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1 Introduction
The generalization of certain integral inequalities to the fractional scope, in both contin-
uous and discrete versions, have attracted many researchers in the recent few years and
before [1, 19, 20]. In this article, our work is devoted to Hadamard–Hermite type for con-
vex functions in the framework of Riemann–Liouville fractional type integrals.

A function g : I ⊆R →R is said to be convex on the interval I , if the inequality

g
(
�x + (1 – �)y

) ≤ �g(x) + (1 – �)g(y) (1)

holds for all x, y ∈ I and � ∈ [0, 1]. We say that g is concave if –g is convex.
For convex functions (1), many equalities and inequalities have been established by many

authors; such as the Hardy type inequality [3], Ostrowski type inequality [7], Olsen type
inequality [8], Gagliardo–Nirenberg type inequality [22], midpoint type inequality [10]
and trapezoidal type inequality [14]. But the most important inequality is the Hermite–
Hadamard type inequality [6], which is defined by

g
(

u + v
2

)
≤ 1

v – u

∫ v

u
g(x) dx ≤ g(u) + g(v)

2
, (2)

where g : I ⊆R →R is assumed to be a convex function on I where u, v ∈ I with u < v.
A number of mathematicians in the field of applied and pure mathematics have devoted

their efforts to generalizing, refining, finding counterparts of, and extending the Hermite–
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Hadamard inequality (2) for different classes of convex functions and mappings. For more
recent results obtained in view of inequality (2), we refer the reader to [2, 4, 6, 13, 16, 18].

In [21], Sarikaya et al. obtained the Hermite–Hadamard inequalities in fractional inte-
gral form:

g
(

u + v
2

)
≤ Γ (ϑ + 1)

2(v – u)ϑ
[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

] ≤ g(u) + g(v)
2

, (3)

where g : [u, v] ⊆R→R is assumed to be a positive convex function on [u, v], g ∈ L1[u, v]
with u < v, and Jϑ

u+ and Jϑ
v– are the left-sided and right-sided Riemann–Liouville fractional

integrals of order ϑ > 0, which, respectively, are defined by [9]

J
ϑ
u+ g(x) =

1
Γ (ϑ)

∫ x

u
(x – �)ϑ–1g(t) d�, x > u,

J
ϑ
v– g(x) =

1
Γ (ϑ)

∫ v

x
(� – x)ϑ–1g(t) d�, x < v.

It is clear that inequality (3) is a generalization of Hermite–Hadamard inequality (2). If
we take ϑ = 1 in (3) we obtain (2). Many inequalities have been established in view of
inequality (3); for more details see [5, 10, 11, 14, 15, 21, 23].

Recently, in [12], Mehrez and Agarwal obtained a new modification of the Hermite–
Hadamard inequality (2); this is given by

g
(

u + v
2

)
≤ 1

v – u

∫ v

u
g(x) dx ≤ g( 3v–u

2 ) + 2g( u+v
2 ) + g( 3u–v

2 )
4

. (4)

Furthermore, Mehrez and Agarwal obtained many inequalities in view of inequalities (4);
for which we refer the reader to their interesting paper [12].

The aim of this paper is to establish new inequalities of Hermite–Hadamard type for
convex functions via Riemann–Liouville fractional integrals.

2 Preliminary lemmas
In order to obtain our main results, we need some qualities which are stated in the follow-
ing lemmas.

Lemma 1 ([23]) Let g : [u, v] ⊆ R → R be a differentiable mapping on (u, v) with u < v. If
g ′ ∈ L1[u, v], then we have

Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
– g

(
u + v

2

)

=
v – u

2

[∫ 1

0
κg ′(�u + (1 – �)v

)
d� –

∫ 1

0

[
(1 – �)ϑ – �ϑ

]
g ′(�u + (1 – �)v

)
d�

]
, (5)

where

κ =

⎧
⎨

⎩
1 0 ≤ � < 1

2 ,

–1 1
2 ≤ � < 1.
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Lemma 2 ([5]) Let g : I ⊆ R → R be a twice differentiable function on Io (the interior of
I). Assume that u, v ∈ Io with u < v. If g ′′ ∈ L1[u, v], then for ϑ > 0 we have

g(u) + g(v)
2

–
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]

=
(v – u)2

2(ϑ + 1)

∫ 1

0
�
(
1 – �ϑ

)[
g ′′(�u + (1 – �)v

)
+ g ′′((1 – �)u + �v

)]
d�. (6)

Lemma 3 Let g : I ⊆ R → R be a differentiable function on Io and g ∈ L1[u, v]. If g is a
convex function on [u, v]. then for ϑ > 0 we have

g
(

u + v
2

)
≤ Γ (ϑ + 1)

2(v – u)ϑ
[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

] ≤ g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4
(7)

and

∣∣
∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

1
2

g
(

u + v
2

)∣∣
∣∣ ≤ g( 3v–u

2 ) + g( 3u–v
2 )

4
. (8)

Proof From the definition of Riemann–Liouville fractional integral, we have

Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]

=
ϑ

2(v – u)ϑ

[∫ v

u
(v – x)ϑ–1g(x) dx +

∫ v

u
(x – u)ϑ–1g(x) dx

]
.

By using the change of the variable x = 3
4� + u+v

4 for � ∈ [ 3u–v
3 , 3v–u

3 ], we obtain

Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]

=
3ϑ

8(v – u)ϑ

[∫ 3v–u
3

3u–v
3

(
3v – u

4
–

3
4
�

)ϑ–1

g
(

3
4
� +

u + v
4

)
d�

+
∫ 3v–u

3

3u–v
3

(
3
4
� –

3u – v
4

)ϑ–1

g
(

3
4
� +

u + v
4

)
d�

]
. (9)

Since g is convex on [u, v], we have

g
(

3
4
� +

u + v
4

)
= g

( 3
2� + u+v

2
2

)
≤ 1

2
g
(

3
2
�

)
+

1
2

g
(

u + v
2

)
.

It follows from this and (9) that

Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]

≤ 3ϑ

16(v – u)ϑ

[∫ 3v–u
3

3u–v
3

(
3v – u

4
–

3
4
�

)ϑ–1{
g
(

3
2
�

)
+ g

(
u + v

2

)}
d�

+
∫ 3v–u

3

3u–v
3

(
3
4
� –

3u – v
4

)ϑ–1{
g
(

3
2
�

)
+ g

(
u + v

2

)}
d�

]
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=
g( u+v

2 )
2

+
3ϑ

16(v – u)ϑ

[∫ 3v–u
3

3u–v
3

(
3v – u

4
–

3
4
�

)ϑ–1

g
(

3
2
�

)
d�

+
∫ 3v–u

3

3u–v
3

(
3
4
� –

3u – v
4

)ϑ–1

g
(

3
2
�

)
d�

]
.

