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Abstract
In this article, we mainly develop a reduced order extrapolating model for the
solution coefficient vectors of the classical collocation spectral (CCS) scheme to the
two-dimensional (2D) telegraph equation by means of a proper orthogonal
decomposition (POD). Therefore, we first present the CCS scheme, offer the existence,
stability, and error estimates to the SC solutions, and rewrite the CCS scheme into a
matrix-form. We then build a reduced order extrapolating collocation spectral
(ROECS) model and analyze the existence and stability as well as errors of the ROECS
solutions by some matrix tools. We finally verify the reliability and validity of the
ROECS model by means of two sets of numerical simulations for the magnetic field
produced by two parallel wires with the same voltage.
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1 Introduction
Let Ω ⊂R

2 be a bounded region with boundary ∂Ω . We are concerned with the following
telegraph equation:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u + αut + βu = f (t, x, y), t ∈ (0, T], (x, y) ∈ Ω ,

u(t, x, y) = 0, t ∈ (0, T], (x, y) ∈ ∂Ω ,

u(0, x, y) = G0(x, y), ut(0, x, y) = G1(x, y), (x, y) ∈ Ω ,

(1)

where u represents the unknown voltage or current, ut = ∂u/∂t, utt = ∂2u/∂t2, � = ∂2/∂x2 +
∂2/∂y2, α = GR(LĈ)–1, β = (RĈ + GL)(LĈ)–1, while G is the known dielectric material
conductance, R stands for the known conductor distributing resistance, L represents the
known distributing inductance, Ĉ represents the known capacitance between two con-
ductors, T stands for the ultima time, and G0(x, y), G1(x, y), and f (t, x, y) are three known
functions.
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The telegraph equation possesses very significant physical meanings. It can be used for
simulating the electric signal propagation in transmission cable and the interaction be-
tween diffusion and reaction in biology and physics branches (see [1, 2]). But the telegraph
equation in real world usually contains the complex initial and boundary values, or source
function, or discontinuous coefficients. Thus, it has generally no genuine solution, one has
to rely on numerical solutions.

The accuracy of spectral method (see [1–11]) is far higher than that of the finite ele-
ment (FE), finite difference (FD), and finite volume element (FVE) methods (see [12–18])
as its unknown functions are approximated with the smoothing functions like triangle
functions or Legendre’s, Jacobi’s, and Chebyshev’s polynomials, while the unknown func-
tions for the FE and FVE models are approximated with the general polynomials, but the
derivatives of the unknown functions of the FD method are approximated via difference
quotients. In particular, the CCS model for the telegraph equation in [18] possesses the
super-convergence with respect to spatial variables, but it includes lots unknowns. There-
fore, the round off errors in the calculations are accumulated very rapidly, resulting in
floating point overflow after computing some steps and being unable to obtain desired
results. Hence, the issue of how to reduce the unknowns of the CCS format to retard the
round off error amassing is urgent, and it needs to be solved in practical applications (such
as mechanic engineering), which is the main objective of this paper.

Many numerical experimentations (see, e.g., [19–29]) have verified that the POD tech-
nique can immensely lessen the unknowns in the numerical methods and retard the round
off error accumulation and the calculating load. It is successfully used for reduced order
in the Galerkin, FE, FD, and FVE methods as well as the parametric problems as just men-
tioned.

Unfortunately, as we are concerned, so far there have been no reports on the ROECS
model for the telegraph equation based on POD. Hance, we here set up an ROECS model
of matrix-form for the coefficient vectors of the CCS solutions such that the ROECS model
possesses the same base functions as the CCS one and is simultaneously equipped with
merits that the CCS model possesses the higher accuracy and the POD method could
lessen the unknowns. In addition, we employ the matrix theory to demonstrate the ex-
istence, convergence, and stability for the ROECS solutions such that the theoretical ar-
gumentation becomes very succinct. In so doing, the ROECS model totally distinguishes
from the existing POD-based reduced order ones as stated in the above-mentioned.

The paper is organized as follows. In Sect. 2, the CCS method to the telegraph equation
is proposed. Based on the proposal, in Sect. 3, we make up snapshot matrix with the first
few CCS solution coefficient vectors, producing a series of POD bases from the snapshot
matrix, building the ROECS format of matrix-form via the POD bases, and proving the ex-
istence, convergence, and stability to the ROECS solutions via the matrix theory. Section 4
supplies two sets of numeric experimentations in the magnetic field produced by two par-
allel wires with the same voltage to check out that the numeric computational results are
consistent with the theory consequences and the ROECS format is very efficient when
solving the telegraph equation. Section 5 summarizes the main conclusions of this study.

2 The CCS method of the telegraph equation
2.1 The CCS method
Since the closed bounded region Ω is able to be approximately covered by several rect-
angles [ai, bi] × [ci, di] (1 ≤ i ≤ I) and by formulas x′ = 2(x – ai)/(bi – ai) – 1 and y′ =
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2(y – ci)/(di – ci) – 1 we can insure [ai, bi] ↔ [–1, 1] and [ci, di] ↔ [–1, 1], respectively, as-
suming that Ω = [–1, 1] × [–1, 1], i.e., Ω = (–1, 1) × (–1, 1).

