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1 Introduction
Traditionally, a dominant interest in practical applications is the existence of solutions to
deterministic fractional differential equations and fractional stochastic differential equa-
tions (FSDEs) driven by Brownain motion due to their role for helping candidates explore
the hidden properties of the dynamics of complex systems in viscoelasticity, diffusion, me-
chanics, electromagnetism, control, signal processing, and physics. For example, in [28],
the authors applied the concept of Caputo’s H-differentiability to solve the fuzzy fractional
differential equation with uncertainty. Benchaabane and Sakthivel [8] used the fractional
calculus, semigroup theory, and stochastic analysis techniques to obtain the unique mild
solution for a class of nonlinear fractional Sobolev-type SDEs with non-Lipschitz coeffi-
cients in Hilbert spaces under a new set of sufficient conditions. For further work on FSDEs
and fractional differential equations (FDEs), we refer to [5, 6, 12, 15, 19, 26, 29, 31, 32] and
references therein.

However, random perturbations with long-range dependence abundantly exist in a wide
range of physical phenomena, such as hydrology, mathematical finance, medicine and
communication networks [21, 33]. Correspondingly, fractional Brownian motion (fBm)
with the Hurst index H ∈ (1/2, 1) has been suggested as a replacement of the standard
Brownian motion in studying fractional stochastic systems as follows. Under a new set of
sufficient conditions, Mourad et al. [20] investigated the approximate controllability for
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Sobolev-type stochastic fractional control systems with fBm by using semigroup theory,
fractional calculus, stochastic analysis, and Banach’s fixed point theorem. Pei and Xu [28]
derived the unique solution for non-Lipschitz SDEs with fBm by using successive approx-
imations. Moreover, for a massive body of published studies covering the existence and
uniqueness of FSDEs driven by fBm; see [23, 24, 35] and references therein.

On the other hand, the past recent years have seen a rapid development of the theory
of impulsive effects in many evolutionary processes such as telecommunications, finance,
electronics, economics, and mechanics, in which states are often subject to abrupt and
short changes in discrete moments of time and can be neglected throughout the whole du-
ration of the intended process [22]. In light of recent developments in the theory of SDEs,
it is becoming extremely difficult to ignore the existence of impulsive effects. Therefore
several studies have documented the effect of impulses in studying the SDEs driven by
Brownian motion [18] and fBm; see [10, 11, 13, 14] and references therein.

To the best of our knowledge, there is no work yet reported in the literature on impulsive
fractional stochastic differential equations driven by fBm. Therefore, motivated by this fact
and in order to close this gap, in this paper, we initiate a research on one of such equations.
The specific objective of this study is to prove the existence and uniqueness of solutions
to the following impulsive stochastic fractional differential equations (ISFDEs) driven by
a standard Brownian motion and an independent fBm of the form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX(t) = b(t, X(t)) dt + σ1(t, X(t)) dW (t) + g(t, X(t)) dW H(t)

+ σ2(t, X(t))(dt)α , t ∈ [0, T], t �= tj, 0 < α < 1,

�X(tj) = X(t+
j ) – X(t–

j ) = Ij(X(tj)), j = 1, 2, . . . , m,

X(0) = X0 ∈ R
d,

(1)

where T ≥ 0 is a fixed horizon, W H is an m-dimensional fBm with 1/2 < H < 1 indepen-
dent of an m-dimensional standard Gaussian process W (t), t ∈ [0, T]. In what follows,
(Ω ,F , P) is a complete probability space with probability measure P on Ω , and the filtra-
tion {Ft}t≥0 refers to the σ -field generated by {W H(s), W (s), s ∈ [0, t]} and satisfying the
usual conditions, that is, it is right continuous, and F0 contains all P-null sets. Assume
that b,σ2 : [0, T] ×R

d −→ R
d and σ1, g : [0, T] ×R

d −→ R
d×m are appropriate measurable

functions. Here Ij ∈ C(Rd,Rd) (j = 1, 2, . . . , m) are bounded functions with fixed times tj

satisfying 0 = t0 < t1 < t2 < · · · < tm < T , and X(t+
j ) and X(t–

j ) represent the right and left
limits of X(t) at time tj. Further, �X(tj) = X(t+

j ) – X(t–
j ) determines the jump in the state

X at time tj, where Ij is the jump size. X0 is an F0-measurable random variable satisfying
E|X0|2 < ∞.

The class of Eqs. (1) has attracted our attention because of their applications in complex
dynamic processes in sciences and engineering and modeling many phenomena in eco-
logical and epidemiological processes of population dynamic perturbed by unavoidable
noises under multitime scales [27]. Moreover, Eqs. (1) can be used as a model of many
evolutionary processes where the noises are correlated and can be modeled by fBm.

