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Abstract
In this paper, we study the numerical methods for solving the time-fractional
Schrödinger equation (TFSE) with Caputo or Riemann–Liouville fractional derivative.
The numerical schemes are implemented by using the L1 scheme in time direction
and Fourier–Galerkin/Legendre-Galerkin spectral methods in spatial variable. We
prove that the two schemes are unconditionally stable and numerical solutions
converge with the orderO(�t2–α + N–s + N–m), where α is the order of the fractional
derivative, �t, N are the step of time and polynomial degree, respectively,m, s are the
regularity of u and V . Several numerical results are performed to confirm the
theoretical analysis.
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1 Introduction
In this work, we construct numerical methods to solve the following TFSE:

1
i
∂αu
∂tα

– �u + βV (x, y)u = 0 in Ω × [0, T], (1)

(i) u are periodic; or (ii) u|∂Ω = 0, (2)

u(x, y, 0) = u0(x, y) on ∂Ω × [0, T], (3)

where i2 = –1, ∂αu
∂tα (0 < α < 1) denotes the Caputo or Riemann–Liouville fractional deriva-

tive, Ω ⊂ R2 is a bound domain, β is a positive constant, and V represents a potential
function.

TFSE can be viewed as a generalization of the classical Schrödinger equation. It has
emerged as an appropriate model in various applications, such as plasma physics, poly-
mer physics, nonlinear optic, etc. The concept of fractal in quantum mechanics has been
developed over the past ten years, since Laskin [1, 2] defined some path integrals and
developed the space fractional quantum mechanics on the basis of new fractional path
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integrals method. Naber [3], Wang and Xu [4] constructed a class of TFSE with Caputo
fractional derivative and discussed the solutions for a free particle and a potential well.
Guo and Xu [5] studied the TSFE with a free particle, and they obtained the fundamental
solution of the problem. Cheng [6] proved the existence of ground state for TSFE with
unbounded potential by using Lagrange multiplier method. In [7], Felmer and Tan stud-
ied the existence, regularity of the ground state for the nonlinear fractional Schrödinger
equation. It is remarkable that Wang et al. [8] investigated the existence and uniqueness
of optimal controls of TFSE (1)–(3).

It is difficult to find an explicit form of analytical solutions of fractional equation, so some
recent contributions have focused on using numerical methods to obtain approximate so-
lutions. Rida et al. [9] proposed an Adomian decomposition method for solving nonlinear
TFSE. Li and Xu [10] constructed a time-space spectral method to investigate the solution
of fractional partial differential equations. Yildirim [11] introduced a homotopy perturba-
tion method to study analytical solutions for fractional Schrödinger equation. Wei et al.
[12, 13] presented a local discontinuous Galerkin (LDG) method to approximate the solu-
tion of TFSE. Mohebbi et al. [14] developed a shifted Legendre collocation method to solve
TFSE with initial-boundary and nonlocal conditions. Baleanu et al. [15–17] investigated
the soliton solutions of the nonlinear Schrödinger equation with Kerr law nonlinearity.
They obtained the exact dark optical, dark-singular, and periodic singular soliton solu-
tions of the equation. Garrappa et al. [18] discussed approximating the solution of TFSE
by using the Krylov projection methods. Zhu et al. [19] presented a finite element method
to solve time-space-fractional Schrödinger equation with Caputo and Riesz derivatives.
The other related numerical methods for fractional equation can been found in [20–25]
and the references therein.

On the other hand, L1 scheme [26, 27] is an efficient numerical method to approximate
Caputo or Riemann–Liouville derivative. Langlands and Henry [28], Sun and Wu [29],
Lin and Xu [30] obtained the error estimate of the L1 scheme. Grajales and Vargas [31]
constructed a Crank–Nicholson/Fourier–Galerkin method to approximate the solution
of the Schrödinger equation. Gong et al. [32] proposed an energy conservative Crank–
Nicholson/Fourier pseudo-spectral method to solve the Schrödinger equation. Kumar et
al. [33–36] introduced a series of homotopy transform methods to solve some fractional
equations.

As a classical high-order method, spectral method has been widely used to solve
PDE/ODE equations. In this article, we propose two efficient numerical schemes to
approximate the TFSE with Caputo or Riemann–Liouville derivative. The proposed
schemes are performed by combining the L1 scheme for fractional derivative and Fourier–
Galerkin/Legendre–Galerkin spectral methods for space variable. A detailed analysis of
the numerical scheme is provided for both stability and error estimate. Our rigorous anal-
ysis results show that numerical methods lead to 2-α order accuracy in time direction and
spectral accuracy in space direction. At last, some numerical examples are conducted to
support the theoretical claims.