Let PN be an interpolation subspace. For convenience, let {ωk}N
k=0 be a set of weights

and {yk}N
k=0 and {xk}N

k=0 be, respectively, two groups of Chebyshev–Gauss–Lobatto (CGL)
quadrature points in the y and x directions (see [4]), which hold the same number and are
denoted by

yk = – cos
πk
N

, xk = – cos
kπ

N
, ωk =

π

ckN
, 0 ≤ k ≤ N , (2)

the above c0 = cN = 2 and ck = 1 (1 ≤ k ≤ N – 1). {yj}N
j=0 and {xk}N

k=0 as well as {ωk}N
k=0 have

the following properties (see [4, p. 44]).

Theorem 1 The sets of CGL quadrature points {xk}N
k=0 and {yk}N

k=0, and the sets of weights
{ωk}N

k=0 satisfy

∫ 1

–1

∫ 1

–1
ω(x, y)q(x, y) dx dy =

N∑

j=0

N∑

k=0

q(xj, yk)ωjωk , ∀q(x, y) ∈ P2N–1,

where ω(x, y) = ω(x)ω(y), ω(x) = 1/
√

1 – x2, and ω(y) = 1/
√

1 – y2.

In fact, the CCS method aims to seek an approximated solution of u(x, y) via the follow-
ing formula:

uN (x, y) =
N∑

j=0

N∑

k=0

uN (xj, yk)hj(x)hk(y) = UN · H(x, y), uN (x, y) ∈ PN , (3)

in which hj(x) and hk(y) are Lagrange’s interpolated multinomials of the CGL quadrature
points, UN = (uN0,0 , uN1,0 , . . . , uNN ,0 , uN0,1 , uN1,1 , . . . , uNN ,1 , . . . , uN0,N , . . . , uNN ,N )T , and H(x, y) =
(h0(x)h0(y), h1(x)h0(y), . . . , hN (x)h0(y), h0(x)h1(y), h1(x)h1(y), . . . , hN (x)h1(y), . . . , h0(x)hN (y),
h1(x)hN (y), . . . , hN (x)hN (y))T . Furthermore, the derivatives of uN (x, y) for x at xk are for-
mulated with

∂uN (xk , y)
∂x

=
N∑

j=0

N∑

l=0

uN (xj, yl)h′
j(xk)hl(y)= UN · ∂

∂x
H(xk , y), 0 ≤ k ≤ N , (4)

where

h′
i(xk) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

– 2N2+1
6 , i = k = 0,

ck
ci

(–1)k+i

xk –xi
, i 
= k, 0 ≤ i, k ≤ N ,

– xk
2(1–x2

k ) , 1 ≤ i = k ≤ N – 1,
2N2+1

6 , i = k = N .

(5)

In the above formulas, it should be noted c0 = cN = 2 and ck = 1 (1 ≤ k ≤ N – 1). By replac-
ing x with y in (5) and (4), one immediately gains the calculating formulas for ∂uN (x, yk)/∂y.
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2.2 Some useful Sobolev spaces
The Sobolev spaces and their norms arisen in the subsequent are classical (see [30, 31]).
For instance, L2(Ω) denotes a set of square-integrable functions in Ω that endows the
norms as well as inner product as follows:

‖v‖0 =
(∫

Ω

|v|2 dx dy
)1/2

, (u, v) =
∫

Ω

uv dx dy, ∀u, v ∈ L2(Ω).

For a dual-index α = (α1,α2) (here integers αi ≥ 0) and an integer m ≥ 0, the norm and
semi-norm in Hm(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω), 0 ≤ |α| ≤ m} are defined as

‖v‖m =

( m∑

|α|=0

∥
∥Dαv

∥
∥2

0

)1/2

, |v|m =
( ∑

|α|=m

∥
∥Dαv

∥
∥2

0

)1/2

, ∀v ∈ Hm(Ω),

where Dαv = ∂α1+α2 v
∂xα1 ∂yα2 .

Additionally, let ω = 1/
√

(1 – x2)(1 – y2), let Ω = (–1, 1)2, let L2
ω(Ω) stand for the set that

all functions are square-integrable in Ω about ω, which is, respectively, equipped with the
norm inner product as follows:

‖u‖0,ω =
(∫

Ω

|u|2ω dx dy
)1/2

, (u, v)ω =
∫

Ω

uvω dx dy, ∀u, v ∈ L2(Ω),

and let Hm
ω (Ω) = {v ∈ L2

ω(Ω) : Dαv ∈ L2
ω(Ω), 0 ≤ |α| ≤ m} stand for a weighted Sobolev

space in Ω about ω, which is equipped with a norm

‖u‖m,ω =

( m∑

|α|=0

∥
∥Dαu

∥
∥2

0,ω

) 1
2

.

