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Abstract
In this paper, we study an initial value problem for a class of impulsive implicit-type
fractional differential equations (FDEs) with proportional delay terms. Schaefer’s fixed
point theorem and Banach’s contraction principle are the key tools in obtaining the
required results. We apply our results to a numerical problem for demonstration
purpose.
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1 Introduction
Differential equations have been proved to be powerful tools to describe many phenom-
ena in real-world problems. There has been a significant advancement in studying various
classes of differential equations. We refer to some recent work [1–5]. In the recent years
the trend is changed from classical integer-order derivatives to fractional-order deriva-
tives. This is because of the fact that the study of many mathematical models of real-
world problems with fractional-order derivatives produces significant results. The main
advantage of noninteger-order derivatives is that they are global operators and produce
accurate and stable results, whereas integer-order derivatives are local operators. Due to
these dominant advantages, various classes of differential equations are reformulated and
constructed in terms of fractional-order derivatives. We refer to some problems such as
world population growth models, blood alcohol level problems, video tape models, and so
on, where fractional-order derivatives are applied as powerful tools. Similarly, fractional-
order derivatives have applications in other fields like electrodynamics, fluid dynamics,
fluid mechanics, and so on; see [6–15].

The class of implicit differential equations is one of the major classes of differential
equations. These equations have applications in managerial and economic sciences. In
economical problems the differential equations in equilibrium state we dealing with are
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mostly of implicit type. Similarly, with the help of implicit functions, we can investigate
noteworthy features of most real-life isolines or surface geometry. We refer to some recent
work on implicit differential equations [16–18].

On other hand, differential equations with impulsive conditions play an important role
almost in every subject of science. Dynamical systems with impulsive phenomena have
applications in physics, biology, economics, engineering, and so forth. Differential equa-
tions with impulsive conditions are used to model certain processes with discontinuous
jumps and abrupt changes that cannot be modeled by classical differential equations; see
[19–26]. Considerable attention has been given to impulsive differential equations, but it is
worth noticing that many aspects of these equations yet need to be studied and explored.

There are several types of delay differential equations. One type is proportional delay
differential equations, also known as pantograph differential equations. The importance
of these equations is due to their ability to model several problems in economics, chem-
istry, medicine, biology, infectious diseases, physiological and pharmaceutical kinetics,
chemical kinetics, absorption of light by the interstellar matter, physics, population stud-
ies, number theory, the navigational control of ships and aircraft, electronic systems, elec-
trodynamics, quantum mechanics, and so on [27–30].

Implicit differential equations with proportional delay occur in many applied physical
applications. In economics the sudden rise and fall in stock exchange or in the status at
time t as a function of that time with some delay is inevitable in decision making problems.
This is a practical significance of pantograph implicit impulsive differential equations. For
some interesting applications of proportional delay differential equations, we refer to [31]
and references therein.

Motivated by the aforementioned applications of implicit impulsive pantograph differ-
ential equations, in this paper, we study two important aspects; the existence of solutions
and the Hyers–Ulam stability of the following initial value problem of implicit impulsive
differential equations with proportional delay term:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
0Dα

xn z(x) = f (x, z(x), z(mx),c0 Dα
xn z(x)), x ∈ J ,

x �= xn for n = 1, 2, . . . , k, 0 < α ≤ 1, 0 < m < 1,

z(0) = z0,

�z(xn) = In(z(xn)), n = 1, 2, . . . , k,

(1)

where J = [0, T], T > 0, c
0Dα

xn denotes the Caputo derivative at points other than xn in J , and
f : J × R3 → R and � : C(J , R) → R are given continuous functions. Further, In : R → R are
nonlinear impulsive mappings, and �z(xn) = z(x+

n) – z(x–
n), where z(x+

n) and z(x–
n) are the

right and left limits of z, respectively, at xn, n = 1, 2, . . . , k.
It is important to note that in this paper, we use the notations HU for Hyers–Ulam, GHU

for generalized Hyers–Ulam, HUR for Hyers–Ulam–Rassias, and GHUR for generalized
Hyers–Ulam–Rassis, respectively.

The rest of the paper is organized as follows. In Sect. 2, we give some definitions and
preliminary results necessary in this study. In Sect. 3, we give results concerning the exis-
tence of solutions. In Sect. 4, we study the Hyers–Ulam stability and Hyers–Ulam–Rassias
stability of problem (1). In Sect. 5, we illustrate the applications of our main results by pro-
viding a self-illustrative example. In Sect. 6, we conclude our work.
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2 Preliminaries
This section is concerned with introduction to some basic results and definitions.

Let J = [0, T] with 0 = x0 < x1 < x2 < · · · < xn = T . We denote by E the space PC(J , R)
of all piecewise continuous functions on J . More precisely, let J = J0 ∪ J1 ∪ J2 ∪ · · · ∪ Jn,
where J0 = [x0, x1], J1 = (x1, x2], J2 = (x2, x3], . . . , Jn = (xn, xn+1], n = 1, 2, 3, . . . , k, and J ′ = J \
{x1, x2, . . . , xn}. Then

E =
{

z : J → R : z ∈ C(Jn, R), and z
(
x+

n
)
, z

(
x–

n
)

exist
}

,

and �z(xn) = z(x+
n) – z(x–

n) for n = 1, 2, . . . , k. The space (E,‖ · ‖E) is a Banach space with
respect to the norm ‖z‖E = max{|z(x)| : x ∈ J}.

