h,

E
(

J2
i0 =

h3

3

)
, E(JiJi0) =

h2

2
, E(JiJj0) = 0, i �= j.

In order to attain mean-square order 1.5, we need φ(t) = ϕ(t) for trees 1–3 (ρ(t) ≤ 1.5),
and E(φ(t)) = E(ϕ(t)) for trees 4–6 (ρ(t) = 2), respectively, in Table 2. To be specific,

(a) Ji =
∫ 1

0 JiB(1)
τ dτ +

∫ 1
0

Ji0
h B(2)

τ dτ , we have
∫ 1

0 B(1)
τ dτ = 1,

∫ 1
0 B(2)

τ dτ = 0;
(b) J0 = h

∫ 1
0 B(0)

τ dτ , we have
∫ 1

0 B(0)
τ = 1;

(c)
∫ 1

0 s ◦ dWi(s) =
∫ 1

0 B(0)
τ (

∫ 1
0 JiA(1)

τ ,ξ dξ +
∫ 1

0
Ji0
h A(2)

τ ,ξ dξ ) dτ , we have
∫ 1

0 B(0)
τ

∫ 1
0 A(1)

τ ,ξ dξ dτ = 0;
(d)

∫ 1
0 B(0)

τ

∫ 1
0 A(0)

τ ,ξ dξ dτ = 1
2 ;

(e) E(
∫ 1

0 Wi(s)Wj(s) ds) = 0;
(f ) E(

∫ 1
0 Wi(s)2 ds) = 1

2 h2 =
∫ 1

0 hB(0)
τ (

∫ 1
0 JiA(1)

τ ,ξ dξ +
∫ 1

0
Ji0
h A(2)

τ ,ξ dξ )2 dτ .
The proof is completed. �

We can choose some polynomials satisfying (5.2), for example

B(0)
τ = 1, B(1)

τ = 1, B(2)
τ = 0,

A(0)
τ ,ξ = γ

(0)
1

(
τ –

1
2

)
+ γ

(0)
2

(
ξ –

1
2

)
+

1
2

, A(1)
τ ,ξ = γ

(1)
1

(
τ –

1
2

)
+ γ

(1)
2

(
ξ –

1
2

)
,

A(2)
τ ,ξ =

(
–3
2

γ
(1)
1 ± 18

√(
1

54
–

(γ (1)
1 )2

432

))(
τ –

1
2

)
+ γ

(2)
2 ξ –

1
2
γ

(2)
2 + 1,

(5.3)

by A(i)
τ ,ξ = γ

(i)
1 τ + γ

(i)
2 ξ + γ

(i)
3 , B(i)

τ = λ
(i)
1 τ + λ

(i)
2 , i = 0, 1, 2.
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Similarly, by applying the quadrature formula (bi, ci)s
i=1 to (5.1a)–(5.1b), utilizing the no-

tations Yi = Yci , i = 1, 2, . . . , s, we derive the corresponding SRK methods,

Yi = y0 + h
s∑

j=1

bjA(0)
ci ,cj

f (Yj) +
d∑

k=1

Jk

s∑

j=1

bjσk +
d∑

k=1

Jk0

h

s∑

j=1

bjA(2)
ci ,cj

σk , (5.4a)

y1 = y0 + h
s∑

i=1

biB(0)
ci

f (Yi) +
d∑

k=1

Jk

s∑

i=1

biB(1)
ci

σk +
d∑

k=1

Jk0

h

s∑

i=1

biB(2)
ci

σk , (5.4b)

where

A(0)
ci ,cj

= A(0)
τ ,ξ |τ=ci ,ξ=cj , A(1)

ci ,cj
= A(1)

τ ,ξ |τ=ci ,ξ=cj , A(2)
ci ,cj

= A(2)
τ ,ξ |τ=ci ,ξ=cj ,

B(0)
ci

= B(0)
τ |τ=ci , B(1)

ci
= B(1)

τ |τ=ci , B(2)
ci

= B(2)
τ |τ=ci ,

which can be formulated by the following Butcher tableau:

(bjA(0)
ci ,cj )s×s (bjA(1)

ci ,cj )s×s (bjA(2)
ci ,cj )s×s

(biB(0)
ci )1×s (biB(1)

ci )1×s (biB(2)
ci )1×s

. (5.5)

The following result implies that we can also construct SRK methods of the same order
via quadrature formulas.

Theorem 5.2 If the CSSRK methods (5.1a)–(5.1b) satisfy the order conditions (5.2), and
B(0)

τ , B(1)
τ , B(2)

τ , A(0)
τ ,ξ , A(1)

τ ,ξ , A(2)
τ ,ξ are, respectively, m1, m2, m3, m4, m5, m6-order polynomials,

then the associated SRK methods (5.5) derived by using quadrature formulas (bi, ci)s
i=1 with

accuracy up to degree max{m5, m6, m4 + m1, 2m2 + m4, 2m3 + m4, m2 + m3 + m4} are also of
order 1.5.