To summarize, our contribution here is the first attempt to consider the existence and
uniqueness of solutions to ISFDEs driven by fBm. We obtained our results on Eqs. (1) by
using Carathéodory approximation [2, 3] under non-Lipschitz (Taniguchi [34]) condition
with Lipschitz one as a particular case. Moreover, the results are still new even when the
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coefficients of (1) satisfy the Lipschitz condition and under the non-Lipschitz condition
used in [4], which is a particular case of our conditions. Finally, the obtained results extend
and improve some published results of [1, 4, 28, 36].

This paper is outlined as follows. In Sect. 2, we provide necessary notions and prelimi-
naries on the pathwise integrals with respect to fBm and hypotheses needed throughout
the paper. We give our main results on the existence and uniqueness theorem for ISFDEs
driven by a standard Brownian motion and an independent fBm given by (1) followed by
some remarks and corollaries in Sect. 3.

2 Preliminaries
In this section, we review some basic notions and notations on the backward stochastic
integral with respect to fBm, and for more details, we refer to [9, 16, 25]. The fBm with the
Hurst index H ∈ ( 1

2 , 1) is a centered Wiener process W H = {W H(t)}0≤t≤T with the covari-
ance function

R(r, s) =
1
2
(
s2H + r2H – |r – s|2H)

.

Let ψ : [0,∞) × [0,∞) −→ [0,∞) be given as

ψ(r, s) = H(2H – 1)|r – s|2H–2, r, s ∈R
+,

where H ∈ ( 1
2 , 1), and define the space of Borel-measurable functions h : [0,∞) −→ [0,∞)

L2
ψ

(
R

+)
=

{

h : ‖h‖2
ψ =

∫ ∞

0

∫ ∞

0
h(r)h(s)ψ(r, s) ds dr < ∞

}

,

which is a separable Hilbert space under the inner product

〈h1, h2〉ψ =
∫ ∞

0

∫ ∞

0
h1(r)h2(s)ψ(r, s) ds dr, h1, h2 ∈ L2

ψ

(
R

+)
.

For any integer n ≥ 1, denote by S the set of smooth cylindrical random variables of the
form

F = h
(
W H(φ1), W H(φ2), . . . , W H (φn)

)
,

where h ∈ C∞
b (Rn) (i.e., h and its partial derivatives of all orders are bounded), φi ∈ H

(i = 1, 2, . . . , n), H is a Hilbert space [7] defined as the completion of measurable functions
φ such that ‖φ‖2

ψ < ∞. Denote by D
1,p(H) (p > 0) the Sobolev space of H-valued random

variables with subspace D
1,p(|H|).

The Malliavin ψ-derivative of a smooth and cylindrical random variable F ∈ S is defined
as the H-valued random variable

Dψ
t F =

∫

R+
ψ(t, v)DH

v F dv,

where

DHF =
n∑

i=1

∂h
∂xi

(
W H(φ1), W H(φ2), . . . , W H(φn)

)
φi.
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Definition 2.1 ([30]) Let η(t), t ∈ [0, T], be a stochastic process with integrable trajecto-
ries. The backward stochastic integral

∫ T
0 η(u) d+W H(u) of η(t) with respect to W H(t) is

given as

lim
ε→0

∫ T

0
η(u)

[
W H(u – ε) – W H (u)

ε

]

du,

provided that the limit exists in probability.

According to Remark 1 and Lemma 2 in [36], the following lemma comes:

Lemma 2.1 Let W H (t) be an fBm with Hurst index H > 1
2 , and let a stochastic process

η(t) ∈Lψ [0, T] ∩D
1,2(|H|). Then for every T < ∞,

E

[∫ T

0
η(u) d+W H (u)

]2

≤ 2HT2H–1
E

[∫ T

0

∣
∣η(u)

∣
∣2 du

]

+ 4TE

∫ T

0

[
Dψ

u η(u)
]2 du.

The following definition defines the integration with respect to (dt)β , and the reader is
referred to [17] for the proof.

Definition 2.2 Let g(t) be a continuous function. Then its integral with respect to (dt)β ,
0 < β ≤ 1, is defined by

∫ t

0
g(s)(ds)αβ = β

∫ t

0
(t – s)β–1g(s) ds, 0 < β ≤ 1.

Similar to Definition 2.2 in [1], the definition of the unique solution to Eq. (1) can be
given as follows.

