
Moustafa et al. Advances in Difference Equations         (2020) 2020:48 
https://doi.org/10.1186/s13662-020-2522-5

R E S E A R C H Open Access

Dynamical analysis of a fractional-order
eco-epidemiological model with disease in
prey population
Mahmoud Moustafa1* , Mohd Hafiz Mohd1, Ahmad Izani Ismail1 and Farah Aini Abdullah1

*Correspondence:
mahmoudmoustafa949@gmail.com
1School of Mathematical Sciences,
Universiti Sains Malaysia, Pulau
Pinang, Malaysia

Abstract
A fractional-order eco-epidemiological model with disease in the prey population is
formulated and analyzed. Mathematical analysis and numerical simulations are
performed to clarify the characteristics of the proposed fractional-order model. The
existence, uniqueness, non-negativity and boundedness of the solutions are proved.
The local and global asymptotic stability of all equilibrium points are investigated.
Finally, numerical simulations are conducted to illustrate the analytical results. The
occurrence of Hopf bifurcations and transcritical bifurcations for the fractional-order
eco-epidemiological model are demonstrated. It is observed that the fractional order
has a stabilization effect and it may help to control the coexistence between
susceptible prey, infected prey and predator populations.
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1 Introduction
The dynamics of the relationship between predators and their prey are topics of consider-
able interest in ecology and mathematical biology. The Lotka–Volterra model is the first
system that modeled the interactions between prey and its predator [1]. Studies of the dy-
namics of prey–predator models include [2–5]. Kermack and MacKendrick [6] proposed
the classical SIR model which has drawn much attention among the scholars. Li et al. [7]
studied the global stability of an SI epidemic model with feedback controls in a patchy
environment. The epidemiological models consider the spread of infectious diseases re-
lated to one species is one of the major issues in mathematical biology. The modeling of
infectious diseases studies including [8, 9].

It is realistic to consider the impact of interacting species when epidemiological mod-
els are studied [10]. Eco-epidemiological models consider the relationships between prey
and predator in which infectious diseases play a fundamental role in the dynamics of the
system [11]. The eco-epidemiological model studies the spread of diseases among the
prey and predator populations and one of the main aims is to control of infectious dis-
eases. Hilker and Schmitz [12] observed that introducing disease into the Rosenzweig–
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Table 1 Table of the biological description of variables and parameters

Variables & parameters Description

S Susceptible prey population density.
I Infected prey population density.
P Predator population density.
r̂ Recruitment rate into prey population.
β̂ Transmission coefficient of disease in prey.
γ̂ Recovery rate of infected prey.
α̂ Attack rate of predator.
â Half saturation constant.
ĉ Conversion efficiency of predator.
d̂1 Natural death rate of susceptible prey.
d̂2 Natural death rate of infected prey.
d̂3 Natural death rate of predator.

MacArthur model can stabilize prey–predator oscillations. Some studies have been car-
ried out on eco-epidemiological models with disease either in prey [13–16] or in predator
[17–20] or in both populations [21–23]. The infectious diseases among prey and predator
populations are disorders caused by bacteria or virus [24].

In [11] the authors considered a three-species eco-epidemiological model with Holling
type II functional response of a predator. It is assumed that population can be divided
into susceptible prey, infected prey and predator; disease spreads only among the preys;
infected prey can recover and predator eats only infected prey.

Following [10, 11] a new version of an eco-epidemiological model is formulated by in-
corporating a predator’s attack rate and half saturation constant as follows:

dS
dt

= r̂ – β̂SI – d̂1S + γ̂ I,

dI
dt

= β̂SI –
α̂IP

1 + âI
– d̂2I – γ̂ I,

dP
dt

=
ĉα̂IP
1 + âI

– d̂3P.

(1)

All the parameters are assumed to be positive. The variables and parameters of system (1)
are presented in Table 1.

Fractional-order differential equations can be considered as generalization of ordinary
differential equations to an arbitrary (non-integer) order and have been successfully ap-
plied in engineering, chemistry and mathematical biology [25, 26]. The fractional-order
derivative is a non-local operator in the sense that the system at present states depends on
the recent past states [27].