The rest of the paper is structured in the following way. Section 2 introduces the L1
scheme for Caputo and Riemann–Liouville derivative. In Sect. 3, we discuss error esti-
mates for the full discrete schemes. In Sect. 4, some numerical experiments are presented
to illustrate the validity of the numerical method. The conclusions of this paper are given
in Sect. 5.
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2 Stability for semi-discretization TFSE
In this part, we present the semi-discrete schemes for the solution of (1)–(3). First, we
introduce an L1 scheme to discrete the Caputo and Riemann–Liouville derivatives. Let M
be a positive integer, �t = T/M be the time step, and tn = n�t, n = 0, 1, . . . , M – 1 be a mesh
point. We introduce the following L1 scheme for Caputo fractional derivative of order α:

1
Γ (2 – α)

n∑

j=0

bj
u(tn+1–j) – u(tn–j)

�tα
, (4)

and the Riemann–Liouville derivative is approximated by

1
Γ (2 – α)

n∑

j=0

bj
u(tn+1–j) – u(tn–j)

�tα
+

u(t0)(tn+1 – t0)–α

Γ (1 – α)
, (5)

where bj = (j + 1)1–α – j1–α .
Then, we rewrite the complex function u(x, y, t) into the real part and the imaginary part,

that is, u(x, y, t) = v(x, y, t) + iw(x, y, t). Then we get the following coupled system:

⎧
⎨

⎩

∂αv
∂tα + �w – βVw = 0,
∂αw
∂tα – �v + βVv = 0.

(6)

Remark 1 It is worth mentioning that there are two different boundary conditions for
Caputo and Riemann–Liouville derivatives.

Then we obtain the following semi-discrete schemes for TFSE with Caputo derivative:

⎧
⎨

⎩
(vn+1 –

∑n–1
j=0 (bj – bj+1)vn–j – bnv0) + a0�wn+1 – a0βVwn+1 = 0,

(wn+1 –
∑n–1

j=0 (bj – bj+1)wn–j – bnw0) – a0�vn+1 + a0βVvn+1 = 0,
(7)

and Riemann–Liouville derivative:
⎧
⎨

⎩
(vn+1 –

∑n–1
j=0 (bj – bj+1)vn–j – bnv0) + a0�wn+1 – a0βVwn+1 = 0,

(wn+1 –
∑n–1

j=0 (bj – bj+1)wn–j – bnw0) – a0�vn+1 + a0βVvn+1 = 0,
(8)

where a0 = �tαΓ (2 – α), bn = bn – (1 – α)�tαt–α
n+1.

Lemma 1 For all bn, n ≥ 0, we have

0 < bn ≤ αbn. (9)

Proof It is easy to check that

bn = (n + 1)1–α – n1–α – (1 – α)(n + 1)–α .

Set

f (t) = (1 + t)α – (1 + tα), t ≥ 0.
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Then f (0) = 0 and f ′(t) = α((1 + t)α–1 – 1) < 0, ∀t > 0, thus f (t) < f (0) = 0, then

(1 + t)α < (1 + tα), ∀t > 0.

Let t = 1
x , x > 0, we have

(
1 +

1
x

)α

<
(

1 +
α

x

)
.

Therefore
(

1 + x
x

)α

<
(

x + α

x

)
.

That is

(1 + x)–α(x + α) > x1–α .

Hence

(1 + x)–α
(
1 + x – (1 – α)

)
> x1–α .

Namely

(1 + x)1–α – (1 – α)(1 + x)1–α – x1–α > 0.

On the other hand, there holds

bn – αbn = (1 – α)
(
(n + 1)1–α – n1–α – (n + 1)–α

) ≤ 0, ∀n ≥ 0.

The above inequalities can be proved as follows:

(n + 1)1–α – n1–α – (n + 1)–α ≤ 0.

It follows that

(n + 1)1–α – (n + 1)–α ≤ n1–α .

Thus, we arrive at

(n + 1)1–α

(
1 –

1
n + 1

)
≤ n1–α .

That is

(n + 1)–α ≤ n–α .

Hence, we finish the proof of (9). �

We have the following unconditional stability results.
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Lemma 2 The semi-discrete schemes (7) are unconditionally stable such that, for 0 ≤ n ≤
M – 1, we have

∥∥vn+1∥∥2 +
∥∥wn+1∥∥2 ≤ ∥∥v0∥∥2 +

∥∥w0∥∥2. (10)

Proof When n = 0, computing the L2 inner product of (7) with 2v1 and 2w1, we obtain

(
v1 – v0, 2v1) + 2a0

(
�w1, v1) – 2a0β

(
Vw1, v1) = 0,

(
w1 – w0, 2w1) – 2a0

(
�v1, w1) + 2a0β

(
Vv1, w1) = 0.

This yields

∥∥v1∥∥2 –
∥∥v0∥∥2 +

∥∥v1 – v0∥∥2 +
∥∥w1∥∥2 –

∥∥w0∥∥2 +
∥∥w1 – w0∥∥2 = 0.

That is

∥∥v1∥∥2 +
∥∥w1∥∥2 ≤ ∥∥v0∥∥2 +

∥∥w0∥∥2.