Definition 2.3 AnR
d-valued stochastic process X(t), t ∈ [0, T], is called a unique solution

to Eq. (1) if:
(i) X(t) is Ft-adapted;

(ii) For every t ∈ [0, T], X(t) satisfies the following integral equation:

X(t) = X0 +
∫ t

0
b
(
s, X(s)

)
ds +

∫ t

0
σ1

(
s, X(s)

)
dW (s) +

∫ t

0
g
(
s, X(s)

)
d+W H(s)

+ α

∫ t

0

σ2(s, X(s))
(t – s)1–α

ds +
∑

0<tj<t

Ij
(
X(tj)

)
P-a.s.; (2)

(iii) For any other solution Y (t), we have P{X(t) = Y (t),∀0 ≤ t ≤ T} = 1.

To attain the main results, the following assumptions are imposed on the coefficients b,
σ1, g , and σ2.

(H1) For all t ∈ [0, T] and b(t, ·), σ1(t, ·), g(t, ·), σ2(t, ·) ∈Lψ [0, T] ∩D
1,2(|H|), we have

∣
∣b(t, X)

∣
∣2 +

∣
∣σ1(t, X)

∣
∣2 +

∣
∣g(t, X)

∣
∣2 +

∣
∣Dψ

t g(t, X)
∣
∣2 +

∣
∣σ2(t, X)

∣
∣2 ≤R

(
t, |X|2),

where R(t, v) : [0, +∞) ×R
+ −→ R

+ is a function locally integrable in t for any
fixed v ≥ 0 and continuous, nondecreasing, and concave in v for any fixed
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t ∈ [0, T]. Further, the integral equation

v(t) = v0 + K
∫ t

0
R

(
s, v(s)

)
ds

has a global solution on [0, T] for all K > 0 and v0 ≥ 0.
(H2) For all t ∈ [0, T] and b(t, ·), σ1(t, ·), g(t, ·), σ2(t, ·) ∈Lψ [0, T] ∩D

1,2(|H|), we have

∣
∣b(t, X) – b(t, Y )

∣
∣2 +

∣
∣σ1(t, X) – σ1(t, Y )

∣
∣2 +

∣
∣g(t, X) – g(t, Y )

∣
∣2

+
∣
∣Dψ

t
(
g(t, X) – g(t, Y )

)∣
∣2 +

∣
∣σ2(t, X) – σ2(t, Y )

∣
∣2 ≤ G

(
t, |X – Y |2),

where G : [0, +∞) ×R
+ −→ R

+ is a function locally integrable in t for any fixed
v ≥ 0 and continuous, nondecreasing, and concave in v for any fixed t ∈ [0, T]
such that G(t, 0) = 0 and

∫

0+
1

G(t,v) dv = +∞. Moreover, for λ > 0, every t ∈ [0, T],
and every nonnegative continuous function M(t) such that

⎧
⎨

⎩

M(t) ≤ λ
∫ t

0 G(s,M(s)) ds, t ∈R,

M(0) = 0,

we have M(t) ≡ 0.
(H3) There exist some positive constants dj (j = 1, 2, . . .) such that

∣
∣Ij(X) – Ij(Y )

∣
∣ ≤ dj|X – Y |

for all X, Y ∈Lψ [0, T] ∩D
1,2(|H|) and |Ij(0)| = 0.

3 Main results
In this section, we present the existence and uniqueness of solutions to Eq. (1).

Theorem 3.1 Let hypotheses (H1)–(H3) be satisfied, and let X0 be independent of
the Brownian motion W (s) and the fBm W H (s) (s > 0, H > 1/2) with finite second
moment. Then there exists a unique solution X(t) to Eq. (1) on [0, T], provided that
10m

∑m
j=1(dj)2 < 1.

Proof To begin with, we introduce the Carathéodory approximation as follows. For any
integer n ≥ 1, define Xn(t) = X(0) = X0 for all –1 ≤ t ≤ 0 and

Xn(t) = X0 +
∫ t

0
b
(

s, Xn

(

s –
1
n

))

ds +
∫ t

0
σ1

(

s, Xn

(

s –
1
n

))

dW (s)

+
∫ t

0
g
(

s, Xn

(

s –
1
n

))

d+W H(s) + α

∫ t

0

σ2(s, Xn(s – 1
n ))

(t – s)1–α
ds

+
∑

0<tj<t

Ij

(

Xn

(

tj –
1
n

))

, 0 ≤ t ≤ T . (3)

We split the proof into the following three parts.
Part 1. For all t ∈ [0, T], the sequence {Xn(t)}n≥1 is bounded.
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By the Hölder and Burkholder–Davis–Gundy (B–D–G) inequalities and Lemma 2.1
from Eq. (3) we have

E

(
sup

0≤s≤t

∣
∣Xn(s)

