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Abstract
In this paper we consider the initial value problem for some impulsive differential
equations with higher order Katugampola fractional derivative (fractional order
q ∈ (1, 2]). The systems of impulsive higher order fractional differential equations can
involve one or two kinds of impulses, and by analyzing the error between the
approximate solution and exact solution it is found that these impulsive systems are
equivalent to some integral equations with one or two undetermined constants
correspondingly, which uncover the non-uniqueness of solution to these impulsive
systems. Some numerical examples are offered to explain the obtained results.
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1 Introduction
Fractional calculus serves as an important tool to characterize hereditary properties in
many fields of science and engineering (such as chaotic behavior, epidemiology, ther-
mal science, hydrology, and biology [1–17]). Since fractional calculus was put forward in
the seventeenth century, there have appeared several definitions of fractional derivatives:
Riemann–Liouville, Caputo, Hadamard, Grunwald–Letnikov etc. [18, 19]. To unify these
fractional derivatives, some generalized fractional operators (such as Erdélyi–Kober frac-
tional operator [18], Hilfer fractional operator [20, 21], Katugampola fractional operator
[22, 23], and Atangana–Baleanu fractional operator [24] etc.) were presented, and some
properties of these generalized fractional operators and differential equations involving
these generalized fractional derivatives were widely studied [25–33]. The potential appli-
cation in quantum mechanics was considered for some properties of the Katugampola
fractional derivative in [34], and the existence and uniqueness of solutions was studied
for fractional Langevin equation with the nonlocal Katugampola fractional integral con-
ditions in [35].
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Furthermore, impulsive differential equations are used in description of some processes
with impulsive effects [36], and the subject of impulsive fractional differential equations
(IFrDE) has been getting an enormous amount of attention recently [37–45]. In addition,
IFrDE was considered from the short memory case that addressed the nonlocality and the
impulsive conditions in [46]. For the studies of IFrDE, most of them considered impulsive
differential equations involving the Caputo type fractional derivative, and a few of them
were concerned with impulsive non-Caputo type fractional differential equations. There-
fore, we consider the equivalent integral equation for the initial value problem (IVP) of im-
pulsive differential equations involving higher order non-Caputo type fractional derivative
(in the sense of Katugampola):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

K
t0D

q,ρ
t x(t) = f (t, x(t)),

t ∈ (t0, T], t �= tk(k = 1, 2, . . . , m) and t �= t̄l(l = 1, 2, . . . , n),
K
t0D

q–1,ρ
tk + x(tk+) – K

t0D
q–1,ρ
tk – x(tk–) = Jk(x(tk–)), k = 1, 2, . . . , m,

K
t0I

2–q,ρ
t̄l+

x(t̄l+) – K
t0I

2–q,ρ
t̄l–

x(t̄l–) = J̄l(x(t̄l–)), l = 1, 2, . . . , n,
K
t0D

q–1,ρ
t x(t)|t→t0+ = x1, K

t0I
2–q,ρ
t x(t)|t→t0+ = x2,

(1.1)

where K
t0D

q,ρ
t (here q ∈ (1, 2] and ρ > 0) denotes the left-sided Katugampola fractional

derivative of order q. K
t0D

q–1,ρ
tk + x(tk+) = limε→0+

K
t0D

q–1,ρ
tk +ε x(tk + ε) and K

t0D
q–1,ρ
tk – x(tk–) =

limε→0–
K
t0D

q–1,ρ
tk +ε x(tk + ε) represent the right and left limits of K

t0D
q–1,ρ
t x(t) at t = tk , re-

spectively. K
t0I

2–q,ρ
t̄l+

x(t̄l+) and K
t0I

2–q,ρ
t̄l–

x(t̄l–) denote the right and left limits of K
t0I

2–q,ρ
t x(t) at

t = t̄l , respectively. Two kinds of impulsive points satisfy 0 ≤ t0 < t1 < · · · < tm < tm+1 = T
and t0 < t̄1 < · · · < t̄n < t̄n+1 = T , respectively. Moreover, for these impulsive points, two
assumptions are given as follows:

(H1) Let {t0, t1, t2, . . . , tm, t̄1, t̄2, . . . , t̄n, T} = {t0, t′
1, t′

2, . . . , t′
M, T} satisfy

0 ≤ t0 < t′
1 < t′

2 < · · · < t′
M < t′

M+1 = T .

(H2) For each [t0, t′
k] (k = 1, 2, . . . , M), suppose [t0, tk1 ] ⊆ [t0, t′

k] ⊂ [t0, tk1+1] (here
k1 ∈ {1, 2, . . . , m}) and [t0, t̄k2 ] ⊆ [t0, t′

k] ⊂ [t0, t̄k2+1] (here k2 ∈ {1, 2, . . . , n}),
respectively.

In particular, letting Jk(x(tk–)) = 0 (for all k ∈ {1, 2, . . . , m}) and J̄l(x(t̄l–)) = 0 (for all l ∈
{1, 2, . . . , n}) in (1.1) respectively, we obtain two simple impulsive systems:

⎧
⎪⎪⎨

⎪⎪⎩

K
t0D

q,ρ
t x(t) = f (t, x(t)), t ∈ (t0, T] and t �= tk (k = 1, 2, . . . , m),

K
t0D

q–1,ρ
tk + x(tk+) – K

t0D
q–1,ρ
tk – x(tk–) = Jk(x(tk–)), k = 1, 2, . . . , m,

K
t0D

q–1,ρ
t x(t)|t→t0+ = x1, K

t0I
2–q,ρ
t x(t)|t→t0+ = x2

(1.2)

and

⎧
⎪⎪⎨

⎪⎪⎩

K
t0D

q,ρ
t x(t) = f (t, x(t)), t ∈ (t0, T] and t �= t̄l (l = 1, 2, . . . , n),

K
t0I

2–q,ρ
t̄l+

x(t̄l+) – K
t0I

2–q,ρ
t̄l–

x(t̄l–) = J̄l(x(t̄l–)), l = 1, 2, . . . , n,
K
t0D

q–1,ρ
t x(t)|t→t0+ = x1, K

t0I
2–q,ρ
t x(t)|t→t0+ = x2.

(1.3)
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Moreover, letting {t1, t2, . . . , tm} = {t̄1, t̄2, . . . , t̄n} in (1.1), we get the impulsive system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K
t0D

q,ρ
t x(t) = f (t, x(t)), t ∈ (t0, T] and t �= tk (k = 1, 2, . . . , m),

K
t0D

q–1,ρ
tk + x(tk+) – K

t0D
q–1,ρ
tk – x(tk–) = Jk(x(tk–)), k = 1, 2, . . . , m,

K
t0I

2–q,ρ
tk + x(tk+) – K

t0I
2–q,ρ
tk – x(tk–) = J̄k(x(tk–)), k = 1, 2, . . . , m,

K
t0D

q–1,ρ
t x(t)|t→t0+ = x1, K

t0I
2–q,ρ
t x(t)|t→t0+ = x2.

(1.4)

Next we introduce some basic definitions and conclusions regarding the Katugampola
fractional derivative in Sect. 2 and give some properties of IFrDEs (1.1)–(1.3) in Sect. 3.
Then, we seek the equivalent integral equations of IFrDEs (1.1)–(1.4) in Sect. 4. Finally,
we use some numerical examples to expound the obtained results in Sect. 5.

2 Preliminaries
Let [a, b] (–∞ ≤ a < b < ∞) be a finite interval on the real axis R and C[a, b] be the set of
continuous functions on[a, b]. Define the function space

Xp
c (a, b) =

{
x : [a, b] →C : ‖x‖Xp

c
< ∞}

(c ∈ R, 1 ≤ p ≤ ∞) (2.1)

endowed with the norm ‖x‖Xp
c

= (
∫ b

a |tcx(t)|p dt
t )1/p (1 ≤ p < ∞) and ‖x‖X∞

c =
ess supt∈[a,b][tc|x(t)|].