Again, by using the change of the variable z = 3
2� for � ∈ [ 3u–v

2 , 3v–u
2 ], we obtain

Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]

≤ g( u+v
2 )

2
+

ϑ

2ϑ+2(v – u)ϑ

×
[∫ 3v–u

2

3u–v
2

(
3u – v

2
– z

)ϑ–1

g(z) dz +
∫ 3v–u

2

3u–v
2

(
z –

3v – u
2

)ϑ–1

g(z) dz
]

=
g( u+v

2 )
2

+
Γ (ϑ + 1)

2ϑ+2(v – u)ϑ

[
J

ϑ

( 3u–v
2 )+ g

(
3v – u

2

)
+ J

ϑ

( 3v–u
2 )– g

(
3u – v

2

)]
. (10)

Replace u by 3u–v
2 and v by 3v–u

2 in the right-hand side of inequality (3) and multiply both
sides by 1

2 , we get

Γ (ϑ + 1)
2ϑ+2(v – u)ϑ

[
J

ϑ

( 3u–v
2 )+ g

(
3v – u

2

)
+ J

ϑ

( 3v–u
2 )– g

(
3u – v

2

)]
≤ g( 3v–u

2 ) + g( 3u–v
2 )

4
. (11)

From (10) and (11), we obtain the desired inequality (7) and from (7) we can easily obtain
the inequality (8). These complete the proof of Lemma 3. �

Remark 1 If we use ϑ = 1 in Lemma 3, then Lemma 3 reduces to Lemma 3 in [12]. In
particular, inequalities (7) reduces to the inequalities (4).

3 Hermite–Hadamard type inequalities
Our main results start from the following theorem.

Theorem 1 Let g : Io ⊆ R → R be a differentiable mapping on Io, u, v ∈ Io with u < v.
Let g ′ ∈ L1[ 3u–v

2 , 3v–u
2 ] and g ′ : [ 3u–v

2 , 3v–u
2 ] → R be a continuous function on [ 3u–v

2 , 3v–u
2 ]. If

|g ′|q, q ≥ 1 is a convex function on [ 3u–v
2 , 3v–u

2 ], then

∣∣
∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
– g

(
u + v

2

)∣∣
∣∣

≤ v – u
2

(
2ϑ – 1

2ϑ (ϑ + 1)
+

1
2

)(∣
∣∣
∣g

′
(

3u – v
2

)∣
∣∣
∣

q

+
∣
∣∣
∣g

′
(

3v – u
2

)∣
∣∣
∣

q) 1
q

. (12)

Proof First we prove the theorem for q = 1. By changing the variables u → 3u–v
2 and v →

3v–u
2 in Lemma 1, we get

Γ (ϑ + 1)
2ϑ+1(v – u)ϑ

[
J

ϑ

( 3u–v
2 )+ g

(
3v – u

2

)
+ J

ϑ

( 3v–u
2 )– g

(
3u – v

2

)]

= g
(

u + v
2

)
+ (v – u)

[∫ 1

0
κg ′

(
3v – u

2
+ 2(v – u)�

)
d�
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–
∫ 1

0

[
(1 – �)ϑ – �ϑ

]
g ′

(
3v – u

2
+ 2(v – u)�

)
d�

]

= g
(

u + v
2

)
+ (v – u)

[∫ 1
2

0
g ′

(
3v – u

2
+ 2(v – u)�

)
d�

–
∫ 1

1
2

g ′
(

3v – u
2

+ 2(v – u)�
)

d�

+
∫ 1

0

[
�ϑ – (1 – �)ϑ

]
g ′

(
3v – u

2
+ 2(v – u)�

)
d�

]
. (13)

From (10) and (13), we find

∣∣
∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
– g

(
u + v

2

)∣∣
∣∣

≤ v – u
2

[∫ 1
2

0

[
(1 – �)ϑ – �ϑ + 1

]
∣
∣∣∣g

′
(

3v – u
2

+ 2(v – u)�
)∣

∣∣∣d�

+
∫ 1

1
2

[
�ϑ – (1 – �)ϑ + 1

]
∣∣
∣∣g

′
(

3v – u
2

+ 2(v – u)�
)∣∣

∣∣d�

]
. (14)

Using the convexity of |g ′| on [ 3u–v
2 , 3v–u

2 ], we obtain

∫ 1
2

0

[
(1 – �)ϑ – �ϑ + 1

]
∣
∣∣
∣g

′
(

3v – u
2

+ 2(v – u)�
)∣

∣∣
∣d�

=
∫ 1

2

0

[
(1 – �)ϑ – �ϑ + 1

]
∣∣
∣∣g

′
(

3u – v
2

� +
3v – u

2
(1 – �)

)∣∣
∣∣d�

≤
∫ 1

2

0

[
(1 – �)ϑ – �ϑ + 1

]{
�

∣∣
∣∣g

′
(

3u – v
2

)∣∣
∣∣ + (1 – �)

∣∣
∣∣g

′
(

3v – u
2

)∣∣
∣∣

}
d�

=
(

1
8

+
1

(ϑ + 1)(ϑ + 2)
–

1
(ϑ + 1)2ϑ+1

)∣
∣∣
∣g

′
(

3u – v
2

)∣
∣∣
∣

+
(

3
8

+
1

ϑ + 2
–

1
(ϑ + 1)2ϑ+1

)∣
∣∣
∣g

′
(

3v – u
2

)∣
∣∣
∣. (15)

Analogously, we obtain

∫ 1

1
2

[
�ϑ – (1 – �)ϑ + 1

]
∣
∣∣∣g

′
(

3v – u
2

+ 2(v – u)�
)∣

∣∣∣d�

≤
(

3
8

+
1

ϑ + 2
–

1
(ϑ + 1)2ϑ+1

)∣∣
∣∣g

′
(

3u – v
2

)∣∣
∣∣

+
(

1
8

+
1

(ϑ + 1)(ϑ + 2)
–

1
(ϑ + 1)2ϑ+1

)∣
∣∣∣g

′
(

3v – u
2

)∣
∣∣∣. (16)

Using (15) and (16) in (14), we get inequality (12) for q = 1.
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For q > 1 we use the Hölder inequality and the convexity of |g ′|q on [ 3u–v
2 , 3v–u

2 ] to obtain

∫ 1
2

0

[
(1 – �)ϑ – �ϑ + 1

]
∣
∣∣∣g

′
(

3v – u
2

+ 2(v – u)�
)∣

∣∣∣d�

≤
(∫ 1

2

0

[
(1 – �)ϑ – �ϑ + 1

]
d�

)1– 1
q

×
(∫ 1

2

0

[
(1 – �)ϑ – �ϑ + 1

]
∣
∣∣∣g

′
(

3u – v
2

� +
3v – u

2
(1 – �)

)∣
∣∣∣

q

d�

) 1
q

≤
(∫ 1

2

0

[
(1 – �)ϑ – �ϑ + 1

]
d�

)1– 1
q

×
(∫ 1

2

0

[
(1 – �)ϑ – �ϑ + 1

]
{
�

∣
∣∣∣g

′
(

3u – v
2

)∣
∣∣∣

q

+ (1 – �)
∣
∣∣∣g

′
(

3v – u
2

)∣
∣∣∣

q}
d�

) 1
q

=
(

1
2

+
1

ϑ + 1

(
1 –

1
2ϑ

))1– 1
q
([

1
8

+
1

(ϑ + 1)(ϑ + 2)
–

1
(ϑ + 1)2ϑ+1

]∣∣
∣∣g

′
(

3u – v
2

)∣∣
∣∣

q

+
[

3
8

+
1

ϑ + 2
–

1
(ϑ + 1)2ϑ+1

]∣
∣∣∣g

′
(

3v – u
2

)∣
∣∣∣

q) 1
q

. (17)