The fractional-order differential equations exhibit richer dynamical behavior and this
is because it incorporates the memory effect in the model [28]. Zhao and Luo [29] pro-
posed a definition of general fractional derivatives to describe the dynamics with memory
effects. Bolton et al. [30] conclude that the fractional-order Gompertz growth model is
more realistic as regards a experimental dataset than the integer-order Gompertz model.
Therefore, the use of fractional-order differential equations may improve the modeling
of biological phenomena. Hence, the dynamics of the relations between predators and
their prey can be more accurately described by fractional-order systems [31, 32]. Detailed
background of the fractional-order differential equations can be found in [33–41]. Some
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previous studies indicate that the fractional-order system cannot have a periodic solution
[42, 43]. But the fractional derivative converges to periodic signals if it is defined on the
whole real line [44, 45]. This paper will be focused on the final state of the trajectory [44].
Hence, the limit cycle attracts all nearby positive-valued trajectories (asymptotically stable
limit cycle) [44].

In [33, 34] a kind of fractional order eco-epidemiological model with disease in the prey
population was proposed and some issues related to theoretical and numerical analyses
were investigated. However, the governing systems proposed in [33, 34] are different from
our fractional-order model (3). In this paper, we consider the following fractional-order
eco-epidemiological model incorporating a predator’s attack rate and half saturation con-
stant:

cDqS(t) = r̂q – β̂qSI – d̂1
q
S + γ̂ qI,

cDqI(t) = β̂qSI –
α̂qIP
1 + âI

– d̂2
q
I – γ̂ qI,

cDqP(t) =
ĉα̂qIP
1 + âI

– d̂3
q
P,

(2)

with initial conditions

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, P(0) = P0 ≥ 0,

where 0 < q < 1 and cDq is the standard Caputo differentiation. The parameters in the
fractional-order eco-epidemiological model (2) are assumed to be positive and are de-
scribed in Table 1. The Caputo fractional derivative of order q is defined as [26]

cDqf (t) =
1

Γ (n – q)

∫ t

0
(t – s)n–q–1f (n)(s) ds, n – 1 < q < n, n ∈N.

However, it is important to note that the modified parameters, such as r̂q depending on
the fractional order (q) and that the units of each differential equation terms are different
[46, 47]. Also, the fractional derivative equations are formulated not with respect to the
physical time but with respect to an intrinsic time variable that depends on q [48]. For
simplification, this system can be redefined with the new parameters as follows [49]:

r̂q = r, β̂q = β , d̂1
q

= d1, d̂2
q

= d2, d̂3
q

= d3, ĉ = c,

γ̂ q = γ , α̂q = α, â = a.

Then, the system (2) becomes as follows:

cDqS(t) = r – βSI – d1S + γ I,

cDqI(t) = βSI –
αIP

1 + aI
– d2I – γ I,

cDqP(t) =
cαIP
1 + aI

– d3P.

(3)

So far as we are aware, no scholar has investigated the dynamics of the fractional-order
eco-epidemiological model (3). Therefore, in this paper, a fractional order prey–predator
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model with disease in the prey population is investigated. The mathematical analysis and
numerical simulations are performed to clarify the characteristics of our fractional-order
model (3). The aim of this study is to proposed and analyzed a fractional-order eco-
epidemiological model incorporating predator’s attack rate (α) and half saturation con-
stant (a) with infection in prey population. Also, we observe the effects of the prey’s disease
(β), predator’s attack rate (α), half saturation constant (a), infected prey’s death rate (d2)
and fractional order (q) in the dynamics of the fractional-order eco-epidemiological model
(3). The contributions of this paper are to prove existence, uniqueness, non-negativity,
and boundedness of the solutions for model (3). The paper also investigates the local and
global asymptotic stability of all equilibrium points of the fractional order model (3) by us-
ing Matignon’s condition and constructing suitable Lyapunov functions, respectively. Nu-
merical simulations conducted indicate a rich dynamical behavior of the fractional order
model (3) at the equilibrium points, which is in agreement with the theoretical analysis.

The paper is organized as follows. In the next section, the analysis of the fractional-
order eco-epidemiological model (3) is presented. In Sect. 3, the numerical simulations of
the fractional-order eco-epidemiological model (3) are provided to verify the theoretical
results. Finally, Sect. 4 concludes the study with a brief discussion.