Definition 2.1 ([22]) The left-sided Katugampola fractional integrals of order α ∈ C

(�(α) > 0) of function x ∈ Xp
c (a, b) are defined by

(K
a I

α,ρ
t x

)
(t) =

1
Γ (α)

∫ t

a

(
tρ – sρ

ρ

)α–1 x(s) ds
s1–ρ

(t > a ≥ 0). (2.2)

Definition 2.2 ([23]) The left-sided Katugampola fractional derivatives of order α ∈ C

(�(α) > 0) are defined by

(K
a D

α,ρ
t x

)
(t) = γ n(K

a I
n–α,ρ
t x

)
(t)

=
γ n

Γ (n – α)

∫ t

a

(
tρ – sρ

ρ

)n–α–1 x(s) ds
s1–ρ

(

ρ > 0, t > a ≥ 0,γ = t1–ρ d
dt

)

. (2.3)

Remark 2.3 From the L’Hospital rule, we have limρ→0+( tρ–τρ

ρ
)q–1 = (ln t

τ
)q–1. The Katugam-

pola fractional operators with ρ → 0+ and ρ = 1 are the Hadamard fractional operator
and the Riemann–Liouville fractional operator, respectively.

For n – 1 < α ≤ n (n ∈N), a weighted space of continuous functions is defined by

Cn–α,ρ[a, b] =
{

x(t) :
(
tρ – aρ

)n–αx(t) ∈ C[a, b],‖x‖Cn–α,ρ =
∥
∥
(
tρ – aρ

)n–αx(t)
∥
∥

C

}

(ρ �= 0) (2.4)
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and

Cn–α,0[a, b] =
{

x(t) : (ln t – ln a)n–αx(t) ∈ C[a, b],

‖x‖Cn–α,0 =
∥
∥(ln t – ln a)n–αx(t)

∥
∥

C

}
. (2.5)

Moreover, let

Cα
n–α,ρ[a, b] =

{
x(t) ∈ Cn–α,ρ[a, b] : K

a D
α,ρ
t x(t) ∈ Cn–α,ρ[a, b]

}
(2.6)

and

C2
2–α,ρ[a, T] =

{

x(t) ∈ C[a, b] : γ 2x(t) ∈ C2–α,ρ[a, b],γ = t1–ρ d
dt

}

. (2.7)

Lemma 2.4 Let q ∈ (1, 2] and a,ρ > 0, and let f : [a, T] × R → R be a function such that
f (·, x(·)) ∈ C2–q,ρ[a, T] for any x(·) ∈ C2–q,ρ[a, T].

If x(·) ∈ Cq
2–q,ρ[a, T], then x(t) is a solution of the fractional differential equation

⎧
⎨

⎩

K
a D

q,ρ
t x(t) = f (t, x(t)), t ∈ (a, T],

K
a D

q–1,ρ
t x(t)|t→a+ = x1, K

a I
2–q,ρ
t x(t)|t→a+ = x2

(2.8)

if, and only if, x(t) satisfies the integral equation

x(t) =
x2

Γ (q – 1)

[
tρ – aρ

ρ

]q–2

+
x1

Γ (q)

[
tρ – aρ

ρ

]q–1

+
1

Γ (q)

∫ t

a

[
tρ – τρ

ρ

]q–1 f dτ

τ 1–ρ

for t ∈ (a, T] and f = f
(
τ , x(τ )

)
. (2.9)

Proof First, we prove the necessity. Let x(t) ∈ Cq
2–q,ρ[a, T] be a solution of (2.8). By the hy-

potheses x(t) ∈ Cq
2–q,ρ[a, T] and K

a D
q,ρ
t x(t) = γ 2(K

a I
2–q,ρ
t x)(t), we have K

a I
2–q,ρ
t x(t) ∈ C[a, T]

and K
a I

2–q,ρ
t x ∈ C2

2–q,ρ[a, T]. Therefore, by (2.8), we get

K
a D

q,ρ
t x(t) =

(

t1–ρ d
dt

)2(K
a I

2–q,ρ
t x(t)

)
= f

(
t, x(t)

)
.

Therefore

K
a I

2–q,ρ
t x(t) = x2 +

tρ – aρ

ρ
x1 +

∫ t

a

tρ – τρ

ρ

f dτ

τ 1–ρ
. (2.10)

Applying the operator K
a I

q,ρ
t to two sides of (2.10), we have

K
a I

2,ρ
t x(t) =

x2

Γ (q + 1)

[
tρ – aρ

ρ

]q

+
x1

Γ (q + 2)

[
tρ – aρ

ρ

]q+1

+
1

Γ (q + 2)

∫ t

a

[
tρ – τρ

ρ

]q+1 f dτ

τ 1–ρ
. (2.11)
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Using the operator γ 2 to two sides of (2.11), we obtain

x(t) =
x2

Γ (q – 1)

[
tρ – aρ

ρ

]q–2

+
x1

Γ (q)

[
tρ – aρ

ρ

]q–1

+
1

Γ (q)

∫ t

a

[
tρ – τρ

ρ

]q–1 f dτ

τ 1–ρ

for t ∈ (a, T].

Now we prove the sufficiency. Let x(t) ∈ Cq
2–q,ρ[a, T] satisfy Eq. (2.9), which can be writ-

ten as (2.9). Moreover, by the hypotheses of Lemma 2.4, for any x(·) ∈ C2–q,ρ[a, T], we have
f (·, x(·)) ∈ C2–q,ρ[a, T]. Applying the operators K

a D
q,ρ
t , K

a D
q–1,ρ
t , and K

a I
2–q,ρ
t to both sides of

(2.9), respectively, we obtain

K
a D

q,ρ
t x(t) = K

a D
q,ρ
t

{
x2

Γ (q – 1)

[
tρ – aρ

ρ

]q–2

+
x1

Γ (q)

[
tρ – aρ

ρ

]q–1

+
1

Γ (q)

∫ t

a

[
tρ – τρ

ρ

]q–1 f dτ

τ 1–ρ

}

= f
(
t, x(t)

)
for t ∈ (a, T],

K
a D

q–1,ρ
t x(t) = x1 +

∫ t

a

f dτ

τ 1–ρ
for t ∈ (a, T],

and

K
a I

2–q,ρ
t x(t) = x2 +

tρ – aρ

ρ
x1 +

∫ t

a

tρ – τρ

ρ

f dτ

τ 1–ρ
for t ∈ (a, T].

By the hypothesis f (·, x(·)) ∈ C2–q,ρ[a, T], we have (τρ – aρ)2–qf (τ , x(τ )) ∈ C[a, T]. There-
fore |(τρ – aρ)2–qf | ≤ L (here L is a positive constant) and

∣
∣
∣
∣

∫ t

a

f dτ

τ 1–ρ

∣
∣
∣
∣ ≤

∫ t

a

∣
∣
(
τρ – aρ

)q–2[(
τρ – aρ

)2–qf
]∣
∣ dτρ

ρ

≤ L(tρ – aρ)q–1

(q – 1)ρ
,

and

∣
∣
∣
∣

∫ t

a

tρ – τρ

ρ

f dτ

τ 1–ρ

∣
∣
∣
∣ ≤

∫ t

a

∣
∣
∣
∣
tρ – τρ

ρ

[
τρ – aρ

ρ

]q–2[(
τρ – aρ

)2–qf
]
∣
∣
∣
∣

dτρ

ρ3–q

≤ LB(2, q – 1)
ρ2–q

[
tρ – aρ

ρ

]q

.

Thus K
a D

q–1,ρ
t x(t)|t→a+ = x1 and K

a I
2–q,ρ
t x(t)|t→a+ = x2. The proof is completed. �
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3 Some properties of (1.1)–(1.3)
In this section, we give some properties of three impulsive systems (1.1)–(1.3):

(i) lim
Jk (x(tk–))→0 for all k∈{1,2,...,m}
J̄l(x(t̄l–))→0 for all l∈{1,2,...,n}

{
system (1.1)

}

= lim
Jk (x(tk–))→0 for all k∈{1,2,...,m}

{
system (1.2)

}

= lim
J̄l(x(t̄l–))→0 for all l∈{1,2,...,n}

{
system (1.3)

}

=

⎧
⎨

⎩

K
a D

q,ρ
t x(t) = f (t, x(t)), t ∈ (t0, T],

K
t0D

q–1,ρ
t x(t)|t→t0+ = x1, K

t0I
2–q,ρ
t x(t)|t→t0+ = x2.