Definition 1 ([32]) The Riemann fractional integral of a function z ∈ L1([0, T], R+) is de-
fined as

0Iα
x z(x) =

1
�(α)

∫ x

0
(x – τ )α–1z(τ ) dτ ,

where α ∈ (0,∞) is the order of integration, and the integral on the right-hand side is
pointwise defined on (0,∞).

Definition 2 ([6]) The Caputo fractional-order derivative of a function z : (0,∞) → R is
defined as

c
0Dα

x z(x) =
1

�(n – α)

∫ x

0
(x – τ )n–α–1z(n)(τ ) dτ ,

where n=[α] + 1, and [α] is the integral part of a real number α.

Lemma 1 ([33]) For α > 0, the solution of FDE

c
0Dα

x z(x) = h(x),

is given by

z(x) = 0Iα
x h(x) +

n–1∑

i=0

z(i)(0)
i!

xi,

where n = [α] + 1.

Let ϕ ∈ C(J , R+) be a nondecreasing function. We assume that for s ∈ E, ε > 0, and ω ≥ 0,
the following inequalities hold:

⎧
⎨

⎩

|c0Dα
xn s(x) – f (x, s(x), s(mx), c

0Dα
xn s(x))| ≤ ε, x ∈ Jn, n = 1, 2, . . . , k,

|�s(xn) – In(s(xn))| ≤ ε, n = 1, 2, . . . , k;
(2)

⎧
⎨

⎩

|c0Dα
xn s(x) – f (x, s(x), s(mx), c

0Dα
xn s(x))| ≤ ϕ(x), x ∈ Jn, n = 1, 2, . . . , k,

|�s(xn) – In(s(xn))| ≤ ω, n = 1, 2, . . . , k;
(3)
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and
⎧
⎨

⎩

|c0Dα
xn s(x) – f (x, s(x), s(mx), c

0Dα
xn s(x))| ≤ εϕ(x), x ∈ Jn, n = 1, 2, . . . , k,

|�s(xn) – In(s(xn))| ≤ εω, n = 1, 2, . . . , k.
(4)

Definition 3 ([34]) Problem (1) is HU stable if there exists a real number Cf > 0 such that
for any solution s ∈ E of inequality (2), there are a unique solution z ∈ E of (1) and ε > 0
such that

∣
∣s(x) – z(x)

∣
∣ ≤ Cf ε, x ∈ J .

Definition 4 ([34]) Problem (1) is GHU stable if there exists a real function ϑ ∈ C(R+, R+)
with ϑ(0) = 0 such that for any solution s ∈ E of inequality (2), there exist a unique solution
z ∈ E of (1) and ε > 0 such that

∣
∣s(x) – z(x)

∣
∣ ≤ ϑ(ε), x ∈ J .

Definition 5 ([34]) Problem (1) is HUR stable with respect to (ω,ϕ) if there exists a real
number Cf > 0 such that for any solution s ∈ E of inequality (4), there is a unique solution
z ∈ E of (1) such that

∣
∣s(x) – z(x)

∣
∣ ≤ Cf ε

(
ω + ϕ(x)

)
, x ∈ J .

Definition 6 ([34]) Problem (1) is GHUR stable with respect to (ω,ϕ) if there exists Cf ∈
R > 0 such that for any solution s ∈ E of inequality (3), there is a unique solution z ∈ E of
(1) such that

∣
∣s(x) – z(x)

∣
∣ ≤ Cf

(
ω + ϕ(x)

)
, x ∈ J .

Remark 1 A function s ∈ E is a solution of (2) if there are a function θ ∈ E and a sequence
θn (which depends on s) such that

(i) |θ (x)| ≤ ε, |θn| ≤ ε, x ∈ Jn, n = 1, 2, . . . , k;
(ii) c

0Dα
xn s(x) = f (x, s(x), s(mx), c

0Dα
xn s(x)) + θ (x), x ∈ Jn, n = 1, 2, . . . , k;

(iii) �s(xn) = In(s(xn)) + θn, x ∈ Jn, n = 1, 2, . . . , k.

Remark 2 A function s ∈ E is a solution of (3) if there are a function θ ∈ E and a sequence
θn (which depends on s) such that

(i) |θ (x)| ≤ ϕ(x), |θn| ≤ ω, x ∈ Jn, n = 1, 2, . . . , k;
(ii) c

0Dα
xn s(x) = f (x, s(x), s(mx), c

0Dα
xn s(x)) + θ (x), x ∈ Jn, n = 1, 2, . . . , k;

(iii) �s(xn) = In(s(xn)) + θn, x ∈ Jn, n = 1, 2, . . . , k.

Remark 3 A function s ∈ E is a solution of (4) if there are a function θ ∈ E and sequence
θn (which depends on s) such that

(i) |θ (x)| ≤ εϕ(x), |θn| ≤ εω, x ∈ Jn, n = 1, 2, . . . , k;
(ii) c

0Dα
xn s(x) = f (x, s(x), s(mx), c

0Dα
xn s(x)) + θ (x), x ∈ Jn, n = 1, 2, . . . , k;

(iii) �s(xn) = In(s(xn)) + θn, x ∈ Jn, n = 1, 2, . . . , k.
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Theorem 1 ([35]) Let W : E → E be a completely continuous operator, where E is a Banach
space, and � = {z ∈ E : z = δW z, 0 < δ < 1} is a bounded set. Then W has at least one fixed
point in E.