Moreover, let H1
0,ω(Ω) = {u ∈ H1

ω(Ω) : u|∂Ω = 0}, let L2
ω(Ω) = H0

ω(Ω), and let

Hl(0, T ; Hm
ω (Ω)

) ≡ {
v(t) ∈ Hm

ω (Ω) : ‖v‖2
Hl(Hm

ω ) < ∞}
,

where ‖v‖2
Hl(Hm

ω ) =
∫ T

0
∑l

i=0 ‖div(t)/dti‖2
m,ω dt.

In addition, define the H1
ω-orthogonal projection RN : H1

0,ω(Ω) → PN such that, for any
u ∈ H1

0,ω(Ω), there holds

(∇(RN u – u),∇vN
)

ω
= 0, ∀vN ∈ PN , (6)

equivalently,

RN u(x, y) =
N∑

j=0

N∑

k=0

RN u(xj, yk)hj(x)hk(y),

where RN u(xj, yk)s are values of the solution RN u(x, y) of (6) at points (xj, yk).
Thus, a function u(x, y) may be approximated with RN u(x, y), too. Furthermore, RN pos-

sesses the following properties (see [4, Theorems 2.16–2.18]).
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Theorem 2 ∀w ∈ Hk
ω(Ω) (k ≥ 1) satisfies

‖∇RN w‖0,ω ≤ ‖∇w‖0,ω;
∥
∥∂m(RN w – w)

∥
∥

0,ω = O
(
Nm–k), 0 ≤ m ≤ k ≤ N + 1.

2.3 The CCS method of the telegraph equation
Consider the following variational form of the telegraph equation.

Problem 1 Seek u ∈ H1
0,ω(Ω) such that, ∀t ∈ (0, T),

⎧
⎨

⎩

(utt + αut + βu, v)ω + (∇u,∇v)ω = (f , v)ω, ∀v ∈ H1
0,ω(Ω),

u(0, x, y) = G0(x, y), ut(0, x, y) = G1(x, y), (x, y) ∈ Ω .
(7)

The next consequences of the existence as well as the stability for the solution to Prob-
lem 1 have been given in [18, Theorem 4].

Theorem 3 When f ∈ L2(0, T ; L2
ω(Ω)) and G1 ∈ L2

ω(Ω) as well as G0 ∈ H1
ω(Ω), Problem 1

has a unique solution satisfying the following stability:

‖u‖1,ω + ‖ut‖0,ω ≤ σ̃
(‖f ‖L2(H–1

ω ) + ‖G1‖0,ω + ‖G0‖1,ω
)
, (8)

where σ̃ = 2
√

max{β , 1, 0.5α–1}/ min{1,β}.

In order to settle Problem 1 with the CCS method, one needs to discretize utt and ut with
the second order time difference quotients and the spatial variables with the CCS tech-
nique. The main aim for the CCS method is to seek all approximate solutions at the CGL
quadrature points and at time nodes tn = n	t (where T/K =: 	t is the time step and K > 0
is integer meeting T = K	t) such that u(x, y, n	t), ut , utt , and un(x, y) are respectively
approximated with un, (un+1 – un–1)/(2	t), (un+1 – 2un + un–1)/	t2, and un

N (x, y), namely

un(x, y) ≈ un
N (x, y) =

N∑

j=0

N∑

k=0

un
N (xj, yk)hk(y)hj(x), 0 ≤ n ≤ K .

Then the CCS model of the telegraph equation can be established as follows.

Problem 2 Seek un
N ∈ UN ≡ H1

0,ω(Ω) ∩ PN such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(un+1
N – 2un

N + un–1
N , vN )ω + 	t2

2 (∇un+1
N + ∇un–1

N ,∇vN )ω
+ α	t

2 (un+1
N – un–1

N , vN )ω + β	t2

2 (un+1
N + un–1

N , vN )ω
= 	t2(f (x, y, tn), vN )ω, ∀vN ∈ UN , 1 ≤ n ≤ K – 1,

u0
N (x, y) = RN G0(x, y), u1

N (x, y) = 2	tRN G1(x, y) + u0
N , (x, y) ∈ Ω .

(9)

The next consequences of the existence and convergence as well as stability for the CCS
solutions of Problem 2 had been proven in [18, Theorems 6 and 8].
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Theorem 4 When f ∈ L2(0, T ; L2
ω(Ω)) and G ∈ H1

ω(Ω) as well as H ∈ H1
ω(Ω), Problem 2

has a unique series of solutions un
N ∈ UN (n = 1, 2, . . . , K ) that satisfy the following stability:

∥
∥un

N
∥
∥

1,ω ≤
( 8 + C2

p + β

C2
p min{1,β}

)1/2(‖∇G0‖0,ω + ‖∇G1‖0,ω
)

+

(
	t

α min{1,β}
n∑

j=1

∥
∥f (tj)

∥
∥2

0,ω

)1/2

, n = 1, 2, . . . , K . (10)

In addition, if the solutions u(tn) ∈ Hm
ω (Ω) (2 ≤ m ≤ N +1) to Problem 1, the error estimates

between the solution of Problem 1 and the solutions of Problem 2 are as follows:
∥
∥u(tn) – un

N
∥
∥

1,ω = O
(
	t2, N–m)