⇔ x(t) =
x2

Γ (q – 1)

[
tρ – (t0)ρ

ρ

]q–2

+
x1

Γ (q)

[
tρ – (t0)ρ

ρ

]q–1

+
1

Γ (q)

∫ t

t0

[
tρ – τρ

ρ

]q–1 f dτ

τ 1–ρ
,

for t ∈ (t0, T] and f = f
(
τ , x(τ )

)
.

(ii) lim
J̄l(x(t̄l–))→0 for all l∈{1,2,...,n}

{
system (1.1)

}
=

{
system (1.2)

}
.

(iii) lim
Jk (x(tk–))→0 for all k∈{1,2,...,m}

{
system (1.1)

}
=

{
system (1.3)

}
.

(iv) lim
tk→tp for all k∈{1,2,...,m} and ∀p∈{1,2,...,m},

t̄l→t̄r for all l∈{1,2,...,n} and ∀r∈{1,2,...,n}

{
system (1.1)

}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K
t0D

q,ρ
t x(t) = f (t, x(t)), t ∈ (t0, T], t �= tp and t �= t̄r ,

K
t0D

q–1,ρ
tp+ x(tp+) – K

t0D
q–1,ρ
tp– x(tp–) =

∑m
k=1 Jk(x(tp–)),

K
t0I

2–q,ρ
t̄r+ x(t̄r+) – K

t0I
2–q,ρ
t̄r– x(t̄r–) =

∑n
l=1 J̄l(x(t̄r–)),

K
t0D

q–1,ρ
t x(t)|t→t0+ = x1, K

t0I
2–q,ρ
t x(t)|t→t0+ = x2.

(v) lim
tk→tp for all k∈{1,2,...,m} and ∀p∈{1,2,...,m}

{
system (1.2)

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K
t0D

q,ρ
t x(t) = f (t, x(t)), t ∈ (t0, T] and t �= tp,

K
t0D

q–1,ρ
tp+ x(tp+) – K

t0D
q–1,ρ
tp– x(tp–) =

∑m
k=1 Jk(x(tp–)),

K
t0D

q–1,ρ
t x(t)|t→t0+ = x1, K

t0I
2–q,ρ
t x(t)|t→t0+ = x2.

(vi) lim
t̄l→t̄r for all l∈{1,2,...,n} and ∀r∈{1,2,...,n}

{
system (1.3)

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K
t0D

q,ρ
t x(t) = f (t, x(t)), t ∈ (t0, T], t �= t̄r ,

K
t0I

2–q,ρ
t̄r+ x(t̄r+) – K

t0I
2–q,ρ
t̄r– x(t̄r–) =

∑n
l=1 J̄l(x(t̄r–)),

K
t0D

q–1,ρ
t x(t)|t→t0+ = x1, K

t0I
2–q,ρ
t x(t)|t→t0+ = x2.
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4 The equivalent integral equations of (1.1)–(1.4)
For simplicity, let f = f (τ , x(τ )) and

y(�, t) =
x2 + x1

�ρ–(t0)ρ
ρ

+
∫ �

t0
�ρ–τρ

ρ

f dτ

τ1–ρ

Γ (q – 1)

[
tρ – �ρ

ρ

]q–2

+
x1 +

∫ �

t0
f dτ

τ1–ρ

Γ (q)

[
tρ – �ρ

ρ

]q–1

+
1

Γ (q)

∫ t

�

[
tρ – τρ

ρ

]q–1 f dτ

τ 1–ρ
,

here � ∈ {t0, t1, t2, . . . , tm, t̄1, t̄2, . . . , t̄n, T}. (4.1)

For 1 < q ≤ 2, define some function spaces:

Ĉ2–q,ρ[t0, T] =
{

x : (t0, T] →R :
[
tρ –

(
t′
i
)ρ]2–qx(t) ∈ C

[
t′
i , t′

i+1
]
, i = 0, 1, . . . , M

}

(ρ �= 0),

Ĉ2–q,ρ[t0, T] =
{

x : (t0, T] →R :
[
ln t – ln

(
t′
i
)]2–qx(t) ∈ C

[
t′
i , t′

i+1
]
, i = 0, 1, . . . , M

}

(ρ = 0),

Ĉq
2–q,ρ[t0, T] =

{
x(t) ∈ Ĉ2–q,ρ[t0, T] : K

t0D
q,ρ
t x(t) ∈ Ĉ2–q,ρ[t0, T]

}
,

IC
(
[t0, T],R

)
=

{
x(t) ∈ Ĉ2–q,ρ[t0, T] :

K
t0D

q–1,ρ
tk – x(tk–) = lim

t→tk –
K
t0D

q–1,ρ
t x(t) = K

t0D
q–1,ρ
tk x(tk) < ∞

and K
t0D

q–1,ρ
tk + x(tk+) = lim

t→tk +
K
t0D

q–1,ρ
t x(t) < ∞ (here k = 1, 2, . . . , m),

and K
t0I

2–q,ρ
t̄l–

x(t̄l–) = lim
t→t̄l–

K
t0I

2–q,ρ
t x(t) = K

t0I
2–q,ρ
t̄l

x(t̄l) < ∞ and

K
t0I

2–q,ρ
t̄l+

x(t̄l+) = lim
t→t̄l+

K
t0I

2–q,ρ
t x(t) < ∞ (here l = 1, 2, . . . , n)

}
;

C̃2–q,ρ[t0, T] =
{

x : (t0, T] →R :
[
tρ – (ti)ρ

]2–qx(t) ∈ C[ti, ti+1], i = 0, 1, . . . , m
}

(ρ �= 0),

C̃2–q,ρ[t0, T] =
{

x : (t0, T] →R :
[
ln t – ln(ti)

]2–qx(t) ∈ C[ti, ti+1], i = 0, 1, . . . , m
}

(ρ = 0),

C̃q
2–q,ρ[t0, T] =

{
x(t) ∈ C̃2–q,ρ[t0, T] : K

t0D
q,ρ
t x(t) ∈ C̃2–q,ρ[t0, T]

}
,

IC1
(
[t0, T],R

)
=

{
x(t) ∈ C̃2–q,ρ[t0, T] : K

t0D
q–1,ρ
tk + x(tk+) = lim

t→tk +
K
t0D

q–1,ρ
t x(t) < ∞,

K
t0D

q–1,ρ
tk – x(tk–) = lim

t→tk –
K
t0D

q–1,ρ
t x(t) = K

t0D
q–1,ρ
tk x(tk) < ∞,

and K
t0I

2–q,ρ
tk + x(tk+) = K

t0I
2–q,ρ
tk – x(tk–), here k = 1, 2, . . . , m

}
;

C̄2–q,ρ[t0, T] =
{

x : (t0, T] →R :
[
tρ – (t̄j)ρ

]2–qx(t) ∈ C[t̄j, t̄j+1], j = 0, 1, . . . , n
}

(ρ �= 0),

C̄2–q,ρ[t0, T] =
{

x : (t0, T] →R :
[
ln t – ln(t̄j)

]2–qx(t) ∈ C[t̄j, t̄j+1], j = 0, 1, . . . , n
}

(ρ = 0),
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C̄q
2–q,ρ[t0, T] =

{
x(t) ∈ C̄2–q,ρ[t0, T] : K

t0D
q,ρ
t x(t) ∈ C̄2–q,ρ[t0, T]

}
,

IC2
(
[t0, T],R

)
=

{
x(t) ∈ C̄2–q,ρ[t0, T] : K

t0I
2–q,ρ
t̄l+

x(t̄l+) = lim
t→t̄l+

K
t0I

2–q,ρ
t x(t) < ∞,

K
t0I

2–q,ρ
t̄l–

x(t̄l–) = lim
t→t̄l–

K
t0I

2–q,ρ
t x(t) = K

t0I
2–q,ρ
t̄l

x(t̄l) < ∞

and K
t0D

q–1,ρ
t̄l+

x(t̄l+) = K
t0D

q–1,ρ
t̄l–

x(t̄l–), here l = 1, 2, . . . , n
}

.