3 Existence of solution: main results
In this section, we derive conditions for the existence and uniqueness of a solution for
problem (1).

Lemma 2 Let ψ : J → R be a continuous function, and let 0 < α ≤ 1. Then a function z ∈ E
is a solution of the impulsive problem

⎧
⎪⎪⎨

⎪⎪⎩

c
0Dα

xn z(x) = ψ(x), x ∈ J , x �= xn for n = 1, 2, . . . , k,

z(0) = z0,

�z(xn) = In(z(xn)), n = 1, 2, . . . , k,

(5)

if and only if z satisfies the integral equation

z(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
�(α)

∫ x
0 (x – τ )α–1ψ(τ ) dτ + z0, x ∈ J0,

1
�(α)

∫ x
xn

(x – τ )α–1ψ(τ ) dτ +
∑n

i=1[ 1
�(α)

∫ xi
xi–1

(xi – τ )α–1ψ(τ ) dτ

+ Ii(z(xi))] + z0, x ∈ Jn, n = 1, 2, . . . , k.

(6)

Proof Let z be a solution of (5). Then applying Lemma 1, for each x ∈ J0, we have

z(x) – z(0) = 0Iα
x ψ(x),

which implies

z(x) =
1

�(α)

∫ x

0
(x – τ )α–1ψ(τ ) dτ + z(0). (7)

Using the initial condition z(0) = z0, from (7) we have

z(x) =
1

�(α)

∫ x

0
(x – τ )α–1ψ(τ ) dτ + z0, x ∈ J0. (8)

Similarly, for x ∈ J1, we have

z(x) =
1

�(α)

∫ x

x1

(x – τ )α–1ψ(τ ) dτ + z(x1) (9)

and

z
(
x–

1
)

=
1

�(α)

∫ x

0
(x – τ )α–1ψ(τ ) dτ + z0, z

(
x+

1
)

= z(x1).

From

�z(x1) = z
(
x+

1
)

– z
(
x–

1
)

= I1
(
z(x1)

)
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we get

z(x1) =
1

�(α)

∫ x

0
(x – τ )α–1ψ(τ ) dτ + z0 + I1

(
z(x1)

)
.

Putting for z(x1), (9) implies

z(x) =
1

�(α)

∫ x

x1

(x – τ )α–1ψ(τ ) dτ +
1

�(α)

∫ x

0
(x – τ )α–1ψ(τ ) dτ

+ z0 + I1
(
z(x1)

)
, x ∈ J1.

Generalizing in this way, for x ∈ Jn, we have

z(x) =
1

�(α)

∫ x

xn

(x – τ )α–1ψ(τ ) dτ +
n∑

i=1

[
1

�(α)

∫ xi

xi–1

(xi – τ )α–1ψ(τ ) dτ

+ Ii
(
z(xi)

)
]

+ z0, n = 1, 2, . . . , k.

(10)

Thus from (8) and (10) we get (6).
Now, conversely, let z be a solution of (6). Then taking the αth-order derivative of (6)

gives the differential equation in (5). This completes the proof. �

Corollary 1 From Lemma 2 we get the following solution for our problem (1):

z(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
�(α)

∫ x
0 (x – τ )α–1f (x, z(x), z(mx), c

0Dα
xn z(x)) dτ + z0, x ∈ J0,

1
�(α)

∫ x
xn

(x – τ )α–1f (x, z(x), z(mx), c
0Dα

xn z(x)) dτ

+
∑n

i=1[ 1
�(α)

∫ xi
xi–1

(xi – τ )α–1f (x, z(x), z(mx), c
0Dα

xn z(x)) dτ

+ Ii(z(xi))] + z0, x ∈ Jn, n = 1, 2, . . . , k.

(11)

We use the notation uz(x) = f (x, z(x), z(mx), c
0Dα

xn z(x)) = f (x, z(x), z(mx), uz(x)).
The following assumptions are necessary in obtaining the main results.
(A1) f : J × R3 → R is continuous;
(A2) There exist constants Mf > 0 and 0 < Nf < 1 such that for all x ∈ J and z, z̄ ∈ R, we

have the following relation:

∣
∣f

(
x, z(x), z(mx), uz(x)

)
– f

(
x, z̄(x), z̄(mx), uz̄(x)

)∣
∣

≤ Mf
(∣
∣z(x) – z̄(x)

∣
∣ +

∣
∣z(mx) – z̄(mx)

∣
∣
)

+ Nf
∣
∣uz(x) – uz̄(x)

∣
∣.