, 2 ≤ m ≤ N + 1, 1 ≤ n ≤ K . (11)

2.4 The matrix-form of the CCS model
In the following, we rewrite the CCS model as the matrix-form. To do this, let

un
N =

N∑

k=0

N∑

i=0

un
Nk,i

hk(y)hi(x). (12)

By taking vN = hm(y)hl(x) ∈ UN (0 ≤ l, m ≤ N ) in Problem 2, we gain the formulas

(
un+1

N , vN
)

ω
=

N∑

k=0

N∑

i=0

un+1
Nk,i

(
hk(y)hi(x), hm(y)hl(x)

)

ω
,

(∇un+1
N ,∇vN

)

ω
=

N∑

k=0

N∑

i=0

un+1
Nk,i

[(
hk(y)h′

i(x), hm(y)h′
l(x)

)

ω
+

(
h′

k(y)hi(x), h′
m(y)hl(x)

)

ω

]
.

Let

Ajm,kl =
(
hj(x)hk(y), hm(x)hl(y)

)

ω

=
N∑

p=0

N∑

q=0

hj(xp)hm(xp)ωphk(yq)hn(yq)ωq, 0 ≤ j, k, l, m ≤ N , (13)

Bjm,kl =
(
h′

j(x)hk(y), h′
m(x)hl(y)

)

ω
+

(
hj(x)h′

k(y), hm(x)h′
l(y)

)

ω

=
N∑

p=0

N∑

q=0

h′
j(xp)h′

m(xp)ωphk(yq)hl(yq)ωq

+
N∑

p=0

N∑

q=0

hj(xp)hm(xp)ωph′
k(yq)h′

l(yq)ωq, 0 ≤ j, k, l, m ≤ N , (14)

and let

B = (Bjm,kl)(N+1)2×(N+1)2 , A = (Ajm,kl)(N+1)2×(N+1)2 ,

Un
N =

(
un

N0,0 , un
N1,0 , . . . , un

NN ,0
, un

N0,1 , un
N1,1 , . . . , un

NN ,1
, . . . , un

N0,N
, . . . , un

NN ,N

)T ,

Fn =
(
Fn

0,0, Fn
1,0, . . . ,nN ,0 , Fn

0,1, . . . , Fn
N ,1, . . . , Fn

0,N , . . . , Fn
N ,N

)T , Fn
m,l = f (xm, yl, n	t).

Therefore, Problem 2 may be rewritten into the following matrix-form.
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Problem 3 Seek Un
N ∈R

(N+1)2 (n = 2, 3, . . . , K ) such that

[(
2 + α	t + β	t2)A + 	t2B

]
Un+1

N

= 4AUn
N + 2	t2Fn –

[(
2 – α	t + β	t2)A + 	t2B

]
Un–1

N , 1 ≤ n ≤ K – 1. (15)

Remark 1 As the coefficient matrixes are constructed by some trigonometric values, in
spite that the accuracy of the CCS model is higher than those of other numeric models, for
example, the FE, FD, and FVE models, the CCS model is more intricate than other numeric
models as it takes more weighty calculating burden. Therefore, the order reduction of the
CCS model is more vital than that of other numeric models. Therefore, we take the initial
L vectors U1

N , U2
N , . . . , UL

N (L � K ) from the set of coefficient vectors {Un
N }K

n=1 for the CCS
matrix-format (15) to make up of a (N + 1)2 × L snapshot matrix Q = (U1

N , U2
N , . . . , UL

N ).

3 The ROECS method for the telegraph equation
3.1 Formulation of POD basis
For the snapshot matrix Q = (U1

N , U2
N , . . . , UL

N ) constituted in Sect. 2.4, let λ1 ≥ λ2 ≥ · · · ≥
λr > 0 (γ =: rank(Q)) stand for all positive eigenvalues of QQT , and let U = (φ1,φ2, . . . ,φr) ∈
R

(N+1)2×r stand for the eigenmatrix formed by the associated orthonormal eigenvectors of
QQT . Thus, a set of POD bases Φ = (φ1,φ2, . . . ,φd) (d ≤ γ ) is gained by the first d vectors
in U that possess the following property (see [21, 24]):

∥
∥Q – ΦΦT Q

∥
∥

2,2 =
√

λd+1, (16)

where ‖Q‖2,2 = supv 
=0 ‖Qv‖2/‖v‖2 and ‖v‖2 stands for the Euclidean norm to vector v. It
follows that

∥
∥Un

N – ΦΦT Un
N
∥
∥

2 =
∥
∥
(

Q – ΦΦT Q
)

en
∥
∥

2

≤ ∥
∥Q – ΦΦT Q

∥
∥

2,2‖en‖2 ≤ √
λd+1, 1 ≤ n ≤ L, (17)

where ei (1 ≤ i ≤ L) stands for the unit vectors whose ith component is 1.

Remark 2 Thanks to the number of order L of QT Q being far smaller than the number
of order (N + 1)2 of QQT , but both positive eigenvalues λi (1 ≤ i ≤ γ ) are identical, one
may firstly seek the eigenvalues λi (1 ≤ i ≤ γ ) of QT Q and the associated eigenvectors ϕi

(1 ≤ i ≤ γ ), and then, according to φi = Qϕi/
√

λi (1 ≤ i ≤ r), one may easily acquire the
eigenvectors φi (1 ≤ i ≤ γ ) of QQT .