Next, we seek the equivalent integral equation of (1.2). Considering K
t0D

q,ρ
t x(t) = f (t, x(t))

on each piecewise interval (tk , tk+1] (k = 1, 2, . . . , m) by Lemma 2.4, we find a piecewise
function

x̃(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(t0, t) for t ∈ (t0, t1],
K
t0I

2–q,ρ
tk + x(tk +)
Γ (q–1) [ tρ–(tk )ρ

ρ
]q–2 +

K
t0D

q–1,ρ
tk + x(tk+)
Γ (q) [ tρ–(tk )ρ

ρ
]q–1

+ 1
Γ (q)

∫ t
tk

[ tρ–τρ

ρ
]q–1 f dτ

τ1–ρ for t ∈ (tk , tk+1], k = 1, 2, . . . , m,

(4.2)

with K
t0D

q–1,ρ
tk + x(tk+) = K

t0D
q–1,ρ
tk – x(tk–) + Jk(x(tk–)) and K

t0I
2–q,ρ
tk + x(tk+) = K

t0I
2–q,ρ
tk – x(tk–).

Because (4.2) does not satisfy property (i), x̃(t) is only considered as an approximate
solution of (1.2). And let

ek(t) = x(t) – x̃(t), for t ∈ (tk , tk+1] (k = 1, 2, . . . , m), (4.3)

where x(t) represents the exact solution of (1.2).

Lemma 4.1 Let q ∈ (1, 2] and t0,ρ > 0, and let f : [t0, T] ×R → R be a function such that
f (·, x(·)) ∈ C̃2–q,ρ[t0, T] for any x(·) ∈ C̃2–q,ρ[t0, T].

If x(·) ∈ IC1([t0, T],R), then x(t) is a solution of (1.2) if, and only if, x(t) satisfies

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

y(t0, t) for t ∈ (t0, t1],

y(t0, t) +
∑k

i=1
Ji(x(ti–))

Γ (q) [ tρ–(ti)ρ
ρ

]q–1 + ξ
∑k

i=1 Ji(x(ti–))[y(ti, t) – y(t0, t)]

for t ∈ (tk , tk+1], k = 1, 2, . . . , m,

(4.4)

where ξ is an arbitrary constant.

Proof First, we prove the necessity by applying mathematical induction. By Lemma 2.4,
the solution of (1.2) as t ∈ (t0, t1] satisfies

x(t) = y(t0, t) for t ∈ (t0, t1]. (4.5)

Using two operators K
t0D

q–1,ρ
t and K

t0I
2–q,ρ
t to two sides of (4.5), respectively, we have

K
t0D

q–1,ρ
t1+ x(t1+) = K

t0D
q–1,ρ
t1– x(t1–) + J1

(
x(t1–)

)

= x1 +
∫ t1

t0

f dτ

τ 1–ρ
+ J1

(
x(t1–)

)
(4.6)
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and

K
t0I

2–q,ρ
t1+ x(t1+) = K

t0I
2–q,ρ
t1– x(t1–)

= x2 + x1
(t1)ρ – (t0)ρ

ρ
+

∫ t1

t0

(t1)ρ – τρ

ρ

f dτ

τ 1–ρ
. (4.7)

Substituting (4.6)–(4.7) into (4.2), the approximate solution of (1.2) as t ∈ (t1, t2] is given
as

x̃(t) = y(t1, t) +
J1(x(t1–))

Γ (q)

[
tρ – (t1)ρ

ρ

]q–1

for t ∈ (t1, t2]. (4.8)

By (4.5) the exact solution of (1.2) as t ∈ (t1, t2] satisfies

lim
J1(x(t1–))→0

x(t) = y(t0, t) for t ∈ (t1, t2]. (4.9)

By (4.3) and (4.8)–(4.9), we get

lim
J1(x(t1–))→0

e1(t) = y(t0, t) – y(t1, t) for t ∈ (t1, t2]. (4.10)

From (4.10), let e1(t) = κ(J1(x(t–
1 ))) limJ1(x(t–

1 ))→0 e1(t), where κ(·) is an undetermined func-
tion to satisfy κ(0) = 1, and

e1(t) = κ
(
J1

(
x(t1–)

))
lim

J1(x(t1–))→0
e1(t) = –κ

(
J1

(
x(t1–)

))[
y(t1, t) – y(t0, t)

]
. (4.11)

Plugging (4.8) and (4.11) into (4.3), we obtain

x(t) = y(t0, t) +
J1(x(t1–))

Γ (q)

[
tρ – (t1)ρ

ρ

]q–1

+
[
1 – κ

(
J1

(
x(t1–)

))][
y(t1, t) – y(t0, t)

]

for t ∈ (t1, t2]. (4.12)

Because K
t0D

q,0+
t (K

t0D
q,ρ
t with ρ → 0+) is the Hadamard fractional derivative, we get 1 –

κ(J1(x(t–
1 ))) = ξ J1(x(t–

1 )) (here ξ is an arbitrary constant) by applying Lemma 3.3 in [44] to
(1.2) and (4.12) with ρ → 0+. Thus (4.12) is rewritten as

x(t) = y(t0, t) +
J1(x(t1–))

Γ (q)

[
tρ – (t1)ρ

ρ

]q–1

+ ξ J1
(
x(t1–)

)[
y(t1, t) – y(t0, t)

]

for t ∈ (t1, t2]. (4.13)

Therefore the solution of (1.2) satisfies (4.4) as t ∈ (t1, t2].
For t ∈ (tk , tk+1], suppose that the solution of (1.2) satisfies

x(t) = y(t0, t) +
k∑

i=1

Ji(x(ti–))
Γ (q)

[
tρ – (ti)ρ

ρ

]q–1

+ ξ

k∑

i=1

Ji
(
x(ti–)

)[
y(ti, t) – y(t0, t)

]

for t ∈ (tk , tk+1] (4.14)

to prove that the solution of (1.2) satisfies (4.4) as t ∈ (tk+1, tk+2].
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Using operators K
t0D

q–1,ρ
t and K

t0I
2–q,ρ
t to two sides of (4.14) respectively, we obtain

K
t0D

q–1,ρ
tk+1+ x(tk+1+) = K

t0D
q–1,ρ
tk+1– x(tk+1–) + Jk+1

(
x(tk+1–)

)

= x1 +
∫ tk+1

t0

f dτ

τ 1–ρ
+

k+1∑

i=1

Ji
(
x(ti–)

)
(4.15)

and

K
t0I

2–q,ρ
tk+1+ x(tk+1+) = K

t0I
2–q,ρ
tk+1– x(tk+1–)

= x2 + x1
(tk+1)ρ – (t0)ρ

ρ
+

∫ tk+1

t0

(tk+1)ρ – τρ

ρ

f dτ

τ 1–ρ

+
k∑

i=1

Ji
(
x(ti–)

) (tk+1)ρ – (ti)ρ

ρ
. (4.16)

Plugging (4.15) and (4.16) into (4.2), the approximate solution of (1.2) as t ∈ (tk+1, tk+2] is
given by

x̃(t) = y(tk+1, t) +
∑k

i=1 Ji(x(ti–)) (tk+1)ρ–(ti)ρ
ρ

Γ (q – 1)

[
tρ – (tk+1)ρ

ρ

]q–2

+
∑k+1

i=1 Ji(x(ti–))
Γ (q)

[
tρ – (tk+1)ρ

ρ

]q–1

for t ∈ (tk+1, tk+2]. (4.17)

On the other hand, by (4.14) the exact solution of (1.2) as t ∈ (tk+1, tk+2] satisfies

lim
Ji(x(ti–))→0 for all i∈{1,2,...,k+1}

x(t) = y(t0, t) for t ∈ (tk+1, tk+2] (4.18)

and

lim
Jp(x(tp–))→0 here

p∈{1,2,...,k+1}
x(t) = y(t0, t) +

∑

1≤i≤k+1
and i�=p

Ji(x(ti–))
Γ (q)