Assume that the following inequality holds:

∥∥vj∥∥2 +
∥∥wj∥∥2 ≤ ∥∥v0∥∥2 +

∥∥w0∥∥2, j = 2, 3, . . . , n. (11)

Then we need to prove ‖vn+1‖2 + ‖wn+1‖2 ≤ ‖v0‖2 + ‖w0‖2. When j = n + 1, computing the
L2 inner product of (7) with 2vn+1 and 2wn+1, we derive

2
∥∥vn+1∥∥2 + 2

∥∥wn+1∥∥2

= 2

( n–1∑

j=0

(bj – bj+1)vn–j + bnv0, vn+1

)
+ 2

( n–1∑

j=0

(bj – bj+1)wn–j + bnw0, wn+1

)

≤
n–1∑

j=0

(bj – bj+1)
(∥∥vn–j∥∥2 +

∥∥vn+1∥∥2) + bn
(∥∥v0∥∥2 +

∥∥vn+1∥∥2))

+
n–1∑

j=0

(bj – bj+1)
(∥∥wn–j∥∥2 +

∥∥wn+1∥∥2) + bn
(∥∥w0∥∥2 +

∥∥wn+1∥∥2)).

Noting that

n–1∑

j=0

(bj – bj+1) + bn = 1.

Thus, we get

∥∥vn+1∥∥2 +
∥∥wn+1∥∥2 ≤

n–1∑

j=0

(bj – bj+1)
(∥∥vn–j∥∥2 +

∥∥wn–j∥∥2) + bn
(∥∥v0∥∥2 +

∥∥w0∥∥2)

≤
( n–1∑

j=0

(bj – bj+1) + bn

)
(∥∥v0∥∥2 +

∥∥w0∥∥2)
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=
∥∥v0∥∥2 +

∥∥w0∥∥2.

The proof is completed. �

Lemma 3 Semi-discrete equations (8) are unconditionally stable, and vn+1, wn+1 satisfy

∥∥vn+1∥∥2 +
∥∥wn+1∥∥2 ≤ α

∥∥v0∥∥2 + α
∥∥w0∥∥2, 0 ≤ n ≤ M – 1. (12)

Proof For n = 0, taking the L2 inner product of (8) with 2v1, 2w1, we get

(
v1 – αv0, 2v1) + 2a0

(
�w1, v1) – 2a0β

(
Vw1, v1) = 0,

(
w1 – αw0, 2w1) – 2a0

(
�v1, w1) + 2a0β

(
Vv1, w1) = 0.

Consequently,

∥∥v1∥∥2 – α2∥∥v0∥∥2 +
∥∥v1 – αv0∥∥2 +

∥∥w1∥∥2 – α2∥∥w0∥∥2 +
∥∥w1 – αw0∥∥2 = 0.

We arrive at

∥∥v1∥∥2 +
∥∥w1∥∥2 ≤ α

∥∥v0∥∥2 + α
∥∥w0∥∥2.

Suppose

∥∥vj∥∥2 +
∥∥wj∥∥2 ≤ α

∥∥v0∥∥2 + α
∥∥w0∥∥2, j = 2, 3, . . . , n. (13)

For k = n + 1, taking the L2 inner product of (7) with 2vn+1 and 2wn+1, we find that

2
∥∥vn+1∥∥2 + 2

∥∥wn+1∥∥2

= 2

( n–1∑

j=0

(bj – bj+1)vn–j + bnv0, vn+1

)
+ 2

( n–1∑

j=0

(bj – bj+1)wn–j + bnw0, wn+1

)

≤
n–1∑

j=0

(bj – bj+1)
(∥∥vn–j∥∥2 +

∥∥vn+1∥∥2) + bn
(∥∥v0∥∥2 +

∥∥vn+1∥∥2))

+
n–1∑

j=0

(bj – bj+1)
(∥∥wn–j∥∥2 +

∥∥wn+1∥∥2) + bn
(∥∥w0∥∥2 +

∥∥wn+1∥∥2)).

By using (9), we have

∥∥vn+1∥∥2 +
∥∥wn+1∥∥2 ≤

n–1∑

j=0

(bj – bj+1)
(∥∥vn–j∥∥2 +

∥∥wn–j∥∥2) + bn
(∥∥v0∥∥2 +

∥∥w0∥∥2)

≤
( n–1∑

j=0

(bj – bj+1)

)
(
α
∥∥v0∥∥2 + α

∥∥w0∥∥2) + αbn
(∥∥v0∥∥2 +

∥∥w0∥∥2)

= α
∥∥v0∥∥2 + α

∥∥w0∥∥2.

This concludes the proof. �
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3 Error estimates for full discretization
In this section, we discuss fully discrete schemes. Considering different boundary condi-
tions, we choose a Fourier–Galerkin spectral method to discretize semi-discrete scheme
(7) and a Legendre–Galerkin method to discretize semi-discrete scheme (8). We present
some error estimates for full-discretization schemes in L2 norm. First, we define SN to
be the Fourier or Legendre polynomial space. Denote πN : L2(Ω) → SN to be the L2-
projection operator which satisfies

(πNφ – φ,ψ) = 0, ∀ψ ∈ SN .