3.2 The ROECS model
From (17) in Sect. 3.1 one may acquire the initial L coefficient vectors to the ROECS solu-
tions Un

d = ΦΦT Un
N =: Φβn

d (n = 1, 2, . . . , L ≤ K ), where Un
d = (un

d,0,0, un
d,1,0, . . . , un

d,N ,0, un
d,0,1,

un
d,1,1, . . . , un

d,N ,1, . . . , un
d,0,N , un

d,1,N , . . . , un+1
d,N ,N )T , and βn

d = (βn
1 ,βn

2 , . . . ,βn
d )T . Thanks to the ma-

trix [(2 + α	t + β	t2)A + 	t2B] being reversible, when the coefficient vectors Un
N in (15)
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are replaced with Un
d = Φβn

d (L + 1 ≤ n ≤ K ), one can get the following ROECS model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φβn
d = ΦΦT Un

N , 1 ≤ n ≤ L;

Φβn+1
d = 4AAΦβn

d – A[(2 – α	t + β	t2)A + 	t2B]Φβn–1
d + 2	t2

AFn,

L ≤ n ≤ K – 1,

Un
d = Φβn

d, 1 ≤ n ≤ K ,

(18)

where A = [(2 + α	t + β	t2)A + 	t2B]–1, Un
N (1 ≤ n ≤ L) stand for the initial L coefficient

vectors in (15), and A and B are given in (15).
Furthermore, model (18) can be simplified as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βn
d = ΦT Un

N , n = 1, 2, . . . , L;

βn+1
d = 4ΦT

AAΦβn
d – ΦT

A[(2 – α	t + β	t2)A + 	t2B]Φβn–1
d

+ 2	t2ΦT
AFn, n = L, L + 1, . . . , K – 1,

Un
d = Φβn

d, n = 1, 2, . . . , K .

(19)

Remark 3 CCS model (15) includes (N + 1)2 unknowns at every time node, but ROECS
model (19) at the same node has only d unknowns (where d ≤ L � (N + 1)2, for in-
stance, in the numeric experimentations of Sect. 4, (N + 1)2 = 10201, whereas d = 6). It
follows that ROECS model (19) is clearly superior to CCS model (15). After having gotten
Un

d = (un
d,0,0, un

d,1,0, . . . , un
d,N ,0, un

d,0,1, un
d,1,1, . . . , un

d,N ,1, . . . , un
d,0,N , un

d,1,N , . . . , un+1
d,N ,N )T by (19), we

may gain the authentic ROECS solutions un
d(x, y) =

∑N
j=0

∑N
k=0 un

d,j,khj(x)hk(y) (1 ≤ n ≤ K ).

3.3 The existence, convergence, and stability of the ROECS solutions
Analyzing the existence, convergence, and stability of the ROECS solutions requires the
following max-norms to matrix as well as vector:

‖D‖∞ = max
1≤i≤m

l∑

j=1

|dij|, ∀D = (dij)m×l ∈R
m ×R

l,

‖χ‖∞ = max
1≤j≤m

|χj|, ∀χ = (χ1,χ2, . . . ,χm)T ∈ R
m.

The existence and stability as well as convergence of the ROECS solutions hold the fol-
lowing consequence.

Theorem 5 Under the same assumptions for Theorem 4, ROECS model (19) has a unique
series of solutions {un

d}K
n=1 satisfying the following stability:

∥
∥∇un

d
∥
∥

0,ω ≤ C(G0, G1, f ), 1 ≤ n ≤ K , (20)

where C(G0, G1, f ) is the positive constant that only relies on G0, G1, and f . Furthermore,
when u(tn) ∈ Hm

ω (Ω) (2 ≤ m ≤ N + 1), the error estimates between the solutions to Prob-
lem 1 with the ROECS solutions are as follows:

∥
∥u(tn) – un

d
∥
∥

0,ω ≤ C
(
	t2 + N–m +

√
λd+1N–1/2	t–1), n = 1, 2, . . . , K . (21)
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Proof (1) The proof for existence as well as stability of the ROECS solutions.
As [(2 + α	t + β	t2)A + 	t2B] is a reversible matrix, from ROECS model (19) as well

as Remark 3, we may judge that ROECS model (19) has a unique series of the ROECS
solutions.

Using (18), one may restore ROECS model (19) into the following scheme:

Un
d = ΦΦT Un

N , 1 ≤ n ≤ L; (22)

Un+1
d = 4AAUn

d + 2	t2
AFn – A

[(
2 – α	t + β	t2)A + 	t2B

]
Un–1

d ,

L ≤ n ≤ K – 1. (23)

Note that H = (h0(x)h0(y), h1(x)h0(y), . . . , hN (x)h0(y), h0(x)h1(y), h1(x)h1(y), . . . , hN (x) ×
h1(y), . . . , h0(x)hN (y), h1(x)hN (y), . . . , hN (x)hN (y))T . Then the solutions to Problem 2 may
be denoted by un

N = HT Un
N = H · Un

N . Similarly, un
d = HT Un

d = H · Un
d .