(A3) For any z, z̄ ∈ E, there exists a constant A∗
I > 0 such that

∣
∣Ii

(
z(xi)

)
– Ii

(
z̄(xi)

)∣
∣ ≤ A∗

I
∣
∣z(xi) – z̄(xi)

∣
∣;

(A4) there exist functions a, b, c ∈ C(J , R+) such that

∣
∣f

(
x, z(x), z(mx), uz(x)

)∣
∣ ≤ a(x) + b(x)

(∣
∣z(x)

∣
∣ +

∣
∣z(mx)

∣
∣
)

+ c(x)|uz|

with c∗ = supx∈J c(x) < 1;
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(A5) Let for each z ∈ R, i = 1, 2, . . . , n, there exist constants K , L > 0, such that |Ii(z)| ≤
K |z| + L;

(A6) Let for a nondecreasing function ϕ ∈ PC(J , R+) and constant �ϕ > 0, the following
inequality hold:

Iαϕ(x) ≤ �ϕϕ(x), x ∈ J .

We convert our problem to a fixed-point problem by defining the operator W : C(J , R) →
C(J , R) as

⎧
⎪⎪⎨

⎪⎪⎩

(W z)(x) = 1
�(α)

∫ x
0 (x – τ )α–1uz(τ ) dτ + z0, x ∈ J0,

(W z)(x) = 1
�(α)

∫ x
xn

(x – τ )α–1uz(τ ) dτ +
∑n

i=1[ 1
�(α)

∫ xi
xi–1

(xi – τ )α–1uz(τ ) dτ

+ Ii(z(xi))] + z0, n = 1, 2, . . . , k,

Theorem 2 Suppose conditions (A1)–(A5) are satisfied. Then problem (1) has at least one
solution in the given interval.

Proof The proof is divided into four steps.
Step 1: W is continuous. Let {zn} ∈ C(J , R) be a sequence such that zn → z ∈ C(J , R). For

each x ∈ Jn, we have

∣
∣(W zn)(x) – (W z)(x)

∣
∣

≤ 1
�(α)

∫ x

xn

(x – τ )α–1∣∣uzn (τ ) – uz(τ )
∣
∣dτ

+
n∑

i=1

1
�(α)

∫ xi

xi–1

(xi – τ )α–1∣∣uzn (τ ) – uz(τ )
∣
∣dτ +

n∑

i=1

∣
∣Ii

(
zn(xi)

)
– Ii

(
z(xi)

)∣
∣,

(12)

where uzn , uz ∈ C(J , R) satisfy

uzn (x) = f
(
x, zn(x), zn(mx), uzn (x)

)
,

uz(x) = f
(
x, z(x), z(mx), uz(x)

)
.

By (A2) we get

∣
∣uzn (x) – uz(x)

∣
∣ ≤ 2Mf

1 – Nf

∣
∣zn(x) – z(x)

∣
∣.

Now zn → z as n → ∞ implies uzn (x) → uz(x) for each x ∈ Jn. We know that every con-
vergent sequence is bounded. So let ℵ > 0 be such that for each x ∈ J , we have |uzn (x)| ≤ ℵ
and |uz(x)| ≤ ℵ. Then

(x – τ )α–1∣∣uzn (τ ) – uz(τ )
∣
∣ ≤ (x – τ )α–1(∣∣uzn (τ )

∣
∣ +

∣
∣uz(τ )

∣
∣
)

≤ 2ℵ(x – τ )α–1,

(xi – τ )α–1∣∣uzn (τ ) – uz(τ )
∣
∣ ≤ (xi – τ )α–1(∣∣uzn (τ )

∣
∣ +

∣
∣uz(τ )

∣
∣
)
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≤ 2ℵ(xi – τ )α–1.

For each x ∈ Jn, the functions τ → 2ℵ(x – τ )α–1 and τ → 2ℵ(xi – τ )α–1 are integrable.
Also, f and I are continuous. Thus applying the Lebesgue dominated convergence theo-
rem, we have |(W zn)(x) – (W z)(x)| → 0 as n → ∞. Hence, in particular, maxx∈J |W zn(x) –
W z(x)| → 0 as n → ∞, which implies that ‖W zn – W z‖E → 0 as n → ∞. Similarly, for
each x ∈ J0, we can show that ‖W zn – W z‖E → 0 as n → ∞. Therefore W is continuous.

Step 2: Here we show that W is bounded. Let for γ > 0, there exist a positive real number
� > 0 such that for each z ∈ �γ = {z ∈ E : ‖z‖E ≤ γ }, we have ‖W (z)‖E ≤ �.

For x ∈ Jn, consider

∣
∣(W z)(x)

∣
∣ ≤ 1

�(α)

∫ x

xn

(x – τ )α–1∣∣uz(τ )
∣
∣dτ +

n∑

i=1

1
�(α)

∫ xi

xi–1

(xi – τ )α–1∣∣uz(τ )
∣
∣dτ

+
n∑

i=1

∣
∣Ii

(
z(xi)

)∣
∣ + |z0|.

By (A4) for x ∈ Jn, we have

∣
∣uz(x)

∣
∣ =

∣
∣f

(
x, z(x), z(mx), uz(x)

)∣
∣

≤ a(x) + b(x)
(∣
∣z(x)

∣
∣ +

∣
∣z(mx)

∣
∣
)

+ c(x)
∣
∣uz(x)

∣
∣

≤ a(x) + 2b(x)‖z‖E + c(x)
∣
∣uz(x)

∣
∣

≤ a(x) + 2b(x)γ + c(x)
∣
∣uz(x)

∣
∣

≤ a∗ + 2b∗γ + c∗∣∣uz(x)
∣
∣,

where a∗ = supx∈Jn a(x), b∗ = supx∈Jn b(x), and c∗ = supx∈Jn c(x) < 1.
Then

∣
∣uz(x)

∣
∣ ≤ a∗ + 2b∗γ

1 – c∗ = μ.