2 Mathematical analysis
The mathematical analysis of the fractional-order eco-epidemiological model (3) is pre-
sented in this section.

2.1 Existence and uniqueness
The existence and uniqueness of the solutions of the fractional-order system (3) are stud-
ied in the region Ω × (0, T] where

Ω =
{

(S, I, P) ∈R
3 : max

(|S|, |I|, |P|) ≤ ψ
}

.

Theorem 1 For each X0 = (S0, I0, P0) ∈ Ω , there exists a unique solution X(t) ∈ Ω of the
fractional-order system (3) with initial condition X0, which is defined for all t ≥ 0.

Proof The approach used by [50] is utilized. For X, X̄ ∈ Ω , one can consider a mapping
M(X) = (M1(X), M2(X), M3(X)) where

M1(X) = r – βSI – d1S + γ I,

M2(X) = βSI –
αIP

1 + aI
– d2I – γ I,

M3(X) =
cαIP
1 + aI

– d3P.

(4)

It follows from (4) that

∥∥M(X) – M(X̄)
∥∥

=
∣∣M1(X) – M1(X̄)

∣∣ +
∣∣M2(X) – M2(X̄)

∣∣ +
∣∣M3(X) – M3(X̄)

∣∣
= |r – βSI – d1S + γ I – r + βS̄Ī + d1S̄ – γ Ī|
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+
∣∣∣∣βSI –

αIP
1 + aI

– d2I – γ I – βS̄Ī +
αĪP̄

1 + aĪ
+ d2 Ī + γ Ī

∣∣∣∣

+
∣∣∣∣ cαIP
1 + aI

– d3P –
cαĪP̄
1 + aĪ

+ d3P̄
∣∣∣∣

=
∣∣–β(SI – S̄Ī) – d1(S – S̄) + γ (I – Ī)

∣∣

+
∣∣∣∣–α(IP + aIĪP – ĪP̄ – aIĪP̄)

(1 + aI)(1 + aĪ)
+ β(SI – S̄Ī) – d2(I – Ī) – γ (I – Ī)

∣∣∣∣

+
∣∣∣∣ cα(IP + aIĪP – ĪP̄ – aIĪP̄)

(1 + aI)(1 + aĪ)
– d3(P – P̄)

∣∣∣∣
≤ βψ |S – S̄| + βψ |I – Ī| + d1|S – S̄| + γ |I – Ī|

+
α(1 + c)|P – P̄|

a
+ βψ |S – S̄| + βψ |I – Ī| + d2|I – Ī| + γ |I – Ī|

+ d3|P – P̄| + α(1 + c)ψ |I – Ī| + α(1 + c)ψ |P – P̄|
≤ (2βψ + d1)|S – S̄|

+
(
2βψ + 2γ + d2 + α(1 + c)ψ

)|I – Ī|

+
(

α(1 + c)
a

+ d3 + α(1 + c)ψ
)

|P – P̄|

≤ G‖X – X̄‖,

where

G = max

{
2βψ + d1, 2βψ + 2γ + d2 + α(1 + c)ψ ,

α(1 + c)
a

+ d3 + α(1 + c)ψ
}

.

Thus, M(X) satisfies the Lipschitz condition which proves the existence and uniqueness
of the solutions of the fractional-order eco-epidemiological model (3). �

2.2 Non-negativity and boundedness
Now, the non-negativity of the solutions of the fractional-order system (3) is studied. From
(3), one has

cDqS(t)|S=0 = r + γ I ≥ 0,
cDqI(t)|I=0 = 0,
cDqP(t)|P=0 = 0.

According to Lemmas 5 and 6 in [51], one can deduce that the solutions of the fractional-
order system (3) are non-negative.

Next, the boundedness of the solutions of the fractional-order system (3) is given.

Theorem 2 The solutions of the fractional-order system (3) which start inR
3
+ are uniformly

bounded.
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Proof The approach of [50] is adopted. Let us consider the function H(t) = S(t) + I(t) +
1
c P(t). Then

cDqH(t) = cDqS(t) + cDqI(t) +
1
c

cDqP(t)

= r – d1S – d2I –
d3

c
P.