When 1 ≤ n ≤ L, we get

∥
∥un

d
∥
∥

0,ω =
∥
∥ΦΦT HT Un

N
∥
∥

0,ω

≤ ∥
∥ΦΦT∥

∥∞
∥
∥HT Un

N
∥
∥

0,ω ≤ ∥
∥un

N
∥
∥

0,ω, 1 ≤ n ≤ L. (24)

Thus, uniting Theorem 4 with (24), one can obtain that (20) is right when 1 ≤ n ≤ L.
When L + 1 ≤ n ≤ K , due to the positive definiteness of the matrix B, one can rewrite

(23) into

B–1A
(

Un+1
d – 2Un

d + Un–1
d

)
+

α	tB–1A
2

(
Un+1

d – Un–1
d

)

+
β	t2B–1A

2
(

Un–1
d + Un+1

d
)

+
	t2

2
(

Un–1
d + Un+1

d
)

= 	t2B–1Fn, L ≤ n ≤ K – 1. (25)

Moreover, the following inequalities can be attained by the FE theory in [31], the spectral
theory in [4], and the matrix properties:

∥
∥A–1∥∥∞ ≤ C;

∥
∥B–1∥∥∞ ≤ CN–1; ‖A‖∞ ≤ C; ‖B‖∞ ≤ CN . (26)

Because of the positive definiteness for matrix B–1A, there exist an orthogonal matrix B1

and a diagonal matrix D1 such that

(
Un+1

d – Un–1
d

)T B–1A
(

Un+1
d – Un–1

d
)

=
(

Un+1
d – Un–1

d
)T (B1D1)T (B1D1)

(
Un+1

d – Un–1
d

)

=
∥
∥(B1D1)

(
Un+1

d – Un–1
d

)∥
∥2

2, (27)
(

Un+1
d – Un–1

d
)T B–1A

(
Un+1

d + Un–1
d

)

=
(

Un+1
d – Un–1

d
)T (B1D1)T (B1D1)

(
Un+1

d – Un–1
d

)

=
∥
∥B1D1Un+1

d
∥
∥2

2 –
∥
∥B1D1Un–1

d
∥
∥2

2. (28)
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Making the scalar product of vector with (Un+1
d – Un–1

d )T to (25) and using the Cauchy–
Schwarz inequality, (26), and (27), we have

(
Un+1

d – Un
d
)T B–1A

(
Un+1

d – Un
d
)

–
(

Un
d – Un–1

d
)T B–1A

(
Un

d – Un–1
d

)

+
α	t

2
∥
∥(B1D1)

(
Un+1

d – Un–1
d

)∥
∥2

2 +
β	t2

2
(∥
∥B1D1Un+1

d
∥
∥2

2 –
∥
∥B1D1Un–1

d
∥
∥2

2

)

+
	t2

2
(∥
∥Un+1

d
∥
∥2

2 –
∥
∥Un–1

d
∥
∥2

2

)

= 	t2(Un+1
d – Un–1

d
)T B–1Fn

≤ α	t
2

∥
∥(B1D1)

(
Un+1

d – Un–1
d

)∥
∥2

2 + C	t3N–2∥∥Fn∥∥2
2, (29)

where n = L, L + 1, . . . , K – 1. Simplifying (29) as well as summating from L through n, we
have

(
Un+1

d – Un
d
)T B–1A

(
Un+1

d – Un
d
)

+
	t2

2
(∥
∥Un+1

d
∥
∥2

2 +
∥
∥Un

d
∥
∥2

2

)

+
β	t2

2
(∥
∥B1D1Un+1

d
∥
∥2

2 +
∥
∥B1D1Un

d
∥
∥2

2

)

≤ 	t2

2
(∥
∥UL

d
∥
∥2

2 +
∥
∥UL–1

d
∥
∥2

2

)
+

(
UL

d – UL–1
d

)T B–1A
(

UL
d – UL–1

d
)

+
β	t2

2
(∥
∥B1D1UL

d
∥
∥2

2 +
∥
∥B1D1UL–1

d
∥
∥2

2

)

+ CN–2	t3
n∑

i=L

∥
∥Fi∥∥2

2 ≤ C	t2

2
(∥
∥UL

d
∥
∥2

2 +
∥
∥UL–1

d
∥
∥2

2

)

+ CN–1∥∥UL
d – UL–1

d
∥
∥2

2 + CN–2	t3
n∑

i=L

∥
∥Fi∥∥2

2, L ≤ n ≤ K – 1. (30)

Due to the orthogonality for components of H, using the Taylor formula and Theorem 4,
we can obtain

∥
∥UL

d – UL–1
d

∥
∥

2 =
((

UL
d – UL–1

d
)

H,
(

UL
d – UL–1

d
)