[
tρ – (ti)ρ

ρ

]q–1

+ ξ
∑

1≤i≤k+1
and i�=p

Ji
(
x(ti–)

)[
y(ti, t) – y(t0, t)

]
for t ∈ (tk+1, tk+2]. (4.19)

By (4.3) and (4.17)–(4.19), we have

lim
Ji(x(ti–))→0 for
alli∈{1,2,...,k+1}

ek+1(t) = lim
Ji(x(ti–))→0 for
all i∈{1,2,...,k+1}

{
x(t) – x̃(t)

}
= –

[
y(tk+1, t) – y(t0, t)

]
(4.20)

and

lim
Jp(x(tp–))→0 here

p∈{1,2,...,k+1}
ek+1(t) = lim

Jp(x(tp–))→0 here
p∈{1,2,...,k+1}

{
x(t) – x̃(t)

}

= –
[
y(tk+1, t) – y(t0, t)

]
+ ξ

∑

1≤i≤k+1
and i�=p

Ji
(
x(ti–)

)[
y(ti, t) – y(t0, t)

]
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+
∑

1≤i≤k+1
and i�=p

Ji(x(ti–))
Γ (q)

{[
tρ – (ti)ρ

ρ

]q–1

–
[

tρ – (tk+1)ρ

ρ

]q–1}

–
∑

1≤i≤k+1
and i�=p

Ji(x(ti–)) (tk+1)ρ–(ti)ρ
ρ

Γ (q – 1)

[
tρ – (tk+1)ρ

ρ

]q–2

. (4.21)

By (4.20) and (4.21), we obtain

ek+1(t) = –
[
y(tk+1, t) – y(t0, t)

]
+ ξ

k+1∑

i=1

Ji
(
x(ti–)

)[
y(ti, t) – y(t0, t)

]

+
k+1∑

i=1

Ji(x(ti–))
Γ (q)

{[
tρ – (ti)ρ

ρ

]q–1

–
[

tρ – (tk+1)ρ

ρ

]q–1}

–
k+1∑

i=1

Ji(x(ti–)) (tk+1)ρ–(ti)ρ
ρ

Γ (q – 1)

[
tρ – (tk+1)ρ

ρ

]q–2

. (4.22)

Thus, substituting (4.17) and (4.22) into (4.3), we get

x(t) = y(t0, t) +
k+1∑

i=1

Ji(x(ti–))
Γ (q)

[
tρ – (ti)ρ

ρ

]q–1

+ ξ

k+1∑

i=1

Ji
(
x(ti–)

)[
y(ti, t) – y(t0, t)

]

for t ∈ (tk+1, tk+2].

Therefore the solution of (1.2) satisfies (4.4) as t ∈ (tk+1, tk+2]. Hence the necessity is
proved.

Now we prove the sufficiency. Applying the operators K
t0D

q,ρ
t , K

t0D
q–1,ρ
t , and K

t0I
2–q,ρ
t to

two sides of (4.4) as t ∈ (tk , tk+1], respectively, we have

K
t0D

q,ρ
t x(t)|t∈(tk ,tk+1]

=

{

f
(
t, x(t)

)|t≥t0 + ξ

k∑

i=1

Ji
(
x(ti–)

)[
f
(
t, x(t)

)|t≥ti – f
(
t, x(t)

)|t≥t0

]
}

t∈(tk ,tk+1]

= f
(
t, x(t)

)|t∈(tk ,tk+1],

K
t0D

q–1,ρ
t x(t)|t∈(tk ,tk+1]

=

{

x1 +
∫ t

t0

f dτ

τ 1–ρ
+

k∑

i=1

Ji
(
x(ti–)

)

+
k∑

i=1

ξ Ji
(
x(ti–)

)
[

x1 +
∫ ti

t0

f dτ

τ 1–ρ
+

∫ t

ti

f dτ

τ 1–ρ
– x1 –

∫ t

t0

f dτ

τ 1–ρ

]}

t∈(tk ,tk+1]

=

{

x1 +
∫ t

t0

f dτ

τ 1–ρ
+

k∑

i=1

Ji
(
x(ti–)

)
}

t∈(tk ,tk+1]

,
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and

K
t0I

2–q,ρ
t x(t)|t∈(tk ,tk+1]

=

{

x2 + x1
tρ – (t0)ρ

ρ
+

∫ t

t0

tρ – τρ

ρ

f dτ

τ 1–ρ
+

k∑

i=1

Ji
(
x(ti–)

) tρ – (ti)ρ

ρ

}

t∈(tk ,tk+1]

.

Thus K
t0D

q–1,ρ
t x(t)|t→t0+ = x1, K

t0I
2–q,ρ
t x(t)|t→t0+ = x2, K

t0D
q–1,ρ
tk + x(tk+) – K

t0D
q–1,ρ
tk – x(tk–) =

Jk(x(tk–)), and K
t0I

2–q,ρ
tk + x(tk+) = K

t0I
2–q,ρ
tk – x(tk–), and (4.4) satisfies the condition of fractional

derivative in (1.2).
Letting Jk(x(tk–)) = 0 for all k ∈ {1, 2, . . . , m} in (4.3), we obtain

lim
Jk (x(tk–))→0 for all k∈{1,2,...,m}

{
Eq. (4.3)

}
is equivalent to

lim
Jk (x(tk –))→0 for all k∈{1,2,...,m}

{
system (1.2)

}
.

Moreover, it is obvious that (4.4) satisfies condition (v). Therefore (4.4) satisfies all the
conditions of (1.2). Hence, this proof is completed. �

Remark 4.2 Similar to (4.2), an approximate solution of (1.3) is presented by

˜̃x(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(t0, t) for t ∈ (t0, t̄1],
K
t0I

2–q,ρ
t̄l+ x(t̄l+)

Γ (q–1) [ tρ–(t̄l)ρ
ρ

]q–2 +
K
t0D

q–1,ρ
t̄l+ x(t̄l+)

Γ (q) [ tρ–(t̄l)ρ
ρ

]q–1

+ 1
Γ (q)

∫ t
t̄l

[ tρ–τρ

ρ
]q–1 f dτ

τ1–ρ for t ∈ (t̄l, t̄l+1], l = 1, 2, . . . , n,

(4.23)

with K
t0I

2–q,ρ
t̄l+

x(t̄l+) = K
t0I

2–q,ρ
t̄l–

x(t̄l–) + J̄l(x(t̄l–)) and K
t0D

q–1,ρ
t̄l+

x(t̄l+) = K
t0D

q–1,ρ
t̄l–

x(t̄l–).

Furthermore, using the thought of Lemma 4.1, we arrive at the following conclusion.

Lemma 4.3 Let q ∈ (1, 2] and t0,ρ > 0, and let f : [t0, T] ×R → R be a function such that
f (·, x(·)) ∈ C̄2–q,ρ[t0, T] for any x(·) ∈ C̄2–q,ρ[t0, T].

If x(·) ∈ IC2([t0, T],R), then x(t) is a solution of (1.3) if, and only if, x(t) satisfies the fol-
lowing integral equation:

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

y(t0, t) for t ∈ (t0, t̄1],

y(t0, t) +
∑l

j=1
J̄j(x(t̄j–))
Γ (q–1) [ tρ–(t̄j)ρ

ρ
]q–2 + η

∑l
j=1 J̄j(x(t̄j–))[y(t̄j, t) – y(t0, t)]

for t ∈ (t̄l, t̄l+1], l = 1, 2, . . . , n,

(4.24)

where η is an arbitrary constant.
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The following theorem yields the equivalence between Cauchy problem (1.1) and the
Volterra integral equation of the second kind:

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(t0, t) for t ∈ (t0, t′
1],

y(t0, t) +
∑k1

i=1
Ji(x(ti–))

Γ (q) [ tρ–(ti)ρ
ρ

]q–1 +
∑k2

j=1
J̄j(x(t̄j–))
Γ (q–1) [ tρ–(t̄j)ρ

ρ
]q–2

+ ξ
∑k1

i=1 Ji(x(ti–))[y(ti, t) – y(t0, t)]

+ η
∑k2

j=1 J̄j(x(t̄j–))[y(t̄j, t) – y(t0, t)]

for t ∈ (t′
k , t′

k+1],

(4.25)

where ξ and η are two arbitrary constants.