Proof Similar to Theorem 3.1. �

By using polynomials with different orders and any numerical quadrature formula with
order satisfied Theorem 5.2, we can get the classical SRK methods of order 1.5.

A SRK method of order 1.5 derived by A(i)
τ ,ξ = γ

(i)
1 τ +γ

(i)
2 ξ +γ

(i)
3 , B(i)

τ = λ(i), i = 0, 1, 2, using
the Simpson quadrature,

1
6γ

(0)
3

2
3 ( 1

2γ
(0)
2 + γ

(0)
3 ) 1

6 (γ (0)
2 + γ

(0)
3 )

1
12γ

(0)
1 + 1

6γ
(0)
3

2
3 ( 1

2γ
(0)
2 + 1

2γ
(0)
1 + γ

(0)
3 ) 1

6 ( 1
2γ

(0)
1 + γ

(0)
2 + γ

(0)
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A SRK method of order 1.5 derived by A(i)
τ ,ξ = γ

(i)
1 τ + γ

(i)
2 ξ + γ

(i)
3 , B(i)

τ = λ(i), i = 0, 1, 2 with
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(2)
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The special second-order systems with additive noise (1.4) can be regarded as a 2m-
dimensional system with y(t) = ẋ(t), y(0) = ẋ(0):

⎧
⎨

⎩
dx(t) = y(t) dt, x(0) = x0 ∈ Rm,

dy(t) = f (x) dt +
∑d

k=1 σk ◦ dWk(t), y(0) = y0 ∈ Rm.
(5.8)

Obviously, this is a special example of (1.3), and the mean-square order conditions of the
foregoing CSSRK methods are also available here. However, according to the specific fea-
tures of (5.8), we are able to simplify some conditions and get a higher mean-square order
without more effort.

Theorem 5.3 If the CSSRK methods (5.1a)–(5.1b) for the second-order systems (5.8) pos-
sess coefficients satisfying

∫ 1

0
B(0)

τ dτ = 1,
∫ 1

0
B(1)

τ dτ = 1,

∫ 1

0
B(2)

τ = 0,
∫ 1

0
B(0)

τ

∫ 1

0
A(0)

τ ,ξ dξ dτ =
1
2

,

∫ 1

0
B(0)

τ

∫ 1

0
A(1)

τ ,ξ dξ dτ = 0,
∫ 1

0
B(0)

τ

∫ 1

0
A(2)

τ ,ξ dξ dτ = 1,

(5.9)

then they are mean-square order 2.0.

Proof We find that conditions of the theorem above are similar to Theorem 5.1 except that
condition f in Theorem 5.1 is unnecessary here. In order to obtain the mean-square order
2.0, we need to analyze two additional colored rooted trees (ρ(t) = 2.5) listed in Table 3.



Xin et al. Advances in Difference Equations         (2021) 2021:61 Page 17 of 22

Table 3 Colored rooted tree for (5.8) with order equal to 2.5

No. t ρ(t) φ(t) ϕ(t)

7 •i 2.5
∫ h
0 sWi(s)ds

∫ 1
0 hB(0)τ

∫ 1
0 hA(0)τ ,ξ dξ

∫ 1
0 JiA

(1)
τ ,ξ dξ dτ +

∫ 1
0 hB(0)τ

∫ 1
0 hA(0)τ ,ξ dξ

∫ 1
0

Ji0
h A(2)τ ,ξ dξ dτ

8 •0 2.5
∫ 1
0

∫ 1
0 sds ◦ dWi(s)

∫ 1
0 hB(0)τ

∫ 1
0 hA(0)τ ,ξ

∫ 1
0 JiA

(1)
τ ,ξ dξ dξ dτ +

∫ 1
0 hB(0)τ

∫ 1
0 hA(0)τ ,ξ

∫ 1
0

Ji0
h A(2)τ ,ξ dξ dξ dτ

The condition (f ) in Theorem 5.1 is derived from the tree 6 in Table 2, which is essential
for general system. However, for system (5.8), the corresponding elemental differential of
tree 6 is

F(t)(x) = f (2)(x)
(
F(ti)(x), F(ti)(x)

)
= 0,

because the nth component of it is

(
F(t)(x)

)
n =

⎧
⎪⎨

⎪⎩

∑m
j1,j2=1

∂2(f (x)n)
∂xj1 ∂xj2 (0, 0), n = 1, 2, . . . , m

2 ,
∑m

j1,j2=1
∂2((y)n)
∂yj

1∂yj
2

(σj1 ,σj2 ), n = m
2 + 1, . . . , m

= 0,

where (f (x))n means the nth element of the vector function f (x). Thus tree 6 is unnecessary
in this situation. With the same analysis, the elementary differential of tree 5 in Table 2
vanishes as well. Moreover, for the additional trees 7, 8 in Table 3, we can check that