H
)1/2
ω

=
(
uL

d – uL–1
d , uL

d – uL–1
d

)1/2
ω

=
∥
∥uL

d – uL–1
d

∥
∥

0,ω

≤ ∥
∥uL

d – uL
N
∥
∥

0,ω +
∥
∥uL

N – u(tL)
∥
∥

0,ω +
∥
∥u(tL) – u(tL–1)

∥
∥

0,ω

+
∥
∥u(tL–1) – uL–1

N
∥
∥

0,ω +
∥
∥uL–1

N – uL
d
∥
∥

0,ω

≤ C(G0, G1, f )
(√

λd+1 + 	t + N–1). (31)

We derive (Un+1
d – Un

d)T B–1A(Un+1
d – Un

d) ≥ 0 from the positive definiteness for B–1A. Hence,
if max{N–2, N–1λd+1} ≤ C	t2 with (31) and (30), we get

∥
∥Un+1

d
∥
∥2

2 ≤ C
(∥
∥UL

d
∥
∥2

2 +
∥
∥UL–1

d
∥
∥2

2

)
+ C(G0, G1, f ) + CN–2	t

n∑

i=L

∥
∥Fi∥∥2

2

≤ C(G0, G1, f ), n = L, L + 1, . . . , K – 1, (32)
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here C(G0, G1, f ) is the positive constant that only depends on G0 and G1 as well as f . Thus,
we have

∥
∥un

d
∥
∥

0,ω =
∥
∥H(x, y) · Un

d
∥
∥

0,ω ≤ C(G0, G1, f ), L = L + 1, L + 2, . . . , K , (33)

which signifies that (20) is right when L + 1 ≤ n ≤ K .
(2) Estimating errors for the ROECS solutions.
Let En = Un

N – Un
d . As n = 1, 2, . . . , L, by (17) we get

∥
∥En∥∥

2 =
∥
∥Un

N – Un
d
∥
∥

2 =
∥
∥Un

N – ΦΦT Un
N
∥
∥

2 ≤ √
λd+1. (34)

When L + 1 ≤ n ≤ K , using (15) as well as (25), we have

α	tB–1A
2

(
En+1 – En–1) + B–1A

(
En–1 – 2En + En+1)

+
β	t2B–1A

2
(

En–1 + En+1) +
	t2

2
(

En–1 + En+1) = 0, L ≤ n ≤ K – 1. (35)

Making the scalar product of vector with (En+1 – En–1)T to (35) and using the Cauchy–
Schwarz inequality as well as (26)–(28), we have

(
En+1 – En)T B–1A

(
En+1 – En) –

(
En – En–1)T B–1A

(
En – En–1)

+
α	t

2
∥
∥B1D1

(
En+1 – En–1)∥∥2

2 +
	t2

2
(∥
∥En+1∥∥2

2 –
∥
∥En–1∥∥2

2

)

+
	t2

2
(∥
∥B1D1En+1∥∥2

2 –
∥
∥B1D1En–1∥∥2

2

)
= 0, L ≤ n ≤ K – 1. (36)

Summing (36) from L to n and simplifying it, we have

(
En+1 – En)T B–1A

(
En+1 – En)

+
	t2

2
(∥
∥En+1∥∥2

2 +
∥
∥En∥∥2

2 +
∥
∥B1D1En+1∥∥2

2 +
∥
∥B1D1En∥∥2

2

)

≤ 	t2

2
(∥
∥EL∥∥2

2 +
∥
∥EL–1∥∥2

2

)
+

(
EL – EL–1)T B–1A

(
EL – EL–1)

≤ 	t2

2
(∥
∥EL∥∥2

2 +
∥
∥EL–1∥∥2

2

)
+ CN–1∥∥EL – EL–1∥∥2

2

+
	t2

2
(∥
∥B1D1EL∥∥2

2 +
∥
∥B1D1EL–1∥∥2

2

)
, n = L, L + 1, . . . , K – 1. (37)

Using (34) and (37), we have

∥
∥En∥∥

2 ≤ C
(∥
∥EL∥∥

2 +
∥
∥EL–1∥∥

2 + N–1/2	t–1∥∥EL – EL–1∥∥
2

)

≤ C
√

λd+1N–1/2	t–1, n = L + 1, L + 2, . . . , K . (38)

Whereupon, using un
N = H · Un

N , un
d = H · Un

d , ‖H‖0,ω ≤ 1, and the inverse estimation theo-
rem, thanks to the orthogonality for components of H(x, y), we get

∥
∥un

N – un
d
∥
∥

0,ω =
∥
∥H · En∥∥

0,ω ≤ C
√

λd+1N–1/2	t–1, n = 1, 2, . . . , K . (39)
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Uniting Theorem 4 with (39) yields (21), and this accomplishes the proof for Theo-
rem 5. �

Remark 4 Theorem 5 is explained in two ways.
(1) The error term

√
λd+1N–1/2	t–1 to Theorem 5 is produced from the reduced order

procedure for the CCS model, which may be used to suggest the choice for the POD
basis, i.e., if only that we opt for d that satisfies λd+1N–1	t–2 ≤ max{	t4, N–2m}, we
can reach the optimal order error estimates.