Analogously,

∫ 1

1
2

[
�ϑ – (1 – �)ϑ + 1

]
∣∣
∣∣g

′
(

3v – u
2

+ 2(v – u)�
)∣∣

∣∣d�

≤
(

1
2

+
1

ϑ + 1

(
1 –

1
2ϑ

))1– 1
q
([

3
8

+
1

ϑ + 2
–

1
(ϑ + 1)2ϑ+1

]∣∣
∣∣g

′
(

3u – v
2

)∣∣
∣∣

q

+
[

1
8

+
1

(ϑ + 1)(ϑ + 2)
–

1
(ϑ + 1)2ϑ+1

]∣
∣∣
∣g

′
(

3v – u
2

)∣
∣∣
∣

q) 1
q

. (18)

Using (17) and (18) in (14), we get

∣
∣∣
∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
– g

(
u + v

2

)∣
∣∣
∣

≤ v – u
2

(
1
2

+
1

ϑ + 1

(
1 –

1
2ϑ

))1– 1
q {

(c1 + d1)
1
q + (c2 + d2)

1
q
}

(19)

where

c1 =
[

1
8

+
1

(ϑ + 1)(ϑ + 2)
–

1
(ϑ + 1)2ϑ+1

]∣∣
∣∣g

′
(

3u – v
2

)∣∣
∣∣

q

,

c2 =
[

3
8

+
1

ϑ + 2
–

1
(ϑ + 1)2ϑ+1

]∣∣
∣∣g

′
(

3u – v
2

)∣∣
∣∣

q

,

d1 =
[

3
8

+
1

ϑ + 2
–

1
(ϑ + 1)2ϑ+1

]∣
∣∣∣g

′
(

3v – u
2

)∣
∣∣∣

q

,

d2 =
[

1
8

+
1

(ϑ + 1)(ϑ + 2)
–

1
(ϑ + 1)2ϑ+1

]∣
∣∣
∣g

′
(

3v – u
2

)∣
∣∣
∣

q

.
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Applying the formula

n∑

k=1

(ci + di)m ≤
n∑

k=1

cm
i +

n∑

k=1

dm
i , 0 ≤ m < 1,

for (19) and then using the fact that |xr
1 + xr

2| ≤ |x1 + x2|r , x1, x2, r ∈ [0, 1], we obtain the
inequality (12). This completes the proof of Theorem 1. �

Corollary 1 With similar assumptions to Theorem 1, if ϑ = 1, then

∣
∣∣
∣

1
v – u

∫ v

u
g(x) dx – g

(
u + v

2

)∣
∣∣
∣ ≤ 3(v – u)

8

(∣
∣∣
∣g

′
(

3u – v
2

)∣
∣∣
∣

q

+
∣
∣∣
∣g

′
(

3v – u
2

)∣
∣∣
∣

q) 1
q

, (20)

which is obtained by Mehrez and Agarwal in [12, Theorem 1].

Remark 2 In [23], the following inequality has been established:

∣∣
∣∣

1
v – u

∫ v

u
g(x) dx – g

(
u + v

2

)∣∣
∣∣ ≤ 3(v – u)

8
(∣∣g ′(u)

∣
∣ +

∣
∣g ′(v)

∣
∣). (21)

We show an analytical and numerical comparison between the left-hand side of inequali-
ties (20) and (21).

1. Let q = 1 and u, v ∈R with u < v. Then:
(a) If the function |g ′| is increasing on [ 3u–v

2 , 3v–u
2 ]. Since 3u–v

2 < u < v < 3v–u
2 , we

obtain

g ′
(

3u – v
2

)
< g ′(u) and g ′(v) < g ′

(
3v – u

2

)
;

or if the function |g ′| is decreasing on [ 3u–v
2 , 3v–u

2 ], we obtain

g ′(u) < g ′
(

3u – v
2

)
and g ′

(
3v – u

2

)
< g ′(v).

In those cases, comparison does not occur analytically between inequalities (20)
and (21).

(b) If the function |g ′| is increasing on [ 3u–v
2 , u], and decreasing on [v, 3v–u

2 ], then we
have

g ′
(

3u – v
2

)
< g ′(u) and g ′

(
3v – u

2

)
< g ′(v).

This tells us the right-hand side of inequality (20) is better than the right-hand
side of inequality (21).

(c) If the function |g ′| is decreasing on [ 3u–v
2 , u], and increasing on [v, 3v–u

2 ], then we
conclude that the right-hand side of inequality (21) is better than the right-hand
side of inequality (20).
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2. Suppose that m and n represent the right-hand side of inequalities (20) and (21),
respectively. Let [u, v] = [–1, – 1

2 ] and g(x) = ex, then we obtain m = 0.199744 and
n = 0.167444 when q = 1 and m = 0.155592 when q = 2. Then we conclude that the
right-hand side of inequality (20) is worse than the right-hand side of inequalities
(21) when q = 1, but better when q = 2.

Theorem 2 Let g : Io ⊆ R → R be a differentiable mapping on Io, u, v ∈ Io with u < v.
Let g ′ ∈ L1[ 3u–v

2 , 3v–u
2 ] and g ′ : [ 3u–v

2 , 3v–u
2 ] → R be a continuous function on [ 3u–v

2 , 3v–u
2 ]. If

|g ′|q, q > 1 is a convex function on [ 3u–v
2 , 3v–u

2 ], then

∣∣∣
∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
– g

(
u + v

2

)∣∣∣
∣

≤ v – u
2

(
2ϑp – 1

2ϑp(ϑp + 1)
+

1
2

) 1
p

×
{( |g ′( 3u–v

2 )|q + 3|g ′( 3v–u
2 )|q

8

) 1
q

+
(3|g ′( 3u–v

2 )|q + |g ′( 3v–u
2 )|q

8

) 1
q
}

≤ v – u
2

(
2ϑp – 1

2ϑp(ϑp + 1)
+

1
2

) 1
p
( |g ′( 3u–v

2 )|q + |g ′( 3v–u
2 )|q

2

) 1
q

, (22)

where 1
p + 1

q = 1.

Proof Applying Hölder’s inequality and the convexity of |g ′|q, q > 1 on [ 3u–v
2 , 3v–u

2 ], we ob-
tain

∫ 1
2

0

[
(1 – �)ϑ – �ϑ + 1

]
∣∣∣
∣g

′
(

3u – v
2

� +
3v – u

2
(1 – �)

)∣∣∣
∣d�

≤
(∫ 1

2

0

[
(1 – �)ϑ – �ϑ + 1

]p d�

) 1
p

×
(∫ 1

2

0

∣∣∣
∣g

′
(

3u – v
2

� +
3v – u

2
(1 – �)

)∣∣∣
∣

q

d�

) 1
q

≤
(∫ 1

2

0

[
(1 – �)ϑ – �ϑ + 1

]p d�

) 1
p

×
(∫ 1

2

0

{
�

∣∣∣
∣g

′
(

3u – v
2

)∣∣∣
∣

q

+ (1 – �)
∣∣∣
∣g

′
(

3v – u
2

)∣∣∣
∣

q}
d�

) 1
q

. (23)

Since (H1 – H2)q ≤ Hq
1 – Hq

2 for each H1, H2 > 0 and q > 1, (23) becomes

∫ 1
2

0

[
(1 – �)ϑ – �ϑ + 1

]
∣
∣∣
∣g

′
(

3v – u
2

+ 2(v – u)�
)∣

∣∣
∣d�

≤
(∫ 1

2

0

[
1 + (1 – �)ϑp – �ϑp]d�

) 1
p
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×
(∣

∣∣∣g
′
(

3u – v
2

)∣
∣∣∣

q ∫ 1
2

0
�d� +

∣
∣∣∣g

′
(

3v – u
2

)∣
∣∣∣

q ∫ 1
2

0
(1 – �) d�

) 1
q

=
(

2ϑp – 1
2ϑp(ϑp + 1)