φ(t) = ϕ(t), ρ(t) ≤ 2, E
(
φ(t)

)
= E

(
ϕ(t)

)
, ρ(t) = 2.5. �

6 Numerical experiments
In this section, we perform numerical tests to verify the mean-square convergence order
proposed in Sects. 3, 4 and 5. The first group consists of method (3.4)–(3.7) and (3.11),
(3.14) of different free parameters. The second group of methods consists of the meth-
ods (4.6) of deterministic order pd = 4.0 for solving deterministic differential equation, in
which case the predicted stochastic order pμ = 2. Finally, we consider methods (5.9) for
SDEs with additive noise. In each example, the solution is approximated with step sizes
2–5, . . . , 2–9 and the sample average of M = 2000 independent simulated realizations of the
absolute error at the terminal time T = 1 is calculated in order to estimate the expectation,
accordingly.

6.1 Linear stochastic oscillator
The one-dimensional Linear stochastic oscillator in the sense of Stratonovich SDE is de-
scribed by

dx(t) = ax(t) dt + bx(t) ◦ dW (t), x(0) = x0. (6.1)

Here a and b are constants. The exact solution of (6.1) is given by

x(t) = x0 exp
(
at + bW (t)

)
.

In this experiment, we select γ (0) = 0 in (3.4), γ
(0)
2 = γ

(0)
3 = γ

(1)
2 = 0, γ

(0)
1 = γ

(1)
1 = 1 in (3.5),

λ
(0)
1 = λ

(1)
1 = 2, γ (0) = 0 in (3.6), λ(0)

1 = λ
(1)
1 = 2, γ (0)

1 = γ
(1)
1 = 3, γ (0)

2 = γ
(1)
2 = –3, γ (0)

3 = 1 in (3.7),
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and γ
(0)
1 = γ

(1)
1 = γ

(1)
2 = γ

(0)
2 = 1, γ

(0)
3 = 0 in (3.11), γ

(0)
1 = γ

(1)
1 = 1, γ

(0)
2 = 0, γ

(0)
3 = 1/(2

√
3),

γ
(1)
2 = –1, λ(0)

1 = λ
(1)
1 = 2

√
3 in (3.14), then we have the methods, respectively, of

B(0)
τ = 1, B(1)

τ = 1, A(0)
τ ,ξ = 0, A(1)

τ ,ξ =
1
2

, (6.2)

B(0)
τ = 1, B(1)

τ = 1, A(0)
τ ,ξ = τ , A(1)

τ ,ξ = τ , (6.3)

B(0)
τ = 2τ , B(1)

τ = 2τ , A(0)
τ ,ξ = 0, A(1)

τ ,ξ =
1
2

, (6.4)

B(0)
τ = 2τ , B(1)

τ = 2τ , A(i)
τ ,ξ = 3τ – 3ξ + 1, A(1)

τ ,ξ = 3τ – 3ξ , (6.5)

0 1
2 – 1

4
1
4

1
2 1 1

4
3
4

1
2

1
2

1
2

1
2

, (6.6)

1
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1
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1
4 – 1
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3
1
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√
3
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1
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√

3
1
4 + 1

2
√

3
1
4 + 1

4
√

3
1
4 + 1

4
√

3

0 1 0 1

. (6.7)

We choose the coefficients of (6.1) as a = 0.5, b = 1 with initial value x0 = 1. We present the
average sample errors

∑2000
i=1

√|xN (ωi) – x(1,ωi)|2/2000 for method (6.2)–(6.7) in Table 4.
Figure 1 shows the results of Table 4 in a log-log plot.

Figure 1 The convergence rates of methods

Table 4 The endpoint average sample errors of method (6.2)–(6.7) for solving (6.1)

h 2–5 2–6 2–7 2–8 2–9

method (6.2) 0.08955355 0.04394097 0.02231704 0.01162317 0.00584895
method (6.3) 0.08332414 0.04070979 0.02018808 0.01008743 0.00503145
method (6.4) 0.00981554 0.00459343 0.00228241 0.00116797 0.00058433
method (6.5) 0.06090075 0.03099001 0.01557490 0.00777261 0.00389402
method (6.6) 0.07178380 0.03655633 0.01846776 0.00928875 0.00465286
method (6.7) 0.04287447 0.02123069 0.01053777 0.00526784 0.00263307
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6.2 Kubo stochastic oscillator
The Kubo stochastic oscillator in the sense of Stratonovich SDE is described by

⎧
⎪⎪⎨

⎪⎪⎩

dp = –aq dt – bq ◦ dB(t), t ∈ [0, 1],

dq = ap dt + bp ◦ dB(t), t ∈ [0, 1],

p(0) = p0 ∈R, q(0) = q0 ∈R.