(2) Theorem 5 signifies that when the solution u(tn) ∈ Hm
ω (Θ) (3 ≤ m ≤ N + 1) to

Problem 1, the ROECS solutions relative to the spatial variables possess
super-convergence. Even though the solution u(tn) ∈ H2

ω(Θ), the error estimates for
the ROECS solutions also reach optimal order, which shows that it is feasible and
valid for ROECS model (19) to settle the telegraph equation.

4 Two sets of numerical experimentations
Hereby, we propose two sets of numeric experimentations to check out the superiority of
the ROECS method for the telegraph equation.

To show the variation in the magnetic field produced by two parallel wires with the same
voltage from the top to down, in telegraph equation (1), we take α = β = 1, the computa-
tional region Ω = (–1, 1) × (–1, 1), 	t = 0.01, the number of nodes N = 200 in the y and x
directions, f (x, y, t) = 0, and

H(x, y) = –H0(x, y)
√∣

∣y2 – 0.25
∣
∣, (x, y) ∈ [–1, 1] × [–1, 1],

G(x, y) = H0(x, y)|x|, (x, y) ∈ [–1, 1] × [–1, 1],

where H0(x, y) = 1
36 [12 + 15 cos( 10rπ

3 ) + 6 cos( 10rπ
3 ) + 3 cos(10rπ )] if r ≤ 0.3 and H0(x, y) = 0

when r > 0.3, and r =
√|x2 – 0.25| + |y2 – 0.25|.

We firstly seek out the first 20 solutions Un
N (x) with the CCS model, i.e., Problem 2, at ini-

tial 20 time nodes tn (1 ≤ n ≤ 20) forming the snapshot matrix Q = [U1
N , U2

N , . . . , U20
N ]. Next,

we seek out the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ20 ≥ 0 and the corresponding eigenvectors ϕi

(1 ≤ i ≤ 20) for the matrix QT Q. They are attained by estimating that
√

λd+1N–1/2	t–1 ≤
10–4. Whereupon, we only need to make up the initial six POD bases Φ = {φ1,φ2, . . . ,φ6}
via the formula φi = Qϕi/

√
λi (1 ≤ i ≤ 6). Lastly, the ROECS solutions at t = 1.0 and 2.0

are found by the ROECS model, as depicted in Figs. 1 and 3, respectively.
To compare reasonability, we also seek out the CCS solutions at t = 1.0 and 2.0 by the

CCS model, i.e., Problem 2, as depicted in Figs. 2 and 4, respectively.
The pair of Figs. 1 and 2 and the pair of Figs. 3 and 4 are nearly the same, but the con-

sequences for the ROECS method are better. Specially, in the aforementioned calculation
procedure, the ROECS method at each time node possesses only six degrees of freedom,
whereas the CCS model possesses thirty-nine thousand six hundred and one degrees of
freedom. By computational records of the CCS model with the ROECS model in the iden-
tical Laptop, it has been found that the CPU elapsed time to settle the CCS model on
0 ≤ t ≤ 2 takes about five thousand eight hundred seconds, whereas the CPU elapsed time
to settle the ROECS model takes about forty-six seconds, namely the CPU elapsed time to
the CCS model is about as one hundred and twenty-six times as that to the ROECS model.
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Figure 1 The ROECS solution when t = 1.0

Figure 2 The CCS solution when t = 1.0

Figure 3 The ROECS solution when t = 2
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Figure 4 The CCS solution when t = 2.0

Figure 5 The errors between the ROECS solutions with different number of POD bases and the CCS solution
when t = 2.0

It follows that the ROECS method could not only alleviate the calculation burden as well
as decrease the round off error accumulation, but could also greatly spare CPU elapsed
time as well as the storage requirements. Figure 5 exhibits the errors between the CCS
solution and the ROECS solutions with variational number of POD bases when t = 2.0,
which are consistent with the theory results as both errors reach O(10–4). This fully vali-
dates the correctness of the theory consequences as well as shows that the ROECS model
excels far the CCS one.

5 Conclusions
Here, the order reduction of the CCS solution coefficient vectors for the telegraph equa-
tion has been researched. Based on building the POD-based ROECS model for the tele-
graph equation, the existence and convergence as well as stability to the ROECS solutions
have been proven. Moreover, two sets of numerical experimentations have verified the
correctness to the theoretical consequence and illustrated that the ROECS model excels
far the CCS one. As the unknowns for ROECS model are far fewer than those for the CCS
one, compared with the CCS model, the ROECS model may vastly decrease the calcu-
lated burden as well as the accumulation of round off errors and spare the CPU elapsed
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time in the calculations. Most importantly, the ROECS model for the telegraph equation
is first proposed and belongs to a fully new development for the existing POD-based re-
duced order techniques since the accuracy for the ROECS model is far higher than that
for other POD reduced order models such as the POD-based reduced order FD, FE, and
FVE models.

So far, we have only considered the ROECS model for the telegraph equation in rectangle
region Ω = (a, b) × (c, d). The approach here may be used to solve the more intricate en-
gineering problems. Hence, it has widespread application prospect in engineering-related
field.
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