By application of assumptions (A4)–(A5) we obtain

∣
∣(W z)(x)

∣
∣ ≤ μ

�(α)

∫ x

xn

(x – τ )α–1 dτ +
μ

�(α)

n∑

i=1

∫ xi

xi–1

(xi – τ )α–1 dτ + n
(
K |z| + L

)
+ ζ

≤ μ(1 + n)Tα

�(α + 1)
+ n(Kγ + L) + ζ = �.

Thus

‖W z‖E ≤ μ(1 + n)Tα

�(α + 1)
+ n(Kγ + L) + ζ = �.

Similarly, for x ∈ J0, we can show that

‖W z‖E ≤ �.
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Step 3: We show W maps bounded sets into equicontinuous sets of E.
Let x1, x2 ∈ Jn be such that x1 < x2. As in Step 2, take a bounded set �γ ∗ . For z ∈ �γ ∗ , we

have
∣
∣(W z)(x2) – (W z)(x1)

∣
∣

≤
∣
∣
∣
∣

1
�(α)

∫ x2

xn

(x2 – τ )α–1uz(τ ) dτ –
1

�(α)

∫ x1

xn

(x1 – τ )α–1uz(τ )
∣
∣
∣
∣dτ

+
∑

0<xn<x2–x1

1
�(α)

∫ xn

xn–1

(xn – τ )α–1∣∣uz(τ )
∣
∣dτ +

∑

0<xn<x2–x1

∣
∣In

(
z(xn)

)∣
∣.

(13)

We see that the right-hand side of (13) approaches 0 as x1 → x2. Therefore |(W z)(x2) –
(W z)(x1)| → 0 as x1 → x2. Similarly, in a subinterval J0, we can show that |(W z)(x2) –
(W z)(x1)| → 0 as x1 → x2. Therefore, as a result of Steps 1–3 and the Ascoli–Arzelà the-
orem, we conclude that W : E → E is completely continuous.

Step 4: In this final step, we define the set � = {z ∈ E : z = δW z for some 0 < δ < 1}. We
need to show that � is bounded. Let z ∈ �. Then z = δW z for some 0 < δ < 1. Hence for
each x ∈ Jn, we have

z(x) =
δ

�(α)

∫ x

xn

(x – τ )α–1uz(τ ) dτ + δ
∑

0<xn<x

1
�(α)

∫ xn

xn–1

(xn – τ )α–1uz(τ ) dτ

+ δ
∑

0<xn<x

In
(
z(xn)

)
+ δz0.

Now since 0 < δ < 1, from the above we have

∣
∣z(x)

∣
∣ ≤ a∗ + 2b∗‖z‖E

(1 – c∗)�(α)

∫ x

xn

(x – τ )α–1 dτ +
∑

0<xn<x

a∗ + 2b∗‖z‖E

(1 – c∗)�(α)

∫ xn

xn–1

(xn – τ )α–1 dτ

+
∑

0<xn<x

∣
∣In

(
z(xn)

)∣
∣ + |z0|,

from which we have

‖z‖E ≤ a∗ + 2b∗‖z‖ETα

(1 – c∗)�(α + 1)
+

n(a∗ + 2b∗‖z‖E)Tα

(1 – c∗)�(α + 1)
+ n(Kγ + L) + ζ =: K.

A similar result can be achieved for x ∈ J0. Therefore � is a bounded set. Hence, by apply-
ing Schaefer’s fixed point theorem, W has at leat one confirmed fixed point. �

Theorem 3 Assume that conditions (A1)–(A3) together with the inequality

(
2Mf Tα

(1 – Nf )�(α + 1)
+

2Mf nTα

(1 – Nf )�(α + 1)
+ A∗

I n
)

< 1 (14)

are satisfied. Then (1) has a unique solution.

Proof For z, z̄ ∈ E and x ∈ Jn, we have

∣
∣(W z)(x) – (W z̄)(x)

∣
∣ ≤ 1

�(α)

∫ x

xn

(x – τ )α–1∣∣uz(τ ) – wz̄(τ )
∣
∣dτ
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+
n∑

i=1

1
�(α)

∫ xi

xi–1
(xi – τ )α–1∣∣uz(τ ) – wz̄(τ )

∣
∣dτ

+
n∑

i=1

∣
∣I

(
z(xi)

)
– I

(
z̄(xi)

)∣
∣, (15)

where uz, wz ∈ C(J , R) are given by

uz(x) = f
(
x, z(x), z(mx), uz(x)

)
,

wz̄(x) = f
(
x, z̄(x), z̄(mx), wz̄(x)

)
.