Hence, for each λ > 0,

cDqH(t) + λH(t) = r – d1S – d2I –
d3

c
P + λS + λI +

λ

c
P

= r + (λ – d1)S + (λ – d2)I +
1
c

(λ – d3)P.

One can choose λ < min{d1, d2, d3}. Thus

cDqH(t) + λH(t) ≤ r.

According to Lemma 9 in [52], it follows that

0 ≤ H(t) ≤ H(0)Eq
(
–λ(t)q) + r(t)qEq,q+1

(
–λ(t)q),

where Eq is the well-known Mittag-Leffler function. By Lemma 5 and Corollary 6 in [52],
one gets the following expression:

0 ≤ H(t) ≤ r
λ

, as t → ∞.

Therefore, the solutions of fractional-order eco-epidemiological model (3) starting in R
3
+

are uniformly bounded in the region W , where

W =
{

(S, I, P) ∈ R3
+ : H(t) ≤ r

λ
+ ε, ε > 0

}
. (5)�

2.3 Equilibrium points and stability
In this section, we investigate the stability of equilibrium points of the fractional-order
system (3). The fractional-order system (3) has the following equilibrium points:

1. The axial equilibrium point E1( r
d1

, 0, 0), which always exists.
2. The predator-extinction equilibrium point E2( γ +d2

β
, d1(γ +d2)(�0–1)

βd2
, 0), which exists if

�0 > 1, where �0 = rβ
d1(γ +d2) is the basic reproduction number obtained by using the

next generation method [53].
3. The interior equilibrium point E3(S3, I3, P3) where

S3 =
r(cα – ad3) + γ d3

d1(cα – ad3) + βd3
, I3 =

d3

cα – ad3
and

P3 =
cd1(γ + d2)(�0 – 1 – βd2d3

d1(γ +d2)(cα–ad3) )
d1(cα – ad3) + βd3

.

The interior equilibrium point E3 exists if α > ad3
c and �0 > 1 + βd2d3

d1(γ +d2)(cα–ad3) which
is equivalent to α > (β(ar+d2)–ad1(γ +d2))d3

c(rβ–d1(γ +d2)) .
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Thus, it is observed that the existence of interior equilibrium point E3 depends on the
threshold value of the predator’s attack rate (α) and the basic reproduction number (�0),
respectively. So, the attack rate of predator and basic reproduction number play some
crucial roles in determining the dynamics of the fractional-order system (3). Next, we will
discuss the stability of the equilibrium points of system (3). The Jacobian matrix of system
(3) is given by

J(S, I, P) =

⎛
⎜⎝

–(Iβ + d1) γ – βS 0
βI (1+aI)2(βS–γ )–αP

(1+aI)2 – d2 – αI
1+aI

0 cαP
(1+aI)2

cαI
1+aI – d3

⎞
⎟⎠ . (6)

Utilizing the Jacobian matrix (6) and the Matignon condition [32, 54], the local stability of
the equilibrium points of the fractional-order system (3) is investigated.

Theorem 3 The axial equilibrium point E1 of the fractional-order system (3) is locally
asymptotically stable if �0 < 1 and unstable saddle point if �0 > 1.

Proof The Jacobian matrix (6) around the axial equilibrium point E1 is as follows:

J(E1) =

⎛
⎜⎝

–d1 γ – rβ
d1

0
0 rβ

d1
– (γ + d2) 0

0 0 –d3

⎞
⎟⎠ .

The eigenvalues of the Jacobian matrix around the axial equilibrium point E1 are μ1 = –d1,
μ2 = –d3 and μ3 = rβ–d1(γ +d2)

d1
. By using Matignon’s condition [32, 54], it can be observed

that | arg(μ1,2)| = π > qπ

2 . If �0 < 1 then | arg(μ3)| = π > qπ

2 for all 0 < q < 1. Thus, the axial
equilibrium point E1 is locally asymptotically stable if �0 < 1, which is equivalent to γ >
rβ–d1d2

d1
. It is observed that the axial equilibrium point E1 is locally asymptotically stable

when the predator-extinction equilibrium point E2 and interior equilibrium point E3 do
not exist. �

Now, the stability of the predator-extinction equilibrium point E2(S2, I2, 0) is discussed.