+
1
2

) 1
p
( |g ′( 3u–v

2 )|q + 3|g ′( 3v–u
2 )|q

8

) 1
q

. (24)

In a similar manner, we get

∫ 1

1
2

[
�ϑ – (1 – �)ϑ + 1

]
∣∣
∣∣g

′
(

3u – v
2

� +
3v – u

2
(1 – �)

)∣∣
∣∣d�

≤
(

2ϑp – 1
2ϑp(ϑp + 1)

+
1
2

) 1
p
(3|g ′( 3u–v

2 )|q + |g ′( 3v–u
2 )|q

8

) 1
q

. (25)

Using (24) and (25) in (14), we get

∣
∣∣
∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
– g

(
u + v

2

)∣
∣∣
∣

≤ v – u
2

(
2ϑp – 1

2ϑp(ϑp + 1)
+

1
2

) 1
p

×
{( |g ′( 3u–v

2 )|q + 3|g ′( 3v–u
2 )|q

8

) 1
q

+
(3|g ′( 3u–v

2 )|q + |g ′( 3v–u
2 )|q

8

) 1
q
}

,

which proves the first inequality of (22). Applying the fact

∣
∣cm

1 + cm
2
∣
∣ ≤ |c1 + c2|m, 0 ≤ m < 1, c1, c2 ∈ [0, 1]

to the last inequality, we get the second inequality of (22). This completes the proof. �

Collecting both of Theorems 1 and 2 we obtain the following corollary.

Corollary 2 Let 1
p + 1

q = 1, then from Theorems 1 and 2, we have

∣∣
∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
– g

(
u + v

2

)∣∣
∣∣

≤ v – u
2

(∣
∣∣
∣g

′
(

3u – v
2

)∣
∣∣
∣

q

+
∣
∣∣
∣g

′
(

3v – u
2

)∣
∣∣
∣

q) 1
q

min{γ1,γ2},

where γ1 = ( 2ϑ –1
2ϑ (ϑ+1) + 1

2 ) and γ2 = ( 2ϑp–1

2ϑp+ p
q (ϑp+1)

+ 1

2
p
q +1

)
1
p .

Corollary 3 With similar assumptions to Theorem 2 if ϑ = 1, we have

∣
∣∣
∣

1
v – u

∫ v

u
g(x) dx – g

(
u + v

2

)∣
∣∣
∣

≤ (v – u)
(

1
2p+1(p + 1)

) 1
p
( |g ′( 3u–v

2 )|q + |g ′( 3v–u
2 )|q

2

) 1
q

,

which is obtained by Mehrez and Agarwal in [12, Theorem 2].
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Theorem 3 Let g : Io ⊆ R → R be a differentiable mapping on Io, u, v ∈ Io with u < v.
Let g ′′ : [ 3u–v

2 , 3v–u
2 ] → R be a continuous function on [ 3u–v

2 , 3v–u
2 ]. If |g ′′|q, q ≥ 1 is a convex

function on [ 3u–v
2 , 3v–u

2 ], then

∣
∣∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣
∣∣∣

≤ ϑ(v – u)2

2(ϑ + 1)(ϑ + 2)

{(
2ϑ + 4
3ϑ + 9

∣∣
∣∣g

′′
(

3u – v
2

)∣∣
∣∣

q

+
ϑ + 5

3ϑ + 9

∣∣
∣∣g

′′
(

3v – u
2

)∣∣
∣∣

q) 1
q

+
(

ϑ + 5
3ϑ + 9

∣
∣∣∣g

′′
(

3u – v
2

)∣
∣∣∣

q

+
2ϑ + 4
3ϑ + 9

∣
∣∣∣g

′′
(

3v – u
2

)∣
∣∣∣

q) 1
q
}

. (26)

Proof From Lemma 2 we have

Γ (ϑ + 1)
2ϑ+1(v – u)ϑ

[
J

ϑ

( 3u–v
2 )+ g

(
3v – u

2

)
+ J

ϑ

( 3v–u
2 )– g

(
3u – v

2

)]

=
g( 3u–v

2 ) + g( 3v–u
2 )

2

–
2(v – u)2

ϑ + 1

∫ 1

0
�
(
1 – �ϑ

)[
g ′′

(
�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))

+ g ′′
(

(1 – �)
(

3u – v
2

)
+ �

(
3v – u

2

))]
d�. (27)

From (27) and (10), we have

∣
∣∣
∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣
∣∣
∣

≤ (v – u)2

ϑ + 1

∫ 1

0
�
(
1 – �ϑ

)

×
[∣∣
∣∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣∣
∣∣

+
∣
∣∣
∣g

′′
(

(1 – �)
(

3u – v
2

)
+ �

(
3v – u

2

))∣
∣∣
∣

]
d�. (28)

Using the convexity of |g ′′|q, q > 1 on [ 3u–v
2 , 3v–u

2 ] and Hölder’s inequality, we have

∫ 1

0
�
(
1 – �ϑ

)
[∣
∣∣
∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣
∣∣
∣

+
∣∣
∣∣g

′′
(

(1 – �)
(

3u – v
2

)
+ �

(
3v – u

2

))∣∣
∣∣

]
d�

≤
(∫ 1

0
�
(
1 – �ϑ

)
d�

)1– 1
q

×
[(∫ 1

0
�
(
1 – �ϑ

){
�

∣∣
∣∣g

′′
((

3u – v
2

)∣∣
∣∣

q

+ (1 – �)
∣∣
∣∣g

′′
(

3v – u
2

))∣∣
∣∣

q}
d�

) 1
q
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+
(∫ 1

0
�
(
1 – �ϑ

){
(1 – �)

∣
∣∣∣g

′′
((

3u – v
2

)∣
∣∣∣

q

+ �

∣
∣∣∣g

′′
(

3v – u
2

))∣
∣∣∣

q}
d�

) 1
q
]

=
ϑ

2(ϑ + 2)

{(
2ϑ + 4
3ϑ + 9

∣∣∣
∣g

′′
(

3u – v
2

)∣∣∣
∣

q

+
ϑ + 5

3ϑ + 9

∣∣∣
∣g

′′
(

3v – u
2

)∣∣∣
∣

q) 1
q

+
(

ϑ + 5
3ϑ + 9

∣
∣∣∣g

′′
(

3u – v
2

)∣
∣∣∣

q

+
2ϑ + 4
3ϑ + 9

∣
∣∣∣g

′′
(

3v – u
2

)∣
∣∣∣

q) 1
q
}

. (29)

Using (29) in (28) we get (26) for q > 1.
Now by using the convexity of |g ′′|, we find

∫ 1

0
�
(
1 – �ϑ

)[
∣∣
∣∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣∣
∣∣

+
∣∣
∣∣g

′′
(

(1 – �)
(

3u – v
2

)
+ �

(
3v – u

2

))∣∣
∣∣

]
d�

≤
(∫ 1

0
�
(
1 – �ϑ

)
{
�

∣∣∣
∣g

′′
((

3u – v
2

)∣∣∣
∣ + (1 – �)

∣∣∣
∣g

′′
(

3v – u
2

))∣∣∣
∣

}
d�

)

+
(∫ 1

0
�
(
1 – �ϑ

){
(1 – �)

∣
∣∣∣g

′′
((

3u – v
2

)∣
∣∣∣ + �

∣
∣∣∣g

′′
(

3v – u
2

))∣
∣∣∣

}
d�

)