Theorem 4.4 Let q ∈ (1, 2] and t0,ρ > 0, and let f : [a, T] ×R→ R be a function such that
f (·, x(·)) ∈ Ĉ2–q,ρ[t0, T] for any x(·) ∈ Ĉ2–q,ρ[a, T].

If x(·) ∈ IC([t0, T],R), then x(t) is a solution of (1.1) if, and only if, x(t) satisfies (4.25).

Proof First, we prove the necessity that the solution of (1.1) satisfies (4.25) by the mathe-
matical induction. For t ∈ (t0, t′

1], by Lemma 2.4, the solution of system (1.1) satisfies (4.25)
and

x(t) = y(t0, t) for t ∈ (
t0, t′

1
]
. (4.26)

For t ∈ (t′
1, t′

2], there appear three cases t′
1 = t1 < t̄1, t′

1 = t̄1 < t1, and t′
1 = t1 = t̄1. For t′

1 =
t1 < t̄1 and t′

1 = t̄1 < t1, the solution of (1.1) satisfies (4.25) as t ∈ (t′
1, t′

2] by Lemmas 4.1 and
4.3, respectively. Hence, we need only prove that the solution of (1.1) satisfies (4.25) as
t ∈ (t′

1, t′
2] with t′

1 = t1 = t̄1. Applying K
t0D

q–1,ρ
t and K

t0I
2–q,ρ
t to two sides of (4.26), we have

K
t0D

q–1,ρ
t′1+ x

(
t′
1+

)
= K

t0D
q–1,ρ
t′1– x

(
t′
1–

)
+ J1

(
x
(
t′
1–

))
= x1 +

∫ t′1

t0

f dτ

τ 1–ρ
+ J1

(
x
(
t′
1–

))
(4.27)

and

K
t0I

2–q,ρ
t′1+ x

(
t′
1–

)
= K

t0I
2–q,ρ
t′1– x

(
t′
1–

)
+ J̄1

(
x
(
t′
1–

))

= x2 + x1
(t′

1)ρ – (t0)ρ

ρ
+

∫ t′1

t0

(t′
1)ρ – τρ

ρ

f dτ

τ 1–ρ
+ J̄1

(
x
(
t′
1–

))
. (4.28)

Therefore, the approximate solution of (1.1) is given as t ∈ (t′
1, t′

2] by

x̂(t) =
K
t0I

2–q,ρ
t′1+ x(t′

1+)

Γ (q – 1)

[
tρ – (t1)ρ

ρ

]q–2

+
K
t0D

q–1,ρ
t′1+ x(t′

1+)

Γ (q)

[
tρ – (t′

1)ρ

ρ

]q–1

+
1

Γ (q)

∫ t

t′1

[
tρ – τρ

ρ

]q–1 f dτ

τ 1–ρ
for t ∈ (

t′
1, t′

2
]

= y
(
t′
1, t

)
+

J̄1(x(t′
1–))

Γ (q – 1)

[
tρ – (t1)ρ

ρ

]q–2

+
J1(x(t′

1–))
Γ (q)

[
tρ – (t′

1)ρ

ρ

]q–1

for t ∈ (
t′
1, t′

2
]
, (4.29)
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with the error ê1(t) = x(t) – x̂(t) for t ∈ (t′
1, t′

2], where x(t) is the exact solution of (1.1).
Moreover, by Lemmas 4.1 and 4.3, the exact solution x(t) of (1.1) as t ∈ (t′

1, t′
2] satisfies

three conditions:

lim
J1(x(t′1–))→0,J̄1(x(t′1–))→0

x(t) = y(t0, t) for t ∈ (t′
1, t′

2], (4.30)

lim
J̄1(x(t′1–))→0

x(t) = y(t0, t) +
J1(x(t′

1–))
Γ (q)

[
tρ – (t′

1)ρ

ρ

]q–1

+ ξ J1
(
x
(
t′
1–

))[
y
(
t′
1, t

)
– y(t0, t)

]

for t ∈ (
t′
1, t′

2
]
, (4.31)

lim
J1(x(t′1–))→0

x(t) = y(t0, t) +
J̄1(x(t′

1–))
Γ (q – 1)

[
tρ – (t′

1)ρ

ρ

]q–2

+ ηJ̄1
(
x
(
t′
1–

))[
y
(
t′
1, t

)
– y(t0, t)

]

for t ∈ (
t′
1, t′

2
]
. (4.32)

By (4.29)–(4.32), we get

lim
J1(x(t′1–))→0,
J̄1(x(t′1–))→0

ê1(t) = y(t0, t) – y
(
t′
1, t

)
, (4.33)

lim
J̄1(x(t′1–))→0

ê1(t) =
[
ξ J1

(
x
(
t′
1–

))
– 1

][
y
(
t′
1, t

)
– y(t0, t)

]
, (4.34)

lim
J1(x(t′1–))→0

ê1(t) =
[
ηJ̄1

(
x
(
t′
1–

))
– 1

][
y
(
t′
1, t

)
– y(t0, t)

]
. (4.35)

By (4.33)–(4.35), we obtain

ê1(t) =
[
ξ J1

(
x
(
t′
1–

))
+ ηJ̄1

(
x
(
t′
1–

))
– 1

][
y
(
t′
1, t

)
– y(t0, t)

]
for t ∈ (

t′
1, t′

2
]
. (4.36)

By (4.29) and (4.36), we have

x(t) = x̂(t) + ê1(t)

= y(t0, t) +
J1(x(t′

1–))
Γ (q)

[
tρ – (t′

1)ρ

ρ

]q–1

+
J̄1(x(t′

1–))
Γ (q – 1)

[
tρ – (t1)ρ

ρ

]q–2

+
[
ξ J1

(
x
(
t′
1–

))
+ ηJ̄1

(
x
(
t′
1–

))][
y
(
t′
1, t

)
– y(t0, t)

]
for t ∈ (

t′
1, t′

2
]
. (4.37)

Therefore the solution of (1.1) satisfies (4.25) as t ∈ (t′
1, t′

2].
Next, for t ∈ (t′

k , t′
k+1] (k ∈ {1, 2, . . . , M}), suppose that the solution of (1.1) satisfies

x(t) = y(t0, t) +
k1∑

i=1

Ji(x(ti–))
Γ (q)

[
tρ – (ti)ρ

ρ

]q–1

+
k2∑

j=1

J̄j(x(t̄j–))
Γ (q – 1)

[
tρ – (t̄j)ρ

ρ

]q–2

+ ξ

k1∑

i=1

Ji
(
x(ti–)

)[
y(ti, t) – y(t0, t)

]
+ η

k2∑

j=1

J̄j
(
x(t̄j–)

)[
y(t̄j, t) – y(t0, t)

]

for t ∈ (
t′
k , t′

k+1
]
. (4.38)
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Using K
t0D

q–1,ρ
t and K

t0I
2–q,ρ
t to two sides of (4.38) respectively, we get

K
t0D

q–1,ρ
t′k+1+ x

(
t′
k+1+

)
= K

t0D
q–1,ρ
t′k+1– x

(
t′
k+1–

)
+

(k+1)1∑

i=k1+1

Ji
(
x(ti–)

)

= x1 +
∫ t′k+1

t0

f dτ

τ 1–ρ
+

(k+1)1∑

i=1

Ji
(
x(ti–)

)
(4.39)

and

K
t0I

2–q,ρ
t′k+1+ x

(
t′
k+1+

)
= K

t0I
2–q,ρ
t′k+1– x

(
t′
k+1–

)
+

(k+1)2∑

j=k2+1

J̄j
(
x(t̄j–)

)

= x2 + x1
(t′

k+1)ρ – (t0)ρ

ρ
+

∫ t′k+1

t0

(t′
k+1)ρ – τρ

ρ

f dτ

τ 1–ρ

+
(k+1)2∑

j=1

J̄j
(
x(t̄j–)