Theorem 4 If �0 < 1 + βd2d3
d1(γ +d2)(cα–ad3) , then the predator-extinction equilibrium point E2

of the fractional-order model (3) is locally asymptotically stable.

Proof The Jacobian matrix (6) evaluated at E2 is given by

J(E2) =

⎛
⎜⎝

–(d1 + βI2) –d2 0
βI2 0 – αI2

1+aI2

0 0 cαI2
1+aI2

– d3

⎞
⎟⎠ .

The eigenvalues of the Jacobian matrix around E2 are the roots of the following equation:

(
cαI2

1 + aI2
– d3 – μ

)(
μ2 + μ(βI2 + d1) + βd2I2

)
= 0. (7)
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The characteristic equation (7) has the following eigenvalues:

μ1 =
cαI2

1 + aI2
– d3 and μ2,3 =

1
2
(
–(βI2 + d1) ±

√
(βI2 + d1)2 – 4βd2I2

)
.

The eigenvalues μ2,3 have negative real parts, then | arg(μ2,3)| = π > qπ

2 . If �0 < 1 +
βd2d3

d1(γ +d2)(cα–ad3) then | arg(μ1)| = π > qπ

2 for all 0 < q < 1. Thus, in accordance with
Matignon’s condition [32, 54], the predator-extinction equilibrium point E2 is locally
asymptotically stable if �0 < 1 + βd2d3

d1(γ +d2)(cα–ad3) , which is equivalent to the attack rate of
predator population (α) being less than (β(ar+d2)–ad1(γ +d2))d3

c(rβ–d1(γ +d2)) . �

Finally, the stability of interior equilibrium point E3(S3, I3, P3) is investigated. The Jaco-
bian matrix of system (3) around E3 is given by

J(E3) =

⎛
⎜⎝

–(βI3 + d1) γ – βS3 0
βI3

αP3
(1+aI3) (1 – 1

1+aI3
) – αI3

1+aI3

0 cαP3
(1+aI3)2 0

⎞
⎟⎠ .

The eigenvalues of J(E3) are the roots of the following equation:

F(μ) = μ3 + K1μ
2 + K2μ + K3 = 0, (8)

where

K1 = d1 + I3

(
β –

aαP3

(1 + aI3)2

)
,

K2 =
I3(1 – βγ (+aI3)3 – α(a(1 + aI3)(d1 + βI3) – cα)P3 + β2(1 + aI3)3S3

(1 + aI3)3 ,

K3 =
cα2(βI3 + d1)I3P3

(1 + aI3)3 .

According to [55, 56], the local stability of the interior equilibrium point E3 is determined
by the following proposition.

Proposition 5 The discriminant D(V ) of the cubic polynomial (8) is as follows:

D(V ) = 18K1K2K3 + (K1K2)2 – 4K3K3
1 – 4K3

2 – 27K2
3 .

Then the conditions of local stability of the interior equilibrium point E3 are given as fol-
lows:

(i) If D(V ) > 0, K1 > 0, K3 > 0 and K1K2 > K3, then E3 is locally asymptotically stable for
0 < q < 1.

(ii) If D(V ) < 0, K1 > 0, K2 > 0, K1K2 = K3 and 0 < q < 1, then E3 is locally asymptotically
stable.

2.4 Global stability
The global asymptotic stability of the axial equilibrium point E1, predator-extinction equi-
librium point E2 and the interior equilibrium point E3 of the fractional-order system (3)
is now investigated.
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Theorem 6 If �0 < 1, then the axial equilibrium point E1 of the fractional-order system
(3) is globally asymptotically stable.

Proof We consider the following positive definite Lyapunov function:

V (S, I, P) =
(

S –
r

d1
–

r
d1

ln
d1S

r

)
+ I +

1
c

P.

By calculating the q-order derivative of V (S, I, P) along the solution of system (3) and uti-
lizing Lemma 3.1 in [57], one has

cDqV (S, I, P) ≤
(

d1S – r
d1S

)
cDqS(t) + cDqI(t) +

1
c

cDqP(t)

≤ d1S – r
d1S

(r – βSI – d1S + γ I)

+ βSI – d2I – γ I –
d3

c
P

≤ d1S – r
d1S

(
–(Sd1 + r) – (βS – γ )I

)

+ βSI – d2I – γ I –
d3

c
P

≤ –(d1S – r)2

d1S
–

(Sd1 – r)(βS – γ )I
d1S

+ βSI – d2I – γ I –
d3

c
P

≤ –(d1S – r)2

d1S
+

rβI
d1

–
γ rI
d1S

– d2I –
d3

c
P

≤ rβI
d1

–
γ rI
d1S

– d2I

≤
(

βr
d1

– γ – d2

)
I.