=
[

ϑ

3(ϑ + 3)

∣
∣∣
∣g

′′
(

3u – v
2

)∣
∣∣
∣ +

ϑ(ϑ + 5)
6(ϑ + 2)(ϑ + 3)

∣
∣∣
∣g

′′
(

3v – u
2

)∣
∣∣
∣

+
ϑ

3(ϑ + 3)

∣∣∣
∣g

′′
(

3v – u
2

)∣∣∣
∣ +

ϑ(ϑ + 5)
6(ϑ + 2)(ϑ + 3)

∣∣∣
∣g

′′
(

3u – v
2

)∣∣∣
∣

]

=
ϑ

2(ϑ + 2)

(∣∣
∣∣g

′′
(

3u – v
2

)∣∣
∣∣ +

∣∣
∣∣g

′′
(

3v – u
2

)∣∣
∣∣

)
. (30)

Substituting (30) into (28) we deduce that the inequality (26) holds true for q = 1. Hence
the proof of Theorem 3 is completed. �

Corollary 4 With similar assumptions to Theorem 3 if ϑ = 1, we have

∣
∣∣
∣

1
v – u

∫ v

u
g(x) dx –

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣
∣∣
∣

≤ (v – u)2

6

( |g ′′( 3u–v
2 )|q + |g ′′( 3v–u

2 )|q
2

) 1
q

. (31)

Remark 3 In [12, Theorem 3], Mehrez and Agarwal obtained the following inequality:

∣∣
∣∣

1
v – u

∫ v

u
g(x) dx –

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣∣
∣∣

≤ (v – u)2

3

( |g ′′( 3u–v
2 )|q + |g ′′( 3v–u

2 )|q
2

) 1
q

. (32)

The right-hand side of (31) confirms the modification of our work compared with (32).
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Remark 4 If g ′′(x) is bounded on the interval [ 3u–v
2 , 3v–u

2 ], then Theorem 3 reduces to

∣∣
∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣∣
∣∣ ≤ Mϑ(v – u)2

(ϑ + 1)(ϑ + 2)

for some M ∈ R.

Theorem 4 Let g : Io ⊆ R → R be a differentiable mapping on Io, u, v ∈ Io with u < v.
Let g ′′ : [ 3u–v

2 , 3v–u
2 ] → R be a continuous function on [ 3u–v

2 , 3v–u
2 ]. If |g ′′|q, q > 1 is a convex

function on [ 3u–v
2 , 3v–u

2 ], then

∣
∣∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣
∣∣∣

≤ 2(v – u)2

ϑ + 1
β

1
p (p + 1,ϑp + 1)

( |g ′′( 3u–v
2 )|q + |g ′′( 3v–u

2 )|q
2

) 1
q

,

(33)

where 1
p + 1

q = 1.

Proof From inequality (28) and the Hölder inequality, we have

∣∣∣
∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣∣∣
∣

≤ (v – u)2

ϑ + 1

(∫ 1

0
�p(1 – �ϑ

)p d�

) 1
p

×
[(∫ 1

0

∣∣∣
∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣∣∣
∣

q

d�

) 1
q

+
(∫ 1

0

∣
∣∣∣g

′′
(

�

(
3v – u

2

)
+ (1 – �)

(
3u – v

2

))∣
∣∣∣

q

d�

) 1
q
]

.

Using the fact that |g ′′|q, q > 1 is convex on [ 3u–v
2 , 3v–u

2 ], we have

∣
∣∣
∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣
∣∣
∣

≤ (v – u)2

ϑ + 1

(∫ 1

0
�p(1 – �ϑ

)p d�

) 1
p

×
[(∫ 1

0

{
�

∣
∣∣
∣g

′′
((

3u – v
2

)∣
∣∣
∣ + (1 – �)

∣
∣∣
∣g

′′
(

3v – u
2

))∣
∣∣
∣

q}
d�

) 1
q

+
(∫ 1

0

{
(1 – �)

∣∣
∣∣g

′′
((

3u – v
2

)∣∣
∣∣

q

+ �

∣∣
∣∣g

′′
(

3v – u
2

))∣∣
∣∣

q}
d�

) 1
q
]

=
2(v – u)2

ϑ + 1
β

1
p (p + 1,ϑp + 1)

( |g ′′( 3u–v
2 )|q + |g ′′( 3v–u

2 )|q
2

) 1
q

. (34)

Observe that �p(1 – �ϑ )p ≤ �p([1 – �]ϑ )p = �p(1 – �)ϑp. So, (34) completes the proof of The-
orem 4. �
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Corollary 5 With similar assumptions to Theorem 4 if ϑ = 1, we have

∣∣
∣∣

1
v – u

∫ v

u
g(x) dx –

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣∣
∣∣

≤ (v – u)2

4

(√
πΓ (p + 1)

2Γ (p + 3
2 )

) 1
p
( |g ′′( 3u–v

2 )|q + |g ′′( 3v–u
2 )|q

2

) 1
q

. (35)

Proof The proof of this corollary follows from the facts that

β(p + 1, +1) =
1

22p+1

√
πΓ (p + 1)
Γ (p + 3

2 )
. �

Remark 5 The right-hand side of inequality (35) confirms the modification of our work
compared with the right-hand side of inequality (3.24) in [12, Theorem 4].

Remark 6 If g ′′(x) is bounded on the interval [ 3u–v
2 , 3v–u

2 ], then Theorem 4 reduces to

∣
∣∣
∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣
∣∣
∣

≤ β
1
p (p + 1,ϑp + 1)

2M(v – u)2

ϑ + 1

for 1
p = 1 – 1

q and for some M ∈R.

Theorem 5 With similar assumptions to Theorem 4, we have

∣∣
∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣∣
∣∣

≤ (v – u)2

ϑ + 1

(
1

p + 1

) 1
p
(

1
(ϑq + 1)(ϑq + 2)

) 1
q

×
[(∣∣

∣∣g
′′
(

3u – v
2

)∣∣
∣∣

q

+ (ϑq + 1)
∣∣
∣∣g

′′
(

3v – u
2

)∣∣
∣∣

q) 1
q

+
(

(ϑq + 1)
∣
∣∣∣g

′′
(

3u – v
2

)∣
∣∣∣

q

+
∣
∣∣∣g

′′
(

3v – u
2

)∣
∣∣∣

q) 1
q
]

. (36)

Proof By using the Hölder inequality and the convexity of |g ′′|q, q > 1 on [ 3u–v
2 , 3v–u

2 ], we
have

∫ 1

0
�
(
1 – �ϑ

)
[∣
∣∣
∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣
∣∣
∣

+
∣∣
∣∣g

′′
(

(1 – �)
(

3u – v
2

)
+ �

(
3v – u

2

))∣∣
∣∣

]
d�

≤
(∫ 1

0
�p d�

) 1
p

×
[(∫ 1

0

(
1 – �ϑ

)q
{
�

∣∣
∣∣g

′′
((

3u – v
2

)∣∣
∣∣

q

+ (1 – �)
∣∣
∣∣g

′′
(

3v – u
2

))∣∣
∣∣

q}
d�

) 1
q
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+
(∫ 1

0

(
1 – �ϑ

)q
{

(1 – �)
∣
∣∣∣g

′′
((

3u – v
2

)∣
∣∣∣

q

+ �

∣
∣∣∣g

′′
(

3v – u
2

))∣
∣∣∣

q}
d�

) 1
q
]