We also define the H1-projection operator π1
N : H1(Ω) → SN by

(∇(
π1

Nφ – φ
)
,∇ψ

)
= 0, ∀ψ ∈ SN .

We have the following estimate [37]:

‖φ – πNφ‖0 ≤ CN–m‖φ‖m, ∀φ ∈ Hm(Ω), m ≥ 0. (14)

Consider the full-discretization Fourier–Galerkin/Legendre–Galerkin spectral method to
equations (7) and (8) as follows: find vn+1

N , wn+1
N ∈ SN such that, for all φN ,ψN ∈ SN , they

satisfy
⎧
⎨

⎩
(vn+1

N –
∑n–1

j=0 (bj – bj+1)vn–j
N – bnv0

N ,φN ) + a0(�wn+1,φN ) – a0β(IN Vwn+1,φN ) = 0,

(wn+1
N –

∑n–1
j=0 (bj – bj+1)wn–j

N – bnw0
N ,ψN ) – a0(�vn+1

N ,ψN ) + a0β(IN Vvn+1
N ,ψN ) = 0,

(15)

and
⎧
⎨

⎩
(vn+1

N –
∑n–1

j=0 (bj – bj+1)vn–j
N – bnv0

N ,φN ) + a0(�wn+1,φN ) – a0β(IN Vwn+1,φN ) = 0,

(wn+1
N –

∑n–1
j=0 (bj – bj+1)wn–j

N – bnw0
N ,ψN ) – a0(�vn+1

N ,ψN ) + a0β(IN Vvn+1
N ,ψN ) = 0,

(16)

where IN V is the interpolation function of V .
We now state the stability results for equations (15) and (16).

Theorem 1 Let ({vn
N }M–1

n=1 , {wn
N }M–1

n=1 ) be the numerical solutions of (15), then we derive

∥∥vn+1
N

∥∥2 +
∥∥wn+1

N
∥∥2 ≤ ∥∥v0

N
∥∥2 +

∥∥w0
N
∥∥2. (17)

Theorem 2 Let ({vn
N }M–1

n=1 , {wn
N }M–1

n=1 ) be the numerical solutions of (16), then we have

∥∥vn+1
N

∥∥2 +
∥∥wn+1

N
∥∥2 ≤ α

∥∥v0
N
∥∥2 + α

∥∥w0
N
∥∥2. (18)

Next, we begin to analyze the error estimates of the full-discretization schemes (15) and
(16). We denote the truncation error as follows:

rn+1
1 =

1
Γ (2 – α)

n∑

j=0

bj
v(tn+1–j) – v(tn–j)

�tα
–

1
Γ (1 – α)

∫ tn+1

0

∂v(s)
∂s

ds
(tn+1 – s)α

,
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rn+1
2 =

1
Γ (2 – α)

n∑

j=0

bj
w(tn+1–j) – w(tn–j)

�tα
–

1
Γ (1 – α)

∫ tn+1

0

∂w(s)
∂s

ds
(tn+1 – s)α

.

From [29, 30], we have

∥∥rn+1
1

∥∥ ≤ C�t2–α ,
∥∥rn+1

2
∥∥ ≤ C�t2–α . (19)

We also define the following error functions:

ẽn
v = πN v(tn) – un

N , ên
v = v(tn) – πN v(tn), en

v = ên
v + ẽn

v = v(tn) – vn
N , (20)

ẽn
w = πN w(tn) – wn

N , ên
w = w(tn) – πN w(tn), en

w = ên
w + ẽn

w = w(tn) – wn
N . (21)

The following lemma can help us to analyze the error estimates.

Lemma 4 For a0, bn, n ≥ 0, we have the following result:

a0

bn
≤ 2Γ (1 – α)Tα . (22)

Proof

bn =
(
(n + 1)1–α – (n)1–α

)
= n1–α

((
1 +

1
n

)1–α

– 1
)

= n1–α

(
(1 – a)

n
+

(1 – α)(–α)
2!

1
n2 + · · ·

)

≥ n1–α

(
(1 – a)

n
+

(1 – α)(–α)
2!

1
n2

)

= n1–α

(
(1 – a)

2n
+

(1 – a)
2n

+
(1 – α)(–α)

2!
1
n2

)
.

Note that

(1 – a)
2n

+
(1 – α)(–α)

2!
1
n2 ≥ 0.

Therefore, we obtain

a0

bn
≤ 2nα�tαΓ (2 – α)

(1 – α)
≤ 2Γ (1 – α)Tα . �

We show the error estimate of full-discretization problem (15) in the following theorem.