∣
∣2

)
≤ 6E|X0|2 + 6TE

∫ T

0

∣
∣
∣
∣b

(

s, Xn

(

s –
1
n

))∣
∣
∣
∣

2

ds

+ 24E
∫ t

0

∣
∣
∣
∣σ1

(

s, Xn

(

s –
1
n

))∣
∣
∣
∣

2

ds

+ 12HT2H–1
E

∫ t

0

∣
∣
∣
∣g

(

s, Xn

(

s –
1
n

))∣
∣
∣
∣

2

ds

+ 24TE

∫ t

0

∣
∣
∣
∣D

ψ
s g

(

s, Xn

(

s –
1
n

))∣
∣
∣
∣

2

ds

+ 6α2 T2α–1

2α – 1
E

∫ t

0

∣
∣
∣
∣σ2

(

s, Xn

(

s –
1
n

))∣
∣
∣
∣

2

ds

+ 6mE

m∑

j=1

∣
∣
∣
∣Ij

(

Xn

(

tj –
1
n

))∣
∣
∣
∣

2 (
α ∈ (1/2, 1)

)
.

Thus by conditions (H1) and (H3) and the Jensen inequality we have

E

(
sup

0≤s≤t

∣
∣Xn(s)

∣
∣2

)
≤ 6E|X0|2 + 6C1E

∫ t

0
R

(

s,
∣
∣
∣
∣Xn

(

s –
1
n

)∣
∣
∣
∣

2)

ds

+ 6m
m∑

j=1

(dj)2
E

∣
∣
∣
∣Xn

(

tj –
1
n

)∣
∣
∣
∣

2

≤ 6E|X0|2 + 6C1

∫ t

0
R

(
s,E

(
sup

0≤u≤s

∣
∣Xn(u)

∣
∣2

))
ds

+ 6m
m∑

j=1

(dj)2
E

(
sup

0≤u≤t

∣
∣Xn(u)

∣
∣2

)
,

which implies that

E

(
sup

0≤s≤t

∣
∣Xn(s)

∣
∣2

)
≤ C2E|X0|2 + C3

∫ t

0
R

(
s,E

(
sup

0≤u≤s

∣
∣Xn(u)

∣
∣2

))
ds, (4)

where C1 = [4 + 5T + 2HT2H–1 + α2 T2α–1

2α–1 ], C2 = 6
1–6m

∑m
j=1(dj)2 , and C3 = 6C1

1–6m
∑m

j=1(dj)2 .
Now, by condition (H1) there exists a solution u(t), t ∈ [0, T], satisfying

u(t) = C2E|X0|2 + C3

∫ t

0
R

(
s, u(s)

)
ds.

Comparing this above equation and Eq. (4), we have

E

(
sup

0≤s≤t

∣
∣Xn(s)

∣
∣2

)
≤ u(t) ≤ u(T) < ∞, n ≥ 1,

which shows the uniform boundedness of {Xn(t)}n≥1.
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Part 2. For 0 ≤ s < t ≤ T and integer n ≥ 1, we claim that

E
∣
∣Xn(t) – Xn(s)

∣
∣2 ≤ C4(t – s) + C6(t – s)2α + C5

∑

s<tj<t
C,

where C4, C5, C6 will be defined further in the proof, and the constant C comes from
Part 1.

Note that

∣
∣Xn(t) – Xn(s)

∣
∣2

≤ 5
∣
∣
∣
∣

∫ t

s
b
(

u, Xn

(

u –
1
n

))

du
∣
∣
∣
∣

2

+ 5
∣
∣
∣
∣

∫ t

s
σ1

(

u, Xn

(

u –
1
n

))

dW (u)
∣
∣
∣
∣

2

+ 5
∣
∣
∣
∣

∫ t

s
g
(

u, Xn

(

u –
1
n

))

d+W H (u)
∣
∣
∣
∣

2

+ 5
∣
∣
∣
∣

∑

s<tj<t
Ij

(

Xn

(

tj –
1
n

))∣
∣
∣
∣

2

+ 5α2
∣
∣
∣
∣

∫ s

0

(
σ2(u, Xn(u – 1

n ))
(t – u)1–α

–
σ2(u, Xn(u – 1

n ))
(s – u)1–α

)

du

+
∫ t

s

σ2(u, Xn(u – 1
n ))

(t – u)1–α
du

∣
∣
∣
∣

2

:=
5∑

i=1

Ii. (5)

Taking the expectation and using Itô isometry, Lemma 2.1, and (H1), we get

E|I1| + E|I2| + E|I3|

≤ 5(T – s)
∫ t

s
E

∣
∣
∣
∣b

(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du + 5
∫ t

s
E

∣
∣
∣
∣σ1

(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

+ 10H(T – s)2H–1
∫ t

s
E

∣
∣
∣
∣g

(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

+ 20(T – s)
∫ t

s
E

∣
∣
∣
∣D

ψ
u g

(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

≤ 5
[
1 + 5(T – s) + 2H(T – s)2H–1]