=
(

1
p + 1

) 1
p
[(

1
(ϑq + 1)(ϑq + 2)

∣∣∣
∣g

′′
(

3u – v
2

)∣∣∣
∣

q

+
1

ϑq + 2

∣∣∣
∣g

′′
(

3v – u
2

)∣∣∣
∣

q) 1
q

+
(

1
ϑq + 2

∣
∣∣∣g

′′
(

3u – v
2

)∣
∣∣∣

q

+
1

(ϑq + 1)(ϑq + 2)

∣
∣∣∣g

′′
(

3v – u
2

)∣
∣∣∣

q) 1
q
]

. (37)

Using (37) in (28), we obtain the required inequality (36). �

Corollary 6 With similar assumptions to Theorem 5 if ϑ = 1, we have

∣
∣∣∣

1
v – u

∫ v

u
g(x) dx –

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣
∣∣∣

≤ (v – u)2
(

1
p + 1

) 1
p
(

1
(q + 1)(q + 2)

) 1
q

×
(∣

∣∣
∣g

′′
(

3u – v
2

)∣
∣∣
∣

q

+ (q + 1)
∣
∣∣
∣g

′′
(

3v – u
2

)∣
∣∣
∣

q) 1
q

. (38)

Remark 7 The right-hand side of inequality (38) confirms the modification of our work
compared with the right-hand side of inequality (3.27) in [12, Theorem 5].

Theorem 6 With similar assumptions to Theorem 3, we have

∣
∣∣
∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣
∣∣
∣

≤ (v – u)2

2(ϑ + 1)

(
2

(ϑq + 1)(ϑq + 2)(ϑq + 3)

) 1
q

×
[(

2
∣
∣∣
∣g

′′
(

3u – v
2

)∣
∣∣
∣

q

+ (ϑq + 1)
∣
∣∣
∣g

′′
(

3v – u
2

)∣
∣∣
∣

q) 1
q

+
(

(ϑq + 1)
∣∣
∣∣g

′′
(

3u – v
2

)∣∣
∣∣

q

+ 2
∣∣
∣∣g

′′
(

3v – u
2

)∣∣
∣∣

q) 1
q
]

. (39)

Proof Let q > 1, then, by using the Hölder inequality and the convexity of |g ′′|q on
[ 3u–v

2 , 3v–u
2 ], we have

∫ 1

0
�
(
1 – �ϑ

)
[∣
∣∣
∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣
∣∣
∣

+
∣∣
∣∣g

′′
(

(1 – �)
(

3u – v
2

)
+ �

(
3v – u

2

))∣∣
∣∣

]
d� ≤

(∫ 1

0
�d�

)1– 1
q

×
[(∫ 1

0
�
(
1 – �ϑ

)q
{
�

∣
∣∣
∣g

′′
((

3u – v
2

)∣
∣∣
∣

q

+ (1 – �)
∣
∣∣
∣g

′′
(

3v – u
2

))∣
∣∣
∣

q}
d�

) 1
q

+
(∫ 1

0
�
(
1 – �ϑ

)q
{

(1 – �)
∣∣
∣∣g

′′
((

3u – v
2

)∣∣
∣∣

q

+ �

∣∣
∣∣g

′′
(

3v – u
2

))∣∣
∣∣

q}
d�

) 1
q
]
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≤
(

1
2

)1– 1
q
[(

β(3,ϑq + 1)
∣
∣∣∣g

′′
(

3u – v
2

)∣
∣∣∣

q

+ β(2,ϑq + 2)
∣
∣∣∣g

′′
(

3v – u
2

)∣
∣∣∣

q) 1
q

+
(

β(2,ϑq + 2)
∣∣∣
∣g

′′
(

3u – v
2

)∣∣∣
∣

q

+ β(3,ϑq + 1)
∣∣∣
∣g

′′
(

3v – u
2

)∣∣∣
∣

q) 1
q
]

=
1
2

(
2

(ϑq + 1)(ϑq + 2)(ϑq + 3)

) 1
q
[(

2
∣
∣∣∣g

′′
(

3u – v
2

)∣
∣∣∣

q

+ (ϑq + 1)
∣
∣∣∣g

′′
(

3v – u
2

)∣
∣∣∣

q) 1
q

+
(

(ϑq + 1)
∣∣
∣∣g

′′
(

3u – v
2

)∣∣
∣∣

q

+ 2
∣∣
∣∣g

′′
(

3v – u
2

)∣∣
∣∣

q) 1
q
]

. (40)

Using (40) in (28) we obtain the inequality (39) for q > 1.
Now, using the convexity of |g ′′| and the properties of the modulus, we find

∫ 1

0
�
(
1 – �ϑ

)[
∣∣
∣∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣∣
∣∣

+
∣∣
∣∣g

′′
(

(1 – �)
(

3u – v
2

)
+ �

(
3v – u

2

))∣∣
∣∣

]
d�

=
∫ 1

0
�0

[
�
(
1 – �ϑ

)
∣
∣∣
∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣
∣∣
∣

+ �
(
1 – �ϑ

)
∣∣
∣∣g

′′
(

(1 – �)
(

3u – v
2

)
+ �

(
3v – u

2

))∣∣
∣∣

]
d�

≤
(∫ 1

0
d�

)
[
(∫ 1

0
�(1 – �)ϑ

{
�

∣
∣∣
∣g

′′
((

3u – v
2

)∣
∣∣
∣ + (1 – �)

∣
∣∣
∣g

′′
(

3v – u
2

))∣
∣∣
∣

}
d�

)

+
(∫ 1

0
�(1 – �)ϑ

{
(1 – �)

∣∣
∣∣g

′′
((

3u – v
2

)∣∣
∣∣ + �

∣∣
∣∣g

′′
(

3v – u
2

))∣∣
∣∣

}
d�

)

=
(

2
(ϑ + 1)(ϑ + 2)

)(∣
∣∣∣g

′′
(

3u – v
2

)∣
∣∣∣ +

∣
∣∣∣g

′′
(

3v – u
2

)∣
∣∣∣

)
. (41)

Substituting (41) into (28) we deduce that the inequality (39) holds true for q = 1. Thus
(40), (41) and (28) complete the proof of Theorem 6. �

Corollary 7 With similar assumptions to Theorem 5 if ϑ = 1, we have

∣
∣∣∣

1
v – u

∫ v

u
g(x) dx –

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣
∣∣∣

≤ (v – u)2

2

(
2

(q + 1)(q + 2)(q + 3)

) 1
q

×
(

2
∣
∣∣∣g

′′
(

3u – v
2

)∣
∣∣∣

q

+ (q + 1)
∣
∣∣∣g

′′
(

3v – u
2

)∣
∣∣∣

q) 1
q

. (42)

Remark 8 The right-hand side of inequality (42) confirms the modification of our work
compared with the right-hand side of inequality (3.29) in [12, Theorem 6].

Collecting Theorems 3–6 we obtain the following corollary.