Theorem 3 Suppose that u = v + iw is the exact solution of (1)–(3), (v, w) and ({vn
N }M–1

n=1 ,
{vn

N }M–1
n=1 ) are the solutions of (6) and (15), respectively, then we have

∥∥v(·, tn) – vn
N
∥∥ +

∥∥w(·, tn) – wn
N
∥∥ ≤ C

(
�t2–α + N–s + N–m)

, (23)

where C depends only on u, V , T , α, β .
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Proof We will utilize mathematical induction to prove the above conclusion. For n = 0,
equation (15) can be written as

⎧
⎨

⎩

1
a0

(v1
N – v0

N ,φN ) + (�w1
N ,φN ) – β(IN Vw1

N ,φN ) = 0,
1

a0
(w1

N – w0
N ,ψN ) – (�v1

N ,ψN ) + β(IN Vv1
N ,ψN ) = 0.

(24)

Subtracting (24) from a reformulation of (6) at t1, we obtain

(
ẽ1

v – ẽ0
v ,φN

)
+ a0

(
�̃e1

w,φN
)

– a0β
(
Vw(t1) – IN Vw1

N ,φN
)

= a0
(
r1

1,φN
)

+
((

πN – I
)(

v(t1) – v(t0)
)
,φN

)
– a0

(∇(
π1

N – I
)
w(t1),∇φN

)
,

(
ẽ1

w – ẽ0
w,ψN

)
– a0

(
�̃e1

v ,ψN
)

+ a0β
(
Vv(t1) – IN Vv1

N ,ψN
)

= a0
(
r1

2,ψN
)

+
((

πN – I
)(

w(t1) – w(t0)
)
,ψN

)
+ a0

(∇(
π1

N – I
)
v(t1),∇ψN

)
.

Let φN = 2̃e1
v , ψN = 2̃e1

w, we have

2
∥∥̃e1

v
∥∥2 + 2

∥∥̃e1
w
∥∥2 ≤ 2a0

(
r1

1, ẽ1
v
)

+ 2a0
(
r1

2, ẽ1
w
)

+ 2
((

πN – I
)(

v(t1) – v(t0)
)
, ẽ1

v
)

+ 2
((

πN – I
)(

w(t1) – w(t0)
)
, ẽ1

w
)

+ 2a0β
(
w(t1)(V – IN V ) + IN V

(
w(t1) – w1

N
)
, ẽ1

v
)

– 2a0β
(
v(t1)(V – IN V ) + IN V

(
v(t1) – v1

N
)
, ẽ1

w
)
.

Note that

2a0
(
w(t1)(V – IN V ) + IN V

(
w(t1) – w1

N
)
, ẽ1

v
)

– 2a0
(
v(t1)(V – IN V ) + IN V

(
v(t1) – v1

N
)
, ẽ1

w
)

= 2a0
(
w(t1)(V – IN V ) + IN V

(
ẽ1

w + ê1
w
)
, ẽ1

v
)

– 2a0
(
v(t1)(V – IN V ) + IN V

(
ẽ1

v + ê1
v
)
, ẽ1

w
)

= 2a0
(
w(t1)(V – IN V ) + IN V ê1

w, ẽ1
v
)

– 2a0
(
v(t1)(V – IN V ) + IN V ê1

v , ẽ1
w
)
.

Using Young’s inequality, we get

2
∥∥̃e1

v
∥∥2 + 2

∥∥̃e1
w
∥∥2

≤ a0

(
4a0

∥∥r1
1
∥∥2 +

1
4a0

∥∥̃e1
v
∥∥2

)
+ a0

(
4a0

∥∥r1
2
∥∥2 +

1
4a0

∥∥̃e1
w
∥∥2

)

+ 4
∥∥(

πN – I
)(

v(t1) – v(t0)
)∥∥2 +

1
4
∥∥̃e1

v
∥∥2 + 4

∥∥(
πN – I

)(
w(t1) – w(t0)

)∥∥2 +
1
4
∥∥̃e1

w
∥∥2

+ a0β

(
4a0β

∥∥IN V ê1
w
∥∥2 +

1
4a0β

∥∥̃e1
v
∥∥2

)

+ a0β

(
4a0β

∥∥w(t1)(V – IN V )
∥∥2 +

1
4a0β

∥∥̃e1
v
∥∥2

)

+ a0β

(
4a0β

∥∥IN V ê1
v
∥∥2 +

1
4a0β

∥∥̃e1
w
∥∥2

)

+ a0β

(
4a0β

∥∥v(t1)(V – IN V )
∥∥2 +

1
4a0β

∥∥̃e1
w
∥∥2

)
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≤ 4a2
0
(‖r1‖2 + ‖r2‖2) + 4

∥∥(
πN – I

)(
v(t1) – v(t0)

)∥∥2 + 4
∥∥(

πN – I
)(

w(t1) – w(t0)
)∥∥2

+ 4a2
0β

2‖IN V‖∞
∥∥̂e1

w
∥∥2 + 4a2

0β
2∥∥w(t1)

∥∥∞‖V – IN V‖2 +
∥∥̃e1

w
∥∥2 +

∥∥̃e1
v
∥∥2

+ 4a2
0β

2‖IN V‖∞
∥∥̂e1

v
∥∥2 + 4a2

0β
2∥∥v(t1)

∥∥∞‖V – IN V‖2.