∫ t

s
R

(

u,E
∣
∣
∣
∣Xn

(

u –
1
n

)∣
∣
∣
∣

2)

du

≤ 5
[
1 + 5(T – s) + 2H(T – s)2H–1]

∫ t

s
R

(
u,E

(
sup

0≤v≤u

∣
∣Xn(v)

∣
∣2

))
du,

which, via Part 1, gives

E|I1| + E|I2| + E|I3| ≤ C4(t – s), (6)

where C4 = 5[1 + 5(T – s) + 2H(T – s)2H–1](sup0≤t≤T R(t, C)) > 0.
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Now, using Hölder’s and Young’s inequalities and conditions (H1) and (H3) gives

E|I4| ≤ 5E
(∑

s<tj<t

∣
∣
∣
∣Ij

(

Xn

(

tj –
1
n

))∣
∣
∣
∣

)2

≤ 5E
(∑

s<tj<t
dj

∣
∣
∣
∣Xn

(

tj –
1
n

)∣
∣
∣
∣

)2

≤ 5
∑

s<tj<t
(dj)2

∑

s<tj<t
E

∣
∣
∣
∣Xn

(

tj –
1
n

)∣
∣
∣
∣

2

≤ 5
∑

s<tj<t
(dj)2

∑

s<tj<t
E

(
sup

0≤u≤t

∣
∣Xn(u)

∣
∣2

)
≤ C5

∑

s<tj<t
C (7)

and

E|I5| = 5α2
E

∣
∣
∣
∣

∫ s

0

(
(t – u)α–1 – (s – u)α–1)σ2

(

u, Xn

(

u –
1
n

))

du

+
∫ t

s
(t – u)α–1σ2

(

u, Xn

(

u –
1
n

))

du
∣
∣
∣
∣

2

≤ 10α2
∫ s

0

(
(t – u)α–1 – (s – u)α–1)

E

∣
∣
∣
∣σ2

(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

×
∫ s

0

(
(t – u)α–1 – (s – u)α–1)du + 10α2

∫ t

s
(t – u)α–1 du

×
∫ t

s
(t – u)α–1

E

∣
∣
∣
∣σ2

(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

≤ 10
(

sup
0≤t≤T

R(t, C)
)(

tα – sα + (t – s)α
)2 + 10

(
sup

0≤t≤T
R(t, C)

)
(t – s)2α

≤ C6(t – s)2α , (8)

where C5 = 5
∑

s<tj<t(dj)2 and C6 = 20(sup0≤t≤T R(t, C)) are positive constants.
Taking the expectation to Eq. (5), by Eqs. (6)–(8) we obtain the required result, and the

proof of Part 2 is complete.
Part 3. The sequence {Xn(t)}n≥1 is a Cauchy sequence. From Eq. (3), for m > n ≥ 1 and

t ∈ [0, T], we easily get

E

(
sup

0≤s≤t

∣
∣Xm(s) – Xn(s)

∣
∣2

)

≤ 5E
(

sup
0≤s≤t

∣
∣
∣
∣

∫ s

0

[

b
(

u, Xm

(

u –
1
m

))

– b
(

u, Xn

(

u –
1
n

))]

du
∣
∣
∣
∣

2)

+ 5E
(

sup
0≤s≤t

∣
∣
∣
∣

∫ s

0

[

σ1

(

u, Xm

(

u –
1
m

))

– σ1

(

u, Xn

(

u –
1
n

))]

dW (u)
∣
∣
∣
∣

2)

+ 5E
(

sup
0≤s≤t

∣
∣
∣
∣

∫ s

0

[

g
(

u, Xm

(

u –
1
m

))

– g
(

u, Xn

(

u –
1
n

))]

d+W H (u)
∣
∣
∣
∣

2)

+ 5α2
E

(

sup
0≤s≤t

∣
∣
∣
∣

∫ s

0

[σ2(u, Xm(u – 1
m )) – σ2(u, Xn(u – 1

n ))]
(s – u)1–α

du
∣
∣
∣
∣

2)
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+ 5E
(

sup
0≤s≤t

∣
∣
∣
∣

∑

0<uj<s

[

Ij

(

Xm

(

uj –
1
m

))

– Ij

(

Xn

(

uj –
1
n

))]∣
∣
∣
∣

2)

:=
5∑

i=1

Ji. (9)

By the plus and minus technique and assumption (H2) this yields

J1 + J4 ≤ 5TE

∫ t

0

∣
∣
∣
∣b

(

u, Xm

(

u –
1
m

))