)
+

k1∑

i=1

Ji
(
x(ti–)

) (t′
k+1)ρ – (ti)ρ

ρ
. (4.40)

Therefore, the approximate solution of (1.1) as t ∈ (t′
k+1, t′

k+2] is given by

x̃(t) =
K
t0I

2–q,ρ
t′k+1+ x(t′

k+1+)

Γ (q – 1)

[
tρ – (t′

k+1)ρ

ρ

]q–2

+
K
t0D

q–1,ρ
t′k+1+ x(t′

k+1+)

Γ (q)

[
tρ – (t′

k+1)ρ

ρ

]q–1

+
1

Γ (q)

∫ t

t′k+1

[
tρ – τρ

ρ

]q–1 f dτ

τ 1–ρ
for t ∈ (

t′
k+1, t′

k+2
]

= y
(
t′
k+1, t

)
+

∑(k+1)2
j=1 J̄j(x(t̄j–)) +

∑k1
i=1 Ji(x(ti–)) (t′k+1)ρ–(ti)ρ

ρ

Γ (q – 1)

[
tρ – (t′

k+1)ρ

ρ

]q–2

+
∑(k+1)1

i=1 Ji(x(ti–))
Γ (q)

[
tρ – (t′

k+1)ρ

ρ

]q–1

for t ∈ (
t′
k+1, t′

k+2
]
, (4.41)

with êk+1(t) = x(t) – x̂(t) for t ∈ (t′
k+1, t′

k+2], where x(t) is the exact solution of (1.1). By (4.38),
the exact solution of (1.1) satisfies

lim
Ji(x(ti–))→0,J̄j(x(t̄j–))→0

for all i and j

x(t) = y(t0, t) for t ∈ (
t′
k+1, t′

k+2
]
, (4.42)

lim
Ji(x(ti–))→0 for all i∈{l1+1,l1+2,...,(l+1)1},
J̄j(x(t̄j–))→0 for all j∈{l2+1,l2+2,...,(l+1)2}

x(t)

= y(t0, t) +
∑

1≤i≤(k+1)1 and
i /∈{l1+1,l1+2,...,(l+1)1}

Ji(x(ti–))
Γ (q)

[
tρ – (ti)ρ

ρ

]q–1

+ y(t0, t) +
∑

1≤j≤(k+1)2 and
j /∈{l2+1,l2+2,...,(l+1)2}

J̄j(x(t̄j–))
Γ (q – 1)

[
tρ – (t̄j)ρ

ρ

]q–2

+ ξ
∑

1≤i≤(k+1)1 and
i /∈{l1+1,l1+2,...,(l+1)1}

Ji
(
x(ti–)

)[
y(ti, t) – y(t0, t)

]
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+ η
∑

1≤j≤(k+1)2 and
j /∈{l2+1,l2+2,...,(l+1)2}

J̄j
(
x(t̄j–)

)[
y(t̄j, t) – y(t0, t)

]

for t ∈ (
t′
k+1, t′

k+2
]
, l = 1, 2, . . . , k + 1. (4.43)

By (4.41)–(4.43), we obtain

lim
Ji(x(ti–))→0,J̄j(x(t̄j–))→0

for all i and j

êk+1(t) = –
[
y
(
t′
k+1, t

)
– y(t0, t)

]
, (4.44)

lim
Ji(x(ti–))→0 for all i∈{l1+1,l1+2,...,(l+1)1},
J̄j(x(t̄j–))→0 for all j∈{l2+1,l2+2,...,(l+1)2}

êk+1(t)

= –
[
y
(
t′
k+1, t

)
– y(t0, t)

]
+ ξ

∑

1≤i≤(k+1)1 and
i /∈{l1+1,...,(l+1)1}

Ji
(
x(ti–)

)[
y(ti, t) – y(t0, t)

]

+ η
∑

1≤j≤(k+1)2 and
j /∈{l2+1,...,(l+1)2}

J̄j
(
x(t̄j–)

)[
y(t̄j, t) – y(t0, t)

]

+
∑

1≤i≤(k+1)1 and
i /∈{l1+1,l1+2,...,(l+1)1}

Ji(x(ti–))
Γ (q)

{[
tρ – (ti)ρ

ρ

]q–1

–
[

tρ – (t′
k+1)ρ

ρ

]q–1}

+
∑

1≤j≤(k+1)2 and
j /∈{l2+1,l2+2,...,(l+1)2}

J̄j(x(t̄j–))
Γ (q – 1)

{[
tρ – (t̄j)ρ

ρ

]q–2

–
[

tρ – (t′
k+1)ρ

ρ

]q–2}

–
∑

1≤i≤k1 and
i /∈{l1+1,l1+2,...,(l+1)1}

Ji(x(ti–))
Γ (q – 1)

(t′
k+1)ρ – (ti)ρ

ρ

[
tρ – (t′

k+1)ρ

ρ

]q–2

for t ∈ (
t′
k+1, t′

k+2
]
, l = 1, 2, . . . , k + 1. (4.45)

By (4.44) and (4.45), we have

êk+1(t) = –
[
y
(
t′
k+1, t

)
– y(t0, t)

]
–

k1∑

i=1

Ji(x(ti–))
Γ (q – 1)

(t′
k+1)ρ – (ti)ρ

ρ

[
tρ – (t′

k+1)ρ

ρ

]q–2

+ ξ

(k+1)1∑

i=1

Ji
(
x(ti–)

)[
y(ti, t) – y(t0, t)

]

+ η

(k+1)2∑

j=1

J̄j
(
x(t̄j–)

)[
y(t̄j, t) – y(t0, t)

]

+
(k+1)1∑

i=1

Ji(x(ti–))
Γ (q)

{[
tρ – (ti)ρ

ρ

]q–1

–
[

tρ – (t′
k+1)ρ

ρ

]q–1}

+
(k+1)2∑

j=1

J̄j(x(t̄j–))
Γ (q – 1)

{[
tρ – (t̄j)ρ

ρ

]q–2

–
[

tρ – (t′
k+1)ρ

ρ

]q–2}

. (4.46)



Zhang Advances in Difference Equations         (2020) 2020:85 Page 17 of 25

By (4.41) and (4.46), we get

x(t) = x̂(t) + êk+1(t)

= y(t0, t) +
(k+1)1∑

i=1

Ji(x(ti–))
Γ (q)

[
tρ – (ti)ρ

ρ

]q–1

+
(k+1)2∑

j=1

J̄j(x(t̄j–))
Γ (q – 1)

[
tρ – (t̄j)ρ

ρ

]q–2

+ ξ

(k+1)1∑

i=1

Ji
(
x(ti–)

)[
y(ti, t) – y(t0, t)

]
+ η

(k+1)2∑

j=1

J̄j
(
x(t̄j–)

)[
y(t̄j, t) – y(t0, t)

]

for t ∈ (
t′
k+1, t′

k+2
]
. (4.47)

Thus the solution of (1.1) satisfies (4.25) as t ∈ (t′
k+1, t′

k+2], and the necessity is proved.
Now we verify the sufficiency that (4.25) satisfies all the conditions of system (1.1). It is

easy to find that (4.25) satisfies conditions (i)–(iv) by Lemmas 4.1 and 4.3, and it is sim-
ilar with the proof of Lemma 4.1 to verify that (4.25) satisfies the condition of general-
ized fractional derivative, impulsive conditions, and initial conditions in (1.1). The proof
is completed. �

Corollary 4.5 Let q ∈ (1, 2] and t0,ρ > 0, and let f : [t0, T] × R → R be a function such
that f (·, x(·)) ∈ Ĉ2–q,ρ[t0, T] for any x(·) ∈ Ĉ2–q,ρ[t0, T].

If x(·) ∈ IC([t0, T],R), then x(t) is a solution of (1.4) if, and only if, x(t) satisfies the fol-
lowing integral equation:

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y(t0, t) for t ∈ (t0, t1],

y(t0, t) +
∑k

i=1
Ji(x(ti–))

Γ (q) [ tρ–(ti)ρ
ρ

]q–1 +
∑k

i=1
J̄i(x(ti–))
Γ (q–1) [ tρ–(ti)ρ

ρ
]q–2

+
∑k

i=1[ξ Ji(x(ti–)) + ηJ̄i(x(ti–))][y(ti, t) – y(t0, t)]

for t ∈ (tk , tk+1], k = 1, 2, . . . , m,

(4.48)

where ξ and η are two arbitrary constants.