That is

∥∥̃e1
v
∥∥2 +

∥∥̃e1
w
∥∥2 ≤ C1a2

0�t4–2α + C2a2
0N–s + C3a2

0N–m.

Assume

∥∥̃ej
v
∥∥2 +

∥∥̃ej
w
∥∥2 ≤ C1a2

0�t4–2α

b2
j–1

+
C2a2

0N–s

b2
j–1

+
C3a2

0N–m

b2
j–1

, j = 2, 3, . . . , n. (25)

Next, we need to prove that it also holds for j = n + 1. Setting φN = 2̃en+1
v and ψN = 2̃en+1

w
in (15), we have

2
∥∥̃en+1

v
∥∥2 + 2

∥∥̃en+1
w

∥∥2

≤ 2a0
(
rn+1

1 , ẽn+1
v

)
+ 2a0

(
rn+1

2 , ẽn+1
w

)

+ 2

( n–1∑

j=0

(bj – bj+1)̃en–j
v + bñe0

v , ẽn+1
v

)
+ 2

( n–1∑

j=0

(bj – bj+1)̃en–j
w + bñe0

w, ẽn+1
w

)

+ 2

(
(
πN – I

)
(

v(tn+1) –
n∑

j=0

(bj – bj+1)v(tn–j) – bnv(t0)

)
, ẽn+1

v

)

+ 2

(
(
πN – I

)
(

w(tn+1) –
n∑

j=0

(bj – bj+1)w(tn–j) – bnw(t0)

)
, ẽn+1

w

)

+ 2a0β
(
w(tn+1)(V – IN V ) + IN V

(
w(tn+1) – wn+1

N
)
, ẽn+1

v
)

– 2a0β
(
v(tn+1)(V – IN V ) + IN V

(
v(tn+1) – vn+1

N
)
, ẽn+1

w
)

≤ a0

(
4a0

bn

∥∥rn+1
1

∥∥2 +
bn

4a0

∥∥̃en+1
v

∥∥2
)

+ a0

(
4a0

bn

∥∥rn+1
2

∥∥2 +
bn

4a0

∥∥̃en+1
w

∥∥2
)

+
n–1∑

j=0

(bj – bj+1)
(∥∥̃en–j

v
∥∥2 +

∥∥̃en+1
v

∥∥2) +
n–1∑

j=0

(bj – bj+1)
(∥∥̃en–j

w
∥∥2 +

∥∥̃en+1
w

∥∥2)

+
4
bn

∥∥∥∥∥
(
πN – I

)
(

v(tn+1) –
n∑

j=0

(bj – bj+1)v(tn–j) – bnv(t0)

)∥∥∥∥∥

2

+
bn

4
∥∥̃en+1

v
∥∥2

+
4
bn

∥∥∥∥∥
(
πN – I

)
(

w(tn+1) –
n∑

j=0

(bj – bj+1)w(tn–j) – bnv(t0)

)∥∥∥∥∥

2

+
bn

4
∥∥̃en+1

w
∥∥2

+ a0β

(
4a0β

bn

∥∥IN V ên+1
w

∥∥2 +
bn

4a0β

∥∥̃en+1
v

∥∥2
)

+ a0β

(
4a0β

bn

∥∥w(tn+1)(V – IN V )
∥∥2 +

bn

4a0β

∥∥̃en+1
v

∥∥2
)

+ a0β

(
4a0β

bn

∥∥IN V ên+1
v

∥∥2 +
bn

4a0β

∥∥̃en+1
w

∥∥2
)
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+ a0β

(
4a0β

bn

∥∥v(tn+1)(V – IN V )
∥∥2 +

bn

4a0β

∥∥̃en+1
w

∥∥2
)

.

That is

∥∥̃en+1
v

∥∥2 +
∥∥̃en+1

w
∥∥2 ≤ 4a2

0
bn

(∥∥rn+1
1

∥∥2 +
∥∥rn+1

2
∥∥2) +

n–1∑

j=0

(bj – bj+1)
(∥∥̃en–j

v
∥∥2 +

∥∥̃en–j
w

∥∥2)

+
4
bn

∥∥∥∥∥
(
πN – I

)
(

v(tn+1) –
n∑

j=0

(bj – bj+1)v(tn–j) – bnv(t0)

)∥∥∥∥∥

2

+
4
bn

∥∥∥∥∥
(
πN – I

)
(

w(tn+1) –
n∑

j=0

(bj – bj+1)w(tn–j) – bnw(t0)

)∥∥∥∥∥

2

+
4a2

0β
2

bn
‖IN V‖∞

∥∥̂en+1
w

∥∥2 +
4a2

0β
2

bn

∥∥w(tn+1)
∥∥∞‖V – IN V‖2

+
4a2

0β
2

bn
‖IN V‖∞

∥∥̂en+1
v

∥∥2 +
4a2

0β
2

bn

∥∥v(tn+1)
∥∥∞‖V – IN V‖2.