– b
(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

+ 5α2 T2α–1

2α – 1
E

∫ t

0

∣
∣
∣
∣σ2

(

u, Xm

(

u –
1
m

))

– σ2

(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

≤ 10TE

∫ t

0

∣
∣
∣
∣b

(

u, Xm

(

u –
1
m

))

– b
(

u, Xn

(

u –
1
m

))∣
∣
∣
∣

2

du

+ 10TE

∫ t

0

∣
∣
∣
∣b

(

u, Xn

(

u –
1
m

))

– b
(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

+ 10α2 T2α–1

2α – 1
E

∫ t

0

∣
∣
∣
∣σ2

(

u, Xm

(

u –
1
m

))

– σ2

(

u, Xn

(

u –
1
m

))∣
∣
∣
∣

2

du

+ 10α2 T2α–1

2α – 1
E

∫ t

0

∣
∣
∣
∣σ2

(

u, Xn

(

u –
1
m

))

– σ2

(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

≤ 10
[

T + α2 T2α–1

2α – 1

]∫ t

0
G

(

u,E
∣
∣
∣
∣Xm

(

u –
1
m

)

– Xn

(

u –
1
m

)∣
∣
∣
∣

2)

du

+ 10
[

T + α2 T2α–1

2α – 1

]∫ t

0
G

(

u,E
∣
∣
∣
∣Xn

(

u –
1
m

)

– Xn

(

u –
1
n

)∣
∣
∣
∣

2)

du.

In terms of Part 2, we have

J1 + J4 ≤ 10
[

T + α2 T2α–1

2α – 1

]∫ t

0
G

(
s,E

(
sup

0≤u≤s

∣
∣Xm(u) – Xn(u)

∣
∣2

))
ds

+ 10
[

T + α2 T2α–1

2α – 1

]

×
∫ t

0
G

(

s, C4

(
1
n

–
1
m

)

+ C6

(
1
n

–
1
m

)2α

+ C5
∑

s–1/n<tj<s–1/m

C
)

ds. (10)

Similarly to (10), by the B–D–G inequality, Lemma 2.1, and condition (H2) we have

J2 + J3 ≤ 20E
∫ t

0

∣
∣
∣
∣σ1

(

u, Xm

(

u –
1
m

))

– σ1

(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

+ 10HT2H–1
E

∫ t

0

∣
∣
∣
∣g

(

u, Xm

(

u –
1
m

))

– g
(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

+ 20TE

∫ t

0

∣
∣
∣
∣D

ψ
u

(

g
(

u, Xm

(

u –
1
m

))

– g
(

u, Xn

(

u –
1
n

)))∣
∣
∣
∣

2

du
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≤ 40E
∫ t

0

∣
∣
∣
∣σ1

(

u, Xm

(

u –
1
m

))

– σ1

(

u, Xn

(

u –
1
m

))∣
∣
∣
∣

2

du

+ 40E
∫ t

0

∣
∣
∣
∣σ1

(

u, Xn

(

u –
1
m

))

– σ1

(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

+ 20HT2H–1
E

∫ t

0

∣
∣
∣
∣g

(

u, Xm

(

u –
1
m

))

– g
(

u, Xn

(

u –
1
m

))∣
∣
∣
∣

2

du

+ 20HT2H–1
E

∫ t

0

∣
∣
∣
∣g

(

u, Xn

(

u –
1
m

))

– g
(

u, Xn

(

u –
1
n

))∣
∣
∣
∣

2

du

+ 40TE

∫ t

0

∣
∣
∣
∣D

ψ
u

(

g
(

u, Xm

(

u –
1
m

))

– g
(

u, Xn

(

u –
1
m

)))∣
∣
∣
∣

2

du

+ 40TE

∫ t

0

∣
∣
∣
∣D

ψ
u

(

g
(

u, Xn

(

u –
1
m

))

– g
(

u, Xn

(

u –
1
n

)))∣
∣
∣
∣

2

du

≤ 20
[
2 + 2T + HT2H–1]

∫ t

0
G

(

u,E
∣
∣
∣
∣Xm

(

u –
1
m

)

– Xn

(

u –
1
m

)∣
∣
∣
∣

2)

du

+ 20
[
2 + 2T + HT2H–1]

∫ t

0
G

(

u,E
∣
∣
∣
∣Xn

(

u –
1
m

)

– Xn

(

u –
1
n

)∣
∣
∣
∣

2)

du

≤ 20
[
2 + 2T + HT2H–1]

∫ t

0
G

(
s,E

(
sup

0≤u≤s

∣
∣Xm(u) – Xn(u)