By (A2) we have

∣
∣uz(x) – wz̄(x)

∣
∣ =

∣
∣f

(
x, z(x), z(mx), uz(x)

)
– f

(
x, z̄(x), z̄(mx), wz̄(x)

)∣
∣

≤ Mf
(∣
∣z(x) – z̄(x)

∣
∣ +

∣
∣z(mx) – m̄z(x)

∣
∣
)

+ Nf
∣
∣uz(x) – wz̄(x)

∣
∣

≤ 2Mf (
∣
∣z(x) – z̄(x)

∣
∣ + Nf

∣
∣uz(x) – wz̄(x)

∣
∣.

Then

∣
∣uz(x) – wz̄(x)

∣
∣ ≤ 2Mf

1 – Nf

∣
∣z(x) – z̄(x)

∣
∣.

Thus by assumptions (A2)–(A3) inequality (15) implies

∣
∣(W z)(x) – (W z̄)(x)

∣
∣

≤ 2Mf

(1 – Nf )�(α)

∫ x

xn

(x – τ )α–1∣∣z(τ ) – z̄(τ )
∣
∣dτ

+
n∑

i=1

2Mf

(1 – Nf )�(α)

∫ xi

xi–1
(xi – τ )α–1∣∣z(τ ) – z̄(τ )

∣
∣dτ

+
n∑

i=1

A∗
I
∣
∣z(x) – z̄(x)

∣
∣

≤
(

2Mf Tα

(1 – Nf )�(α + 1)
+

2Mf nTα

(1 – Nf )�(α + 1)
+ A∗

I n
)

∣
∣z(x) – z̄(x)

∣
∣.

Taking the maximum norm, we get

‖W z – W z̄‖E ≤
(

2Mf Tα

(1 – Nf )�(α + 1)
+

2Mf nTα

(1 – Nf )�(α + 1)
+ A∗

I n
)

‖z – z̄‖E . (16)

Similarly, for z, z̄ ∈ E and x ∈ J0, we get

‖W z – W z̄‖E ≤
(

2Mf Tα

(1 – Nf )�(α + 1)

)

‖z – z̄‖E . (17)

Since
(

2Mf Tα

(1 – Nf )�(α + 1)

)

≤
(

2Mf Tα

(1 – Nf )�(α + 1)
+

2Mf nTα

(1 – Nf )�(α + 1)
+ A∗

I n
)

< 1,
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W is contraction operator, and therefore by Banach’s contraction principle W has a unique
fixed point in the given interval J . Thus problem (1) has a unique solution. �

4 Hyers–Ulam-type stability analysis
Here we study the Hyers–Ulam stability of problem (1).

Theorem 4 Assume that conditions (A1)–(A5) and (14) hold. Then proposed problem (1)
is HU stable.

Proof Let s ∈ E be any solution of (2), and let z be the unique solution of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
0Dα

xn z(x) = f (x, z(x), z(mx), c
0Dα

xn z(x)), x ∈ J ,

x �= xn for n = 1, 2, . . . , k, 0 < α ≤ 1,

z(0) = z0,

�z(xn) = In(z(xn)), n = 1, 2, . . . , k.

By Lemma 2, for x ∈ Jn, we have

z(x) =
1

�(α)

∫ x

xn

(x – τ )α–1uz(τ ) dτ +
n∑

i=1

[
1

�(α)

∫ xi

xi–1

(xi – τ )α–1uz(τ ) dτ

+ Ii
(
z(xi)

)
]

+ z0, x ∈ Jn, n = 1, 2, . . . , k.

By Remark 1 we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
0Dα

xn s(x) = f (x, s(x), s(mx), c
0Dα

xn s(x)) + θ (x), x ∈ J ,

x �= xn for n = 1, 2, . . . , k, 0 < α ≤ 1,

s(0) = s0,

�s(xn) = In(s(xn)) + θn, n = 1, 2, . . . , k.

(18)

The solution of (18) is

s(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
�(α)

∫ x
0 (x – τ )α–1ūz(τ ) dτ + 1

�(α)
∫ x

0 (x – τ )α–1θ (τ ) dτ + s0, x ∈ J0,
1

�(α)
∫ x

xn
(x – τ )α–1ūz(τ ) dτ + 1

�(α)
∫ x

xn
(x – τ )α–1θ (τ ) dτ

+
∑n

i=1
1

�(α)
∫ xi

xi–1
(xi – τ )α–1ūz(τ ) dτ +

∑n
i=1

1
�(α)

∫ xi
xi–1

(xi – τ )α–1θ (τ ) dτ

+
∑n

i=1 Ii(s(xi)) +
∑n

i=1 θi + s0, x ∈ Jn, n = 1, 2, . . . , k,

where ūz ∈ C(J , R) is given by

ūz(x) = f (x, s(x), ūz(x).

Therefore, for each x ∈ Jn, we have

∣
∣s(x) – z(x)

∣
∣
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≤ 1
�(α)

∫ x

xn

(x – τ )α–1∣∣ūz(τ ) – uz(τ )
∣
∣dτ +

1
�(α)

∫ x

xn

(x – τ )α–1∣∣θ (τ )
∣
∣dτ

+
n∑

i=1

1
�(α)

∫ xi

xi–1

(xi – τ )α–1∣∣ūz(τ ) – uz(τ )
∣
∣dτ +

n∑

i=1

1
�(α)

∫ xi

xi–1

(xi – τ )α–1∣∣θ (τ )
∣
∣dτ

+
n∑

i=1

∣
∣Ii

(
s(xi)

)
– Ii

(
z(xi)

)∣
∣ +

n∑

i=1

|θi|, x ∈ Jn, n = 1, 2, . . . , k.