Using assumption (25) and the fact that bn–1–j > bn, we obtain

∥∥̃en+1
v

∥∥2 +
∥∥̃en+1

w
∥∥2 ≤

(
C1a2

0�t4–2α

bn
+

C2a2
0N–s

bn
+

C3a2
0N–m

bn

)

+
n–1∑

j=0

(bj – bj+1)
(

C1a2
0�t4–2α

b2
n–j–1

+
C2a2

0N–s

b2
n–j–1

+
C3a2

0N–m

b2
n–j–1

)

≤
(

C1a2
0�t4–2α

bn
+

C2a2
0N–s

bn
+

C3a2
0N–m

bn

)

+
n–1∑

j=0

(bj – bj+1)
(

C1a2
0�t4–2α

b2
n

+
C2a2

0N–s

b2
n

+
C3a2

0N–m

b2
n

)

=
(

C1a2
0�t4–2α

b2
n

+
C2a2

0N–s

b2
n

+
C3a2

0N–m

b2
n

)(
bn +

n–1∑

j=0

(bj – bj+1)

)

=
(

C1a2
0�t4–2α

b2
n

+
C2a2

0N–s

b2
n

+
C3a2

0N–m

b2
n

)
.

Combining with (14) and (22), estimate (23) is proved. �

Theorem 4 Suppose that u = v + iw is the exact solution of (1)–(3), (v, w) and ({vn
N }M–1

n=1 ,
{vn

N }M–1
n=1 ) are the solutions to (6) and (16), respectively, then we obtain

∥∥v(·, tn) – vn
N
∥∥ +

∥∥w(·, tn) – wn
N
∥∥ ≤ C

(
�t2–α + N–s + N–m)

. (26)

Proof The proof process is similar to the above theorem, and we omit it here. �

4 Numerical results
This section presents several numerical examples to confirm the accuracy and applicabil-
ity of schemes (15)–(16) for solving Caputo/Riemann–Liouville Schrödinger equations.
First, we need an exact solution to evaluate the accuracy of the numerical solution.
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Example 4.1 Let β = 1 and V = 1, we consider numerical results for the following Caputo
time-fractional Schrödinger equation:

1
Γ (1 – α)

∫ t

0

∂u(x, y,μ)
∂μ

dμ

(t – μ)α
– i�u + iu = f (x, y, t),

where

f (x, y, t) =
2t2–α

Γ (3 – α)
(cos 8x + i sin 8y) + t2(–65 sin 8y + i65 cos 8x).

Then the exact solution is u = t2(cos 8x + i sin 8y).
Full-discrete scheme (15) is solved in Ω = (0, 2π )2 with T = 1. Tables 1–2 display

the temporal convergence orders at N = 20 for v, w, respectively. It shows that for α =
0.1, 0.3, 0.5, 0.6, 0.7, 0.9, the convergence orders of v and w are approximately 1.9, 1.7, 1.5,
1.4, 1.3, 1.1, respectively, which indicates that numerical scheme (15) can achieve 2 – α

order accuracy in time, which confirms the result in Theorem 3. Table 3 shows the L2

error and the L∞ error in space with α = 0.1, 0.3, 0.5, 0.7. It confirms that the numerical
solutions are in good agreement with the exact solutions and the error is influenced by
the time direction error. It ascertains that, if the error in the time direction is negligible,
our numerical method can theoretically achieve exponential order accuracy in space.

Table 1 Temporal convergence orders of v for Example 4.1

α \ �t �t = 1.00E–2 �t = 5.00E–3 �t = 1.00E–3 �t = 5.00E–4

α = 0.1 1.8015 1.8138 1.8349 1.8418
α = 0.3 1.6588 1.6674 1.6807 1.6845
α = 0.5 1.4857 1.4900 1.4956 1.4969
α = 0.6 1.3923 1.3949 1.3981 1.3987
α = 0.7 1.2962 1.2976 1.2992 1.2995
α = 0.9 1.0995 1.0997 1.0999 1.1000

Table 2 Temporal convergence orders of w for Example 4.1

α \ �t �t = 1.00E–2 �t = 5.00E–3 �t = 1.00E–3 �t = 5.00E–4

α = 0.1 1.8015 1.8138 1.8349 1.8418
α = 0.3 1.6588 1.6674 1.6807 1.6845
α = 0.5 1.4857 1.4900 1.4956 1.4969
α = 0.6 1.3923 1.3949 1.3981 1.3987
α = 0.7 1.2961 1.2976 1.2992 1.2995
α = 0.9 1.0994 1.0997 1.0999 1.1000