∣
∣2

))
ds

+ 20
[
2 + 2T + HT2H–1]

×
∫ t

0
G

(

s, C4

(
1
n

–
1
m

)

+ C6

(
1
n

–
1
m

)2α

+ C5
∑

s–1/n<tj<s–1/m

C
)

ds. (11)

Finally, for J5, by condition (H3) we obtain

J5 ≤ 5m
m∑

j=1

E

∣
∣
∣
∣Ij

(

Xm

(

uj –
1
m

))

– Ij

(

Xn

(

uj –
1
n

))∣
∣
∣
∣

2

≤ 10m
m∑

j=1

E

∣
∣
∣
∣Ij

(

Xm

(

uj –
1
m

))

– Ij

(

Xn

(

uj –
1
m

))∣
∣
∣
∣

2

+ 10m
m∑

j=1

E

∣
∣
∣
∣Ij

(

Xn

(

uj –
1
m

))

– Ij

(

Xn

(

uj –
1
n

))∣
∣
∣
∣

2

≤ 10m
m∑

j=1

(dj)2
E

∣
∣
∣
∣Xm

(

uj –
1
m

)

– Xn

(

uj –
1
m

)∣
∣
∣
∣

2

+ 10m
m∑

j=1

(dj)2
E

∣
∣
∣
∣Xn

(

uj –
1
m

)

– Xn

(

uj –
1
n

)∣
∣
∣
∣

2

≤ 10m
m∑

j=1

(dj)2
(

C4

(
1
n

–
1
m

)

+ C6

(
1
n

–
1
m

)2α

+ C5
∑

s–1/n<tj<s–1/m

C
)

+ 10m
m∑

j=1

(dj)2
E

(
sup

0≤u≤t

∣
∣Xm(u) – Xn(u)

∣
∣2

)
. (12)
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Combining Eqs. (9)–(12), we conclude

E

(
sup

0≤s≤t

∣
∣Xm(s) – Xn(s)

∣
∣2

)
≤ C7

∫ t

0
G

(
s,E

(
sup

0≤u≤s

∣
∣Xm(u) – Xn(u)

∣
∣2

))
ds

+ C7

∫ t

0
G

(

s, C4

(
1
n

–
1
m

)

+ C6

(
1
n

–
1
m

)2α

+ C5
∑

s–1/n<tj<s–1/m

C
)

ds

+ C8

(

C4

(
1
n

–
1
m

)

+ C6

(
1
n

–
1
m

)2α

+ C5
∑

s–1/n<tj<s–1/m

C
)

, (13)

where C7 = 10C1
1–10m

∑m
j=1(dj)2 and C8 =

10m
∑m

j=1(dj)2

1–10m
∑m

j=1(dj)2 are positive constants. Let

M(t) = lim
m,n−→∞E

(
sup

0≤s≤t

∣
∣Xm(s) – Xn(s)

∣
∣2

)
. (14)

Then Eqs. (13) and (14), together with Fatou’s lemma, yield

M(t) ≤ C7 lim
m,n−→∞

∫ t

0
G

(

s, C4

(
1
n

–
1
m

)

+ C6

(
1
n

–
1
m

)2α

+ C5
∑

s–1/n<tj<s–1/m

C
)

ds

+ C8 lim
m,n−→∞

(

C4

(
1
n

–
1
m

)

+ C6

(
1
n

–
1
m

)2α

+ C5
∑

s–1/n<tj<s–1/m

C
)

+ C7 lim
m,n−→∞

∫ t

0
G

(
s,E

(
sup

0≤u≤s

∣
∣Xm(u) – Xn(u)

∣
∣2

))
ds

≤ C7

∫ t

0
G

(
s, lim

m,n−→∞E

(
sup

0≤u≤s

∣
∣Xm(u) – Xn(u)

∣
∣2

))
ds

≤ C7

∫ t

0
G

(
s,M(s)

)
ds, (15)

where we have used the facts thatG(s, 0) = 0 and
∑

s–1/n<tj<s–1/m C → 0 as n, m → ∞. Lastly,
through Eq. (15) and condition (H1), we immediately get

M(t) = lim
m,n−→∞E

(
sup

0≤s≤t

∣
∣Xm(s) – Xn(s)

∣
∣2

)
= 0,

indicating that {Xn(t)}n≥1 is a Cauchy sequence. The Borel–Cantelli lemma shows that, as
n → ∞, Xn(t) → X(t) uniformly for t ∈ [0, T]. Hence taking limits on both sides of Eq. (3),
we obtain that X(t), t ∈ [0, T], is a solution to Eq. (1) with the property E(sup0≤s≤t |X(s)|2) <
∞ for all t ∈ [0, T], and this completes the proof of the existence. Now the uniqueness of
solution can be obtained by the same procedure as Part 3. Therefore the proof of Theo-
rem 3.1 is completed. �
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If g ≡ 0, then system (1) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX(t) = b(t, X(t)) dt + σ1(t, X(t)) dW (t)

+ σ2(t, X(t))(dt)α , t ∈ [0, T], t �= tj,α ∈ (0, 1),

�X(tj) = X(t+
j ) – X(t–

j ) = Ij(X(tj)), j = 1, 2, . . . , m,

X(0) = X0 ∈ R
d.