(6.8)

Here a and b are constants. The general solution of (6.8) is given by

p(t) = p0 cos
(
at + bB(t)

)
– q0 sin

(
at + bB(t)

)
,

q(t) = p0 sin
(
at + bB(t)

)
+ q0 cos

(
at + bB(t)

)
.

We choose the coefficients of (6.8) as a = 0, b = 1 with initial value p0 = 0.5, q0 = 0. By
using appropriate numerical quadrature formula, we can get the classical SRK methods of
high order. For (4.6), we can choose Gaussian quadrature with 2 nodes to get the following
method of order 2.0:
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√
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√
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√
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√
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√

15
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√
15

45
2
9 + 2

√
15

45
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18
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9

5
18

5
18

4
9

5
18

. (6.9)

The average sample errors at terminal time T = 1 are expressed by

2000∑

i=1

√∣
∣p(1,ωi) – pN (ωi)

∣
∣2 +

∣
∣q(1,ωi) – qN (ωi)

∣
∣2/2000

for methods in Table 5. Figure 2 shows the results of Table 5 in a log-log plot.

6.3 Linear stochastic oscillator with additive noise
Then we consider the following linear stochastic oscillator with additive noise:

⎧
⎪⎪⎨

⎪⎪⎩

dy(t) = –x(t) dt + dB(t), t ≥ 0,

dx(t) = y(t) dt, t ≥ 0,

y(0) = y0 ∈R, x(0) = x0 ∈R,

(6.10)

where x is the position and y is the velocity of a particle under the simple harmonic restor-
ing force. Since (6.10) is a SDE with additive noise, its Itô and Stratonovich form are iden-
tical. We consider it as a SDE of Stratonovich type. Choose the free parameters of (5.3)

Table 5 The endpoint average sample errors of method (4.6) and (6.9) for solving (6.8)

h 2–5 2–6 2–7 2–8 2–9

method (4.6) 0.00810481 0.00205308 0.00050988 0.00012790 0.00003198
method (6.9) 0.00005789 0.00001095 0.00000244 0.00000056 0.00000013
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Figure 2 The convergence rates of methods

Table 6 The endpoint average sample errors of method (6.11) and (6.12) for solving (6.10)

h 2–5 2–6 2–7 2–8 2–9

method (6.11) 0.02533476 0.00624569 0.00151650 0.00040765 0.00012035
method (6.12) 0.03889943 0.00976329 0.00241310 0.00060665 0.00015058

Figure 3 The convergence rates of methods

and method (5.7) as γ
(0)
1 = γ

(1)
1 = γ

(0)
2 = γ

(1)
2 = γ

(2)
2 = 0, other choices are also promoted.

Then we have the methods

B(0)
τ = 1, B(1)

τ = 1, B(2)
τ = 0,

A(0)
τ ,ξ =

1
2

, A(1)
τ ,ξ = 0, A(2)

τ ,ξ =
(

±18
√

1
54

)(
τ –

1
2

)
+ 1,

(6.11)

1
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1
4 0 0 –

√
2

4 + 1
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4 + 1
2

1
4

1
4 0 0

√
2

4 + 1
2

√
2

4 + 1
2

1
2

1
2

1
2

1
2 0 0

. (6.12)

To check the order of method (6.11), (6.12), the average sample errors at terminal time
T = 1 (i.e.,

∑2000
i=1

√|x(1,ωi) – xN (ωi)|2 + |y(1,ωi) – yN (ωi)|2/2000) for method (6.11), (6.12)
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in Table 6. Figure 3 shows the results of Table 6 in a log-log plot and the slope of the
reference line is 2.0.

7 Conclusions
This paper presents the extension work of DCSRK methods which are upgraded to the
stochastic counterpart. For general autonomous SDEs in the Stratonovich sense, a class
of CSSRK methods are proposed. The general order conditions are obtained by the use
of colored rooted tree and stochastic B-series. The order conditions up to strong global
order 2.0 of the CSSRK methods for solving single integrand SDEs are simplified. And for
solving SDEs with additive noise, the CSSRK methods of strong global order 1.5 and 2.0 are
given. It can be proved that a series of SRK methods of the same order with one CSSRK
method can be obtained by the rational application of numerical quadrature formulas.
The numerical experiments are examined to verify the results of our theoretical analysis
and show that the schemes are useful in very long-time numerical simulation of SDEs.
The properties of more numerical SRK methods can be obtained by the CSSRK methods
with all of these numerical experiments demonstrating significant order convergence of
the numerical methods.
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