Table 3 L2, L∞ errors of v and w at �t = 10–4 for Example 4.1

α \ error N ‖v(T ) – vMN ‖ ‖v(T ) – vMN ‖∞ ‖w(T ) –wM
N ‖ ‖w(T ) –wM

N ‖∞
α = 0.1 18 1.7195E–10 5.6609E–10 1.7196E–10 5.7301E–10

20 1.8126E–10 5.4817E–11 1.8125E–10 5.7301E–11
α = 0.3 18 2.2952E–09 7.5500E–10 2.2952E–09 7.6500E–10

20 2.4193E–09 7.3044E–10 1.8125E–10 5.7301E–11
α = 0.5 18 2.1610E–08 7.1047E–10 2.1610E–08 7.2032E–09

20 2.2779E–08 6.8701E–09 2.2779E–08 7.2032E–09
α = 0.7 18 1.9066E–07 6.2644E–08 1.9066E–07 6.3553E–08

20 2.0098E–07 6.0544E–08 2.0098E–07 6.3553E–08
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Example 4.2 Let β = 1 and V = 1, we consider the following Riemann–Liouville time-
fractional Schrödinger equation:

1
Γ (1 – α)

d
dt

∫ t

0
(t – μ)–αu(x, y,μ) dμ – i�u + iu = f (x, y, t),

where

f (x, y, t) =
(

t–α

Γ (1 – α)
+

2t2–α

Γ (3 – α)

)
(sin 8x + i cos 8y) +

(
t2 + 1

)
(–65 cos 8y + i65 sin 8x).

Then the exact solution is u = (t2 + 1)(sin 8x + i cos 8y).
Full-discrete scheme (16) is solved at Ω = (0, 2π )2 with T = 1. The convergence orders

in time direction are listed in Tables 4–5, and the L2 and L∞ errors in spatial direction
are also listed in Table 6. It is obvious that numerical scheme (16) achieves 2 – α order
accuracy in time direction. Table 6 shows that numerical schemes (15)–(16) have good
convergence behavior.

We fix u(x, y, 0) = cos 6x + i sin y, �t = 0.001, N = 20, we also use numerical method (15)
to simulate the dynamic behavior of the solution for different α. The results are summa-
rized in Figs. 1–3. The results show that the wavelength becomes larger when the frac-
tional diffusion coefficient α increases due to the long tail mechanism of the fractional
operator.

Table 4 Temporal convergence orders of v for Example 4.2

α \ �t �t = 1.00E–2 �t = 5.00E–3 �t = 1.00E–3 �t = 5.00E–4

α = 0.1 1.8015 1.8138 1.8349 1.8418
α = 0.3 1.6588 1.6674 1.6807 1.6845
α = 0.5 1.4857 1.4900 1.4956 1.4969
α = 0.6 1.3923 1.3949 1.3981 1.3987
α = 0.7 1.2961 1.2976 1.2992 1.2995
α = 0.9 1.0994 1.0997 1.0999 1.1000

Table 5 Temporal convergence orders of w for Example 4.2

α \ �t �t = 1.00E–2 �t = 5.00E–3 �t = 1.00E–3 �t = 5.00E–4

α = 0.1 1.8015 1.8138 1.8349 1.8418
α = 0.3 1.6588 1.6674 1.6807 1.6845
α = 0.5 1.4857 1.4900 1.4956 1.4969
α = 0.6 1.3923 1.3949 1.3981 1.3987
α = 0.7 1.2961 1.2976 1.2992 1.2995
α = 0.9 1.0994 1.0997 1.0999 1.1000

Table 6 L2, L∞ errors of v and w at �t = 10–4 for Example 4.2

α \ �t N ‖v(T ) – vMN ‖ ‖v(T ) – vMN ‖∞ ‖w(T ) –wM
N ‖ ‖w(T ) –wM

N ‖∞
α = 0.1 18 1.7193E–10 5.7337E–11 1.7195E–10 5.6706E–11

20 1.8124E–10 5.7430E–11 1.8124E–10 5.4762E–11
α = 0.3 18 2.2951E–09 7.6502E–10 2.2952E–09 7.5509E–10

20 2.4193E–09 7.6511E–10 2.4193E–09 7.3037E–10
α = 0.5 18 2.1610E–08 7.2032E–09 2.1610E–08 7.1048E–09

20 2.2779E–08 7.2033E–09 2.2779E–08 6.8700E–09
α = 0.7 18 1.9066E–07 6.3553E–08 1.9066E–07 6.2645E–08

20 2.0098E–07 6.3553E–08 2.0098E–07 6.0544E–08
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Figure 1 The dynamic behavior of solution for α = 0.5

Figure 2 The dynamic behavior of solution for α = 0.7

Figure 3 The dynamic behavior of solution for α = 0.9

5 Conclusion
We have constructed two efficient numerical schemes to solve time-fractional Schrödinger
equation with Caputo/Riemann–Liouville derivative. These two numerical methods have
been proved to be unconditionally stable. In addition, we have also discussed the conver-
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gence of the numerical methods, and numerical convergence results show that the two
schemes converge with the order O(�t2–α + N–s + N–m). Numerical examples are consis-
tent with the theoretical prediction.
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