By (A2) we obtain

∣
∣ūz(x) – uz(x)

∣
∣ ≤ 2Mf

1 – Nf

∣
∣s(x) – z(x)

∣
∣.

Hence applying assumptions (A1)–(A4) and Remark 1, we obtain

∣
∣s(x) – z(x)

∣
∣

≤ 2Mf

(1 – Nf )�(α)

∫ x

xn

(x – τ )α–1∣∣s(τ ) – z(τ )
∣
∣dτ +

ε

�(α)

∫ x

xn

(x – τ )α–1 dτ

+
2Mf

(1 – Nf )�(α)

n∑

i=1

∫ xi

xi–1

(xi – τ )α–1∣∣s(τ ) – z(τ )
∣
∣dτ +

n∑

i=1

ε

�(α)

∫ xi

xi–1

(xi – τ )α–1 dτ

+
n∑

i=1

A∗
I
∣
∣s(xi) – z(xi)

∣
∣ +

n∑

i=1

ε, x ∈ Jn, n = 1, 2, . . . , k.

By taking the maximum norm and simplification we get

‖s – z‖E

≤ ε

(
(1 + n)Tα

�(α + 1)
+ n

)

+
(

2Mf Tα

(1 – Nf )�(α + 1)
+

2Mf nTα

(1 – Nf )�(α + 1)
+ A∗

I n
)

‖s – z‖E ,

from which we obtain

‖s – z‖E ≤ ε( (1+n)Tα

�(α+1) + n)

1 – ( 2Mf Tα

(1–Nf )�(α+1) + 2Mf nTα

(1–Nf )�(α+1) + A∗
I n)

. (19)

Similarly, for x ∈ J0, we have

‖s – z‖E ≤ ε( Tα

�(α+1) )

1 – ( 2Mf Tα

(1–Nf )�(α+1) )
. (20)

Using (19) and (20), for x ∈ J , we have

‖s – z‖E ≤ ε

[ ( (1+n)Tα

�(α+1) + n)

1 – ( 2Mf Tα

(1–Nf )�(α+1) + 2Mf nTα

(1–Nf )�(α+1) + A∗
I n)

+
Tα

�(α+1)

1 – ( 2Mf Tα

(1–Nf )�(α+1) )

]

.

Thus

‖s – z‖E ≤ C1ε,
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where

C1 =
[ ( (1+n)Tα

�(α+1) + n)

1 – ( 2Mf Tα

(1–Nf )�(α+1) + 2Mf nTα

(1–Nf )�(α+1) + A∗
I n)

+
Tα

�(α+1)

1 – ( 2Mf Tα

(1–Nf )�(α+1) )

]

.

Therefore problem (1) is HU stable. �

Corollary 2 If we set ϑ(ε) = Cf (ε) with ϑ(0) = 0, then problem (1) becomes GHU stable.

Theorem 5 If assumptions (A1)–(A8) and (14) hold, then problem (1) is HUR stable with
respect to (ω,ϕ).

Proof Let s ∈ E be any solution of (4), and let z be a unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

c
0Dα

xn z(x) = f (x, z(x), z(mx), c
0Dα

xn z(x)), x ∈ J , x �= xn for n = 1, 2, . . . , k, 0 < α ≤ 1,

z(0) = z0,

�z(xn) = In(z(xn)), n = 1, 2, . . . , k.

Then from the proof of Theorem 4, for each x ∈ Jn, we have

∣
∣s(x) – z(x)

∣
∣

≤ 1
�(α)

∫ x

xn

(x – τ )α–1∣∣ūz(τ ) – uz(τ )
∣
∣dτ +

1
�(α)

∫ x

xn

(x – τ )α–1∣∣θ (τ )
∣
∣dτ

+
n∑

i=1

1
�(α)

∫ xi

xi–1

(xi – τ )α–1∣∣ūz(τ ) – uz(τ )
∣
∣dτ +

n∑

i=1

1
�(α)

∫ xi

xi–1

(xi – τ )α–1∣∣θ (τ )
∣
∣dτ

+
n∑

i=1

∣
∣Ii

(
s(xi)

)
– Ii

(
z(xi)

)∣
∣ +

n∑

i=1

|θi|, x ∈ Jn, n = 1, 2, . . . , k.

By (A2) we obtain

∣
∣ūz(x) – uz(x)

∣
∣ ≤ 2Mf

1 – Nf

∣
∣s(x) – z(x)

∣
∣.