Mohammed and Abdeljawad Advances in Difference Equations         (2020) 2020:69 Page 16 of 22

Corollary 8 From Theorems 3–6 we deduce that

∣∣
∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣∣
∣∣

≤ (v – u)2

2(ϑ + 1)
min{γ3,γ4,γ5,γ6},

where

γ3 =
ϑ

(ϑ + 2)

{(
2ϑ + 4
3ϑ + 9

∣∣
∣∣g

′′
(

3u – v
2

)∣∣
∣∣

q

+
ϑ + 5

3ϑ + 9

∣∣
∣∣g

′′
(

3v – u
2

)∣∣
∣∣

q) 1
q

+
(

ϑ + 5
3ϑ + 9

∣
∣∣
∣g

′′
(

3u – v
2

)∣
∣∣
∣

q

+
2ϑ + 4
3ϑ + 9

∣
∣∣
∣g

′′
(

3v – u
2

)∣
∣∣
∣

q) 1
q
}

,

γ4 = β
1
p (p + 1,ϑp + 1)

( |g ′′( 3u–v
2 )|q + |g ′′( 3v–u

2 )|q
2

) 1
q

,

γ5 =
1
2

(
1

p + 1

) 1
p
(

1
(ϑq + 1)(ϑq + 2)

) 1
q

×
[(∣∣

∣∣g
′′
(

3u – v
2

)∣∣
∣∣

q

+ (ϑq + 1)
∣∣
∣∣g

′′
(

3v – u
2

)∣∣
∣∣

q) 1
q

+
(

(ϑq + 1)
∣
∣∣
∣g

′′
(

3u – v
2

)∣
∣∣
∣

q

+
∣
∣∣
∣g

′′
(

3v – u
2

)∣
∣∣
∣

q) 1
q
]

,

γ6 =
(

2
(ϑq + 1)(ϑq + 2)(ϑq + 3)

) 1
q

×
[(

2
∣
∣∣
∣g

′′
(

3u – v
2

)∣
∣∣
∣

q

+ (ϑq + 1)
∣
∣∣
∣g

′′
(

3v – u
2

)∣
∣∣
∣

q) 1
q

+
(

(ϑq + 1)
∣∣
∣∣g

′′
(

3u – v
2

)∣∣
∣∣

q

+ 2
∣∣
∣∣g

′′
(

3v – u
2

)∣∣
∣∣

q) 1
q
]

,

for q > 1.

A few results for concave functions will be extended in the following theorems.

Theorem 7 Let g : Io ⊆ R → R be a differentiable mapping on Io, u, v ∈ Io with u <
v. Let g ′′ : [ 3u–v

2 , 3v–u
2 ] → R be a continuous function on [ 3u–v

2 , 3v–u
2 ]. If |g ′′|q is concave on

[ 3u–v
2 , 3v–u

2 ], then

∣
∣∣
∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣
∣∣
∣

≤ 2(v – u)2

ϑ + 1
β

1
p (p + 1,ϑp + 1)

∣
∣∣
∣g

′′
(

u + v
2

)∣
∣∣
∣, (43)

where q = p
p–1 such that p ∈R, p > 1.
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Proof Applying Hölder’s inequality to (28), we get

∣∣
∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣∣
∣∣

≤
(

(v – u)2

ϑ + 1

∫ 1

0
�p(1 – �ϑ

)p d�

) 1
p

×
{[∫ 1

0

∣∣
∣∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣∣
∣∣d�

] 1
q

+
[∫ 1

0

∣∣∣
∣g

′′
(

�

(
3v – u

2

)
+ (1 – �)

(
3u – v

2

))∣∣∣
∣d�

] 1
q
}

. (44)

By using the concavity of |g ′′|q on [ 3u–v
2 , 3v–u

2 ] and the integral Jensen’s inequality, we get

∫ 1

0

∣∣
∣∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣∣
∣∣d�

≤
(∫ 1

0
�0 d�

)∣∣
∣∣g

′′
(∫ 1

0 �0(�( 3u–v
2 ) + (1 – �)( 3v–u

2 )) d�
∫ 1

0 �0 d�

)∣∣
∣∣

q

=
∣∣
∣∣g

′′
(

u + v
2

)∣∣
∣∣

q

(45)

and analogously

∫ 1

0

∣∣
∣∣g

′′
(

�

(
3v – u

2

)
+ (1 – �)

(
3u – v

2

))∣∣
∣∣d� ≤

∣∣
∣∣g

′′
(

u + v
2

)∣∣
∣∣

q

. (46)

Thus substituting the obtained results of (45) and (46) in (44), we get (43) as desired. �

Theorem 8 Let g : Io ⊆R→R be a differentiable mapping on Io, u, v ∈ Io with u < v. Let
g ′′ : [ 3u–v

2 , 3v–u
2 ] → R be a continuous function on [ 3u–v

2 , 3v–u
2 ]. Assume that 1

p + 1
q = 1 with

p ≥ 1 such that |g ′′|q is concave on [ 3u–v
2 , 3v–u

2 ]. Then

∣∣
∣∣
Γ (ϑ + 1)
2(v – u)ϑ

[
J

ϑ
u+ g(v) + J

ϑ
v– g(u)

]
–

g( 3v–u
2 ) + 2g( u+v

2 ) + g( 3u–v
2 )

4

∣∣
∣∣

≤ ϑ(v – u)2

2(ϑ + 1)(ϑ + 2)

×
(∣

∣∣
∣g

′′
(

5ϑ + 7
6(ϑ + 3)

u +
ϑ + 11

6(ϑ + 3)
v
)∣

∣∣
∣ +

∣
∣∣
∣g

′′
(

ϑ + 11
6(ϑ + 3)

u +
5ϑ + 7

6(ϑ + 3)
v
)∣

∣∣
∣

)
. (47)

Proof From the concavity of |g ′′|q and the power-mean inequality, we have

∣
∣g ′′(�x + (1 – �)y

)∣∣q > �
∣
∣g ′′(x)

∣
∣q + (1 – �)

∣
∣g ′′(y)

∣
∣q

≥ (
�
∣
∣g ′′(x)

∣
∣ + (1 – �)

∣
∣g ′′(y)

∣
∣)q

for all x, y ∈ [ 3u–v
2 , 3v–u

2 ] and � ∈ [0, 1]. This also gives

∣
∣g ′′(�x + (1 – �)y

)∣∣ ≥ �
∣
∣g ′′(x)

∣
∣ + (1 – �)

∣
∣g ′′(y)

∣
∣
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this means that |g ′′| is also concave. Again by the Jensen integral inequality, we obtain

∫ 1

0

∣
∣∣
∣g

′′
(

�

(
3u – v

2

)
+ (1 – �)

(
3v – u

2

))∣
∣∣
∣d�

≤
(∫ 1

0
�
(
1 – �ϑ

)
d�

)∣
∣∣
∣g

′′
(∫ 1

0 �(1 – �ϑ )(�( 3u–v
2 ) + (1 – �)( 3v–u

2 )) d�
∫ 1

0 �(1 – �ϑ ) d�

)∣
∣∣
∣

q

=
ϑ

2(ϑ + 2)

∣
∣∣
∣g

′′
(

5ϑ + 7
6(ϑ + 3)

u +
ϑ + 11

6(ϑ + 3)
v
)∣

∣∣
∣

q

, (48)

and analogously

∫ 1

0

∣∣
∣∣g

′′
(

�

(
3v – u

2

)
+ (1 – �)

(
3u – v

2

))∣∣
∣∣d� ≤

∣∣
∣∣g

′′
(

ϑ + 11
6(ϑ + 3)

u +
5ϑ + 7

6(ϑ + 3)
v
)∣∣

∣∣

q

. (49)

Thus substituting the obtained results of (48) and (49) in (44), we get (47) as desired. �

4 Applications
In this section some applications are presented to demonstrate the usefulness of our ob-
tained results in the previous sections.

4.1 Applications to special means
Let u and v are two arbitrary positive real numbers such that u 	= v, we consider the fol-
lowing special means [17].