(16)

Corollary 3.1 Let hypotheses (H1)–(H3) be satisfied, and let X0 be independent of the
Wiener process W (s), s > 0, with finite second moment. Then there exists a unique solution
X(t) to Eq. (16), provided that 8m

∑m
j=1(dj)2 < 1.

Remark 3.1 If Ij(·) ≡ 0 (j = 1, 2, . . . , m) in Eq. (16), then Corollary 3.1 is consistent with
Theorem 3.1 in Abouagwa and Li [1]. Therefore Corollary 3.1 extends and improves some
results in [1].

If σ1 = σ2 ≡ 0, then Eq. (1) reduces to

⎧
⎪⎪⎨

⎪⎪⎩

dX(t) = b(t, X(t)) dt + g(t, X(t)) dW H(t), t ∈ [0, T], t �= tj,

�X(tj) = X(t+
j ) – X(t–

j ) = Ij(X(tj)), j = 1, 2, . . . , m,

X(0) = X0 ∈ R
d.

(17)

Corollary 3.2 Let hypotheses (H1)–(H3) be satisfied, and let X0 be independent of the fBm
W H (s) (s > 0, H > 1/2) with finite second moment. Then there exists a unique solution X(t)
to Eq. (17), provided that 6m

∑m
j=1(dj)2 < 1.

Remark 3.2 It should be mentioned that Xue et al. [36] established the existence and
uniqueness results to Eq. (17) without impulses (Ij(·) = 0 (j ≡ 1, 2, . . . , m)) under condi-
tions (H1) and (H2) by means of successive approximation. Our results are obtained for
Eq. (17) with impulses by means of Carathéodory approximation. Hence Corollary 3.2 is
an extension and improvement of Theorem A in [36].

Remark 3.3 Replacing G(t, v) in hypothesis (H1) by G(t, v) = λ(t)Ḡ(v), t ∈ [0, T], where
λ(t) ≥ 0 is locally integrable, and Ḡ(v) : [0,∞) −→ [0,∞) is a concave nondecreasing func-
tion with Ḡ(0) = 0, Ḡ(v) > 0 for v > 0, and

∫

0+
1

Ḡ(v) dv = +∞. Then Corollaries 3.1 and 3.2
extend and improve some results in Abouagwa et al. [4] and Pei and Xu [28] (λ(t) = 1),
respectively.

4 An application
In this section, as an application of the obtained results, we provide the following impul-
sive stochastic fractional Burgers differential equations with Dirichlet boundary condi-
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tions driven by a standard Brownian motion and independent fBm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t ξ (t, z) = μ(t, ξ (t, z)) + γ (t, ξ (t, z)) dW (t) + η(t, ξ (t, z)) dW H(t)

+ θ (t, ξ (t, z))(dt)α , t �= tj,

ξ (t, 0) = ξ (t, 1) = 0, t ∈ [0, T],

�ξ (tj) = σ3
j2 ξ (z(tj)), t = tj, j = 1, 2, . . . , m,

ξ (0, z) = ξ0(z),

(18)

where 0 ≤ z ≤ 1, 0 < α < 1, ξ0(z) ∈ R
d , W (t) and W H(t) are two independent m-

dimensional Brownian motion and fBm, respectively, μ, θ : [0, T] × R
d −→ R

d and γ ,η :
[0, T] ×R

d −→ R
d×m are continuous functions, and σ3 > 0.

Let X(t)(z) = ξ (t, z) and

b
(
t, X(t)

)
(z) = μ

(
t, ξ (t, z)

)
,

σ1
(
t, X(t)

)
(z) = γ

(
t, ξ (t, z)

)
,

g
(
t, X(t)

)
(z) = η

(
t, ξ (t, z)

)
,

σ2
(
t, X(t)

)
(z) = θ

(
t, ξ (t, z)

)
,

Ij
(
X(tj)

)
=

σ3

j2 ξ
(
z(tj)

)
.

Then problem (1) is an abstract version of problem (18). We can choose suitable functions
μ, γ , η, θ such that conditions (H1)–(H3) are satisfied. Then by Theorem 3.1 problem (18)
has a unique solution.
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