By assumptions (A1)–(A4) and Remark 3 we have

∣
∣s(x) – z(x)

∣
∣

≤ 2Mf

(1 – Nf )�(α)

∫ x

xn

(x – τ )α–1∣∣s(τ ) – z(τ )
∣
∣dτ +

ε

�(α)

∫ x

xn

(x – τ )α–1ϕ(τ ) dτ

+
2Mf

(1 – Nf )�(α)

n∑

i=1

∫ xi

xi–1

(xi – τ )α–1∣∣s(τ ) – z(τ )
∣
∣dτ

+
n∑

i=1

ε

�(α)

∫ xi

xi–1

(xi – τ )α–1ϕ(τ ) dτ

+
n∑

i=1

A∗
I
∣
∣s(xi) – z(xi)

∣
∣ + ε

n∑

i=1

ω, x ∈ Jn, n = 1, 2, . . . , k.
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Using (A8) and taking the maximum norm, we get

‖s – z‖E ≤ ε
(
�ϕϕ(x)(1 + k) + kω

)

+
(

2Mf Tα

(1 – Nf )�(α + 1)
+

2Mf nTα

(1 – Nf )�(α + 1)
+ A∗

I n
)

‖s – z‖E

≤ ε
(
ϕ(x) + ω

)(
�ϕ(1 + k) + k

)

+
(

2Mf Tα

(1 – Nf )�(α + 1)
+

2Mf nTα

(1 – Nf )�(α + 1)
+ A∗

I n
)

‖s – z‖E ,

which yields

‖s – z‖E ≤ ε(ϕ(x) + ω)(�ϕ(1 + k) + k)

1 – ( 2Mf Tα

(1–Nf )�(α+1) + 2Mf nTα

(1–Nf )�(α+1) + A∗
I n)

. (21)

Similarly, for x ∈ J0, we have

‖s – z‖E ≤ ε(ϕ(x) + ω)�ϕ

1 – ( 2Mf Tα

(1–Nf )�(α+1) )
. (22)

Using (21) and (22), for x ∈ J , we have

‖s – z‖E ≤ ε
(
ϕ(x) + ω

)
[

(�ϕ(1 + k) + k)

1 – ( 2Mf Tα

(1–Nf )�(α+1) + 2Mf nTα

(1–Nf )�(α+1) + A∗
I n)

+
�ϕ

1 – ( 2Mf Tα

(1–Nf )�(α+1) )

]

.

Thus

‖s – z‖E ≤ C2ε
(
ϕ(x) + ω

)
,

where

C2 =
[

(�ϕ(1 + k) + k)

1 – ( 2Mf Tα

(1–Nf )�(α+1) + 2Mf nTα

(1–Nf )�(α+1) + A∗
I n)

+
�ϕ

1 – ( 2Mf Tα

(1–Nf )�(α+1) )

]

.

Therefore problem (1) is HUR stable. �

5 Applications
Example 1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
0D

1
2
x z(x) = e–πx

15 + e–x

38+x2 (sin(|z(x)|) + z( 1
4 x) + sin(|c0Dx

1
2 z(x)|)),

x ∈ [0, 1], x �= 1
3 , k = 1,

z(0) = 0,

�z( 1
3 ) = 1

10 z( 1
3 ),

(23)

where α = 1
2 , J0 = [0, 1

3 ], J1 = ( 1
3 , 1].
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Set

f
(
x, z(x), z(mx), uz(x)

)
=

e–πx

15
+

e–x

38 + x2

(

sin
(∣
∣z(x)

∣
∣
)

+ z
(

1
4

x
)

+ sin
(∣
∣c
0Dx

1
2 z(x)

∣
∣
)
)

with α = 1
2 and m = 1

4 . It is clear that f is a jointly continuous function.
Using (H2), for any z, z̄ ∈ R, we have

∣
∣f

(
x, z(x), z(mx),c0 Dα

x z(x)
)

– f
(
x, z̄(x), z̄(mx), c

0Dα
x z̄(x)

)∣
∣

≤ 1
19

∣
∣z(x) – z̄(x)

∣
∣

+
1

38
∣
∣c
0Dx

3
2 z(x) – c

0Dx
3
2 z̄(x)

∣
∣.

Hence (H2) holds with Mf = 1
19 and Nf = 1

38 . Set

Ik(v) =
1

10
v,

where v ∈ R. Then for v, v̄ ∈ R and k = 1, we have

∣
∣I1(v) – I1(v̄)

∣
∣ ≤

∣
∣
∣
∣

1
10

v –
1

10
v̄
∣
∣
∣
∣

≤ 1
10

|v – v̄|.

Hence (A3) holds with A∗
I = 1

10 .
Also, the condition

(
Mf Tα

(1 – Nf )�(α + 1)
+

Mf nTα

(1 – Nf )�(α + 1)
+ A∗

I n
)

= 0.169 < 1

is satisfied with T = 1 and n = 1. Therefore by Theorem 3 problem (23) has a unique solu-
tion.

Let ϕ(x) = x and ω = 1. Then for any x ∈ [0, 1], we have

I
1
2 ϕ(x) =

1
�( 1

2 )

∫ x

0
(x – τ )

1
2 –1τ dτ

≤ 2x√
π

.

We see that condition (A8) holds with �ϕ = 2√
π

. Applying 5, problem (23) is HUR stable.

6 Conclusion
Pantograph differential equations is a special type of delay differential equations with pro-
portional delay terms. In this research work, we studied important aspects such as the ex-
istence theory and stability analysis to an IVP of pantograph implicit fractional differential
equations with impulsive conditions. Using Schaefer’s fixed point theorem, we derived a
result of at least one solution to system (1), and applying the Banach contraction theorem,
we obtained conditions for a unique solution to the mentioned problem. Similarly, using
the Hyers–Ulam concept, we studied the stability of the considered problem.
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