(i) The arithmetic mean:

A = A(u, v) =
u + v

2
.

(ii) The inverse arithmetic mean:

H = H(u, v) =
2

1
u + 1

v
, u, v 	= 0.

(iii) The geometric mean:

G = G(u, v) =
√

uv.

(iv) The logarithmic mean:

L(u, v) =
v – u

log(v) – log(u)
, u 	= v.

(v) The generalized logarithmic mean:

Ln(u, v) =
[

vn+1 – un+1

(v – u)(n + 1)

] 1
n

, n ∈ Z \ {–1, 0}.
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Proposition 1 Let u, v ∈R with 0 < u < v and n ∈ Z/{0, –1}, then we have

∣∣Ln
n(u, v) – An(u, v)

∣∣

≤ min{δ1, δ2} |n|(v – u)

2
1
p

[
A

(∣
∣∣
∣

(
3u – v

2

)∣
∣∣
∣

(n–1)q

,
∣
∣∣
∣

(
3v – u

2

)∣
∣∣
∣

(n–1)q)] 1
q

, (50)

where p = q
q–1 .

Proof The proof of this proposition follows from Corollary 2 with ϑ = 1 and g(x) = xn. �

Proposition 2 Let u, v ∈R with 0 < u < v and n ∈ Z/{0, –1}, then we have

∣∣G–1(u, v) – A–1(u, v)
∣∣

≤ min{δ1, δ2}v – u

21– 1
q

[
A

(∣
∣∣
∣

(
3u – v

2

)∣
∣∣
∣

–2q

,
∣
∣∣
∣

(
3v – u

2

)∣
∣∣
∣

–2q)] 1
q

(51)

for q ≥ 1.

Proof The assertion follows from Corollary 2 with ϑ = 1 and g(x) = 1
x . �

Proposition 3 Let |n| ≥ 3 and u, v ∈R with 0 < u < v, then

∣
∣Ln

n
(
v–1, u–1 – H–n(v, u)

)∣∣

≤ min{δ1, δ2} |n|(v–1 – u–1)

2
1
p

[
H

(∣∣
∣∣

(
3u – v

2

)∣∣
∣∣

(n–1)q

,
∣∣
∣∣

(
3v – u

2

)∣∣
∣∣

(n–1)q)] –1
q

(52)

and

∣∣L–1(v–1, u–1) – H(v, u)
∣∣

≤ min{δ1, δ2}v–1 – u–1

21– 1
q

[
A

(∣
∣∣∣

(
3u – v

2

)∣
∣∣∣

–2q

,
∣
∣∣∣

(
3v – u

2

)∣
∣∣∣

–2q)] 1
q

(53)

for q ≥ 1.

Proof Observe that A–1(u–1, v–1) = H(u, v) = 2
1
u + 1

v
. So, making the change of variables u →

v–1 and v → u–1 in the inequalities (50) and (51), we can deduce the desired inequalities
(52) and (53), respectively. �

Proposition 4 Let u, v ∈R with 0 < u < v and n ∈ Z/{0, –1}, then we have

∣
∣G–2(u, v) – A–2(u, v)

∣
∣ ≤ min{δ1, δ2}v – u

2
2
p –1

[
A

(∣∣
∣∣

(
3u – v

2

)∣∣
∣∣

–3q

,
∣∣
∣∣

(
3v – u

2

)∣∣
∣∣

–3q)] 1
q

,

where p = q
q–1 .

Proof The proof of this proposition follows from Corollary 2 with ϑ = 1 and g(x) = 1
x2 . �
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4.2 The midpoint formula
Let d be a partition of the interval [u, v] such that u = x0 < x1 < x2 < · · · < xm–1 < xm = v.
Consider the quadrature formula [17]

∫ v

u
g(x) dx = T (g, d) + E(g, d), (54)

where E(g, d) represents the associated approximation error and

T (g, d) =
m–1∑

k=0

g
(

xi + xk+1)

2

)
(xk+1 – xk)

is the midpoint version.

Proposition 5 Let g : Io ⊆ R→R be a differentiable mapping on Io, u, v ∈ Io with u < v.
Let g ′ ∈ L1[ 3u–v

2 , 3v–u
2 ] and g ′ : [ 3u–v

2 , 3v–u
2 ] → R be a continuous function on [ 3u–v

2 , 3v–u
2 ]. If

|g ′|q, q ≥ 1 is a convex function, then, for every partition d of [ 3u–v
2 , 3v–u

2 ] in (54), we have

∣∣E(f , d)
∣∣

≤ 1
2

min{δ1, δ2}
m–1∑

k=1

(xk+1 – xk)2
(∣

∣∣
∣g

′
(

3xk – xk+1

2

)∣
∣∣
∣

q

+
∣
∣∣
∣g

′
(

3xk+1 – xk

2

)∣
∣∣
∣

q) 1
q

≤ min{δ1, δ2}
m–1∑

k=1

(xk+1 – xk)2 max

(∣∣
∣∣g

′
(

3xk – xk+1

2

)∣∣
∣∣,

∣∣
∣∣g

′
(

3xk+1 – xk

2

)∣∣
∣∣

)
. (55)

Proof Applying Corollary 2 with ϑ = 1 on the subinterval [ 3xk –xk+1
2 , 3xk+1–xk

2 ] (k = 0, 1, . . . ,
m – 1) of the partition d, we obtain

∣∣
∣∣

∫ xk+1

xk

g(x) dx – (xk+1 – xk)g
(

xk + xk+1

2

)∣∣
∣∣

≤ 1
2

min{δ1, δ2}(xk+1 – xk)2
(∣

∣∣∣g
′
(

3xk – xk+1

2

)∣
∣∣∣

q

+
∣
∣∣∣g

′
(

3xk+1 – xk

2

)∣
∣∣∣

q) 1
q

.

Summing over k from 0 to m – 1 and taking into account that |g ′| is convex, we obtain, by
the triangle inequality,

∣∣
∣∣

∫ v

u
g(x) dx – T(g, d)

∣∣
∣∣

=

∣
∣∣
∣∣

m–1∑

k=0

[∫ xk+1

xk

g(x) dx – (xk+1 – xk)g
(

xk + xk+1

2

)]∣
∣∣
∣∣

≤
m–1∑

k=0

∣∣∣
∣

∫ xk+1

xk

g(x) dx – (xk+1 – xk)g
(

xk + xk+1

2

)∣∣∣
∣



Mohammed and Abdeljawad Advances in Difference Equations         (2020) 2020:69 Page 21 of 22

≤ 1
2

min{δ1, δ2}
m–1∑

k=1

(xk+1 – xk)2
(∣

∣∣∣g
′
(

3xk – xk+1

2

)∣
∣∣∣

q

+
∣
∣∣∣g

′
(

3xk+1 – xk

2

)∣
∣∣∣

q) 1
q

≤ min{δ1, δ2}
m–1∑

k=1

(xk+1 – xk)2 max

(∣∣∣
∣g

′
(

3xk – xk+1

2

)∣∣∣
∣,

∣∣∣
∣g

′
(

3xk+1 – xk

2

)∣∣∣
∣

)
.

This completes the proof of (55). �

5 Conclusion
In this paper, we generalized the modified Hermite–Hadamard inequality obtained by
Mehrez and Agarwal in [12], it can be found in Lemma 3 and Theorems 1–6. Corollaries
4–7 confirm that our results modified the existing results of [12]. Furthermore, Theorems
7–8 modified the existing Theorems 5–6 of [5].
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