5 Examples
In this section, we consider the following IVP of three IFrDEs:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K
1 D

3
2 ,ρ
t x(t) = x(t), t ∈ (1, 5], t �= 3

K
1 D

1
2 ,ρ
3+ x(3+) – K

1 D
1
2 ,ρ
3– x(3–) = 1,

K
1 D

1
2 ,ρ
t x(t)|t→1+ = 1, K

1 I
1
2 ,ρ

t x(t)|t→1+ = 0,

(5.1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K
1 D

3
2 ,ρ
t x(t) = x(t), t ∈ (1, 5], t �= 3

K
1 I

1
2 ,ρ

3+ x(3+) – K
1 I

1
2 ,ρ

3– x(3–) = 1,
K
1 D

1
2 ,ρ
t x(t)|t→1+ = 1, K

1 I
1
2 ,ρ

t x(t)|t→1+ = 0,

(5.2)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K
1 D

3
2 ,ρ
t x(t) = x(t), t ∈ (1, 5], t �= 3

K
1 D

1
2 ,ρ
3+ x(3+) – K

1 D
1
2 ,ρ
3– x(3–) = 1,

K
1 I

1
2 ,ρ

3+ x(3+) – K
1 I

1
2 ,ρ

3– x(3–) = 1,
K
1 D

1
2 ,ρ
t x(t)|t→1+ = 1, K

1 I
1
2 ,ρ

t x(t)|t→1+ = 0.

(5.3)
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By Lemma 4.1, Lemma 4.3, and Corollary 4.5, the equivalent integral equations of three
systems (5.1)–(5.3) as t ∈ (1, 3] are identical as follows:

x(t) =
2√
π

[
tρ – 1

ρ

] 1
2

+
2√
π

∫ t

1

[
tρ – τρ

ρ

] 1
2 x(τ ) dτ

τ 1–ρ
for t ∈ (1, 3], (5.4)

and the equivalent integral equations of three systems (5.1)–(5.3) as t ∈ (3, 5] are respec-
tively given by

x(t) =
2√
π

[
tρ – 1

ρ

] 1
2

+
2√
π

∫ t

1

[
tρ – τρ

ρ

] 1
2 x(τ ) dτ

τ 1–ρ
+

2√
π

[
tρ – 3ρ

ρ

] 1
2

+ ξ

{ 3ρ–1
ρ

+
∫ 3

1
3ρ–τρ

ρ

x(τ ) dτ

τ1–ρ√
π

[
tρ – 3ρ

ρ

]– 1
2

+
1 +

∫ 3
1

x(τ ) dτ

τ1–ρ√
π/2

[
tρ – 3ρ

ρ

] 1
2

+
2√
π

∫ t

3

[
tρ – τρ

ρ

] 1
2 x(τ ) dτ

τ 1–ρ
–

2√
π

[
tρ – 1

ρ

] 1
2

–
2√
π

∫ t

1

[
tρ – τρ

ρ

] 1
2 x(τ ) dτ

τ 1–ρ

}

for t ∈ (3, 5], (5.5)

x(t) =
2√
π

[
tρ – 1

ρ

] 1
2

+
2√
π

∫ t

1

[
tρ – τρ

ρ

] 1
2 x(τ ) dτ

τ 1–ρ
+

1√
π

[
tρ – 3ρ

ρ

]– 1
2

+ η

{ 3ρ–1
ρ

+
∫ 3

1
3ρ–τρ

ρ

x(τ ) dτ

τ1–ρ√
π

[
tρ – 3ρ

ρ

]– 1
2

+
1 +

∫ 3
1

x(τ ) dτ

τ1–ρ√
π/2

[
tρ – 3ρ

ρ

] 1
2

+
2√
π

∫ t

3

[
tρ – τρ

ρ

] 1
2 x(τ ) dτ

τ 1–ρ
–

2√
π

[
tρ – 1

ρ

] 1
2

–
2√
π

∫ t

1

[
tρ – τρ

ρ

] 1
2 x(τ ) dτ

τ 1–ρ

}

for t ∈ (3, 5], (5.6)

x(t) =
2√
π

[
tρ – 1

ρ

] 1
2

+
2√
π

∫ t

1

[
tρ – τρ

ρ

] 1
2 x(τ ) dτ

τ 1–ρ

+
2√
π

[
tρ – 3ρ

ρ

] 1
2

+
1√
π

[
tρ – 3ρ

ρ

]– 1
2

+ [ξ + η]
{ 3ρ–1

ρ
+

∫ 3
1

3ρ–τρ

ρ

x(τ ) dτ

τ1–ρ√
π

[
tρ – 3ρ

ρ

]– 1
2

+
1 +

∫ 3
1

x(τ ) dτ

τ1–ρ√
π/2

[
tρ – 3ρ

ρ

] 1
2

+
2√
π

∫ t

3

[
tρ – τρ

ρ

] 1
2 x(τ ) dτ

τ 1–ρ
–

2√
π

[
tρ – 1

ρ

] 1
2

–
2√
π

∫ t

1

[
tρ – τρ

ρ

] 1
2 x(τ ) dτ

τ 1–ρ

}

for t ∈ (3, 5], (5.7)

where ξ and η in (5.5)–(5.7) are two arbitrary constants.



Zhang Advances in Difference Equations         (2020) 2020:85 Page 19 of 25

Next we realize numerical simulation of (5.4) and (5.5)–(5.7) by using the Euler method
with variable step size to give some solution trajectories of three systems (5.1)–(5.3) with
given ρ , respectively.

Figures 1–4 denote the solution trajectories of (5.1) with ρ = 0.1, 0.5, 1, 2, respectively.
Moreover, in these figures three curves ‘xi = 0, 1, –1’, which are drawn by numerical sim-
ulation of (5.4)–(5.5) with ξ = 0, 1, –1, respectively, represent three solutions of (5.1) with
the corresponding ρ .

Figures 5–8 denote the solution trajectories of (5.2) with ρ = 0.1, 0.5, 1, 2, respectively.
Moreover, in these figures three curves ‘eta = 0, 1, –1’, which are drawn by numerical sim-
ulation of (5.4) and (5.6) with η = 0, 1, –1, respectively, represent three solutions of (5.2)
with the corresponding ρ .

Figures 9–12 denote the solution trajectories of (5.3) with ρ = 0.1, 0.5, 1, 2, respectively.
Moreover, in these figures five curves ‘xi + eta = 2, 1, 0, –1, –2’, which are drawn by nu-

Figure 1 The solution trajectory of system (5.1) with ρ = 0.1

Figure 2 The solution trajectory of system (5.1) with ρ = 0.5
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Figure 3 The solution trajectory of system (5.1) with ρ = 1

Figure 4 The solution trajectory of system (5.1) with ρ = 2

Figure 5 The solution trajectory of system (5.2) with ρ = 0.1
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Figure 6 The solution trajectory of system (5.2) with ρ = 0.5

Figure 7 The solution trajectory of system (5.2) with ρ = 1

Figure 8 The solution trajectory of system (5.2) with ρ = 2
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Figure 9 The solution trajectory of system (5.3) with ρ = 0.1

Figure 10 The solution trajectory of system (5.3) with ρ = 0.5

Figure 11 The solution trajectory of system (5.3) with ρ = 1
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Figure 12 The solution trajectory of system (5.3) with ρ = 2

merical simulation of (5.4) and (5.7) with ξ + η = 2, 1, 0, –1, –2, respectively, represent five
solutions of (5.3) with the corresponding ρ .

6 Conclusion
The systems of impulsive high order fractional differential equations can involve one or
two kinds of impulses. As a result, their equivalent integral equations include one or two
arbitrary constants which uncover the non-uniqueness of solution for the systems of im-
pulsive high order fractional differential equations.
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