Thus, cDqV (S, I, P) ≤ 0 when βr
d1

< γ + d2 which is equivalent to �0 < 1. By Lemma 4.6 in
[58], it is proof that the axial equilibrium point E1 is globally asymptotically stable. �

Theorem 7 If �0 < 1 + βd2d3
d1(γ +d2)(cα–ad3) , then the predator-extinction equilibrium point E2

is globally asymptotically stable.

Proof To study the globally asymptotically stability of E2 the following positive definite
Lyapunov function is considered:

V (S, I, P) = L
(

S – S2 – S2 ln
S
S2

)
+

(
I – I2 – I2 ln

I
I2

)
+

1
c

P.

The q-order derivative of V (S, I, P) is calculating along the solution of the fractional-order
eco-epidemiological model (3) and by applying Lemma 3.1 in [57], we get

cDqV (S, I, P) ≤ L
(

S – S2

S

)
cDqS(t) +

(
I – I2

I

)
cDqI(t) +

1
c

cDqP(t)
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≤ L
(

S – S2

S

)
(r – βSI – d1S + γ I)

+ (I – I2)
(

βS –
αP

1 + aI
– d2 – γ

)
+ P

(
αI

1 + aI
–

d3

c

)

≤ L
(

S – S2

S

)
(βS2I2 + d1S2 – γ I2 – βSI – d1S + γ I)

+ (I – I2)
(

βS –
αP

1 + aI
– βS2

)
+

αIP
1 + aI

–
d3

c
P

≤ L
(

S – S2

S

)(
–βI2(S – S2) – βS(I – I2) – d1(S – S2) + γ (I – I2)

)

+ (I – I2)
(

β(S – S2) –
αP

1 + aI

)
+

αIP
1 + aI

–
d3

c
P,

since γ L
S (S – S2)(I – I2) = –γ L

SS2
(I – I2)(S – S2)2 + γ L

S2
(S – S2)(I – I2),

cDqV (S, I, P) ≤
(

γ LI2

SS2
(S – S2)2 –

(βI2 + d1)L
S

(S – S2)2
)

–
γ LI
SS2

(S – S2)2 +
(

β – βL +
γ L
S2

)
(S – S2)(I – I2)

+
(

αI2

1 + aI
–

d3

c

)
P

≤ –
rL

SS2
(S – S2)2 +

1
S2

(βS2 – βLS2 + γ L)(S – S2)(I – I2)

+
(

αI2 –
d3

c

)
P.

Suppose L = βS2
βS2–γ

= 1 + γ

d2
> 0. Hence, cDqV (S, I, P) ≤ 0, when αI2 – d3

c < 0, which equiv-
alent to

�0 < 1 +
βd2d3

d1(γ + d2)(cα – ad3)
.

Hence the theorem is proved. �

Theorem 8 The interior equilibrium point E3 of the fractional-order system (3) is globally
asymptotically stable if αaP3θS3(θ2 – 2ξ I3 + I2

3 ) < γ ξM(1 + aI3)(1 + aξ )(ξ 2 – 2θS3 + S2
3).

Proof The following positive definite Lyapunov function is considered to investigate the
global asymptotic stability of the interior equilibrium point E3:

V (S, I, P) = M
(

S – S3 – S3 ln
S
S3

)
+

(
I – I3 – I3 ln

I
I3

)
+

(
1 + aI3

c

)(
P – P3 – P3 ln

P
P3

)
.

We calculate the time derivative of V (S, I, P) along the solution of model (3) and by apply-
ing Lemma 3.1 in [57], one has

cDqV (S, I, P)
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≤ M
(

S – S3

S

)
cDqS(t) +

(
I – I3

I

)
cDqI(t) +

(
1 + aI3

c

)(
P – P3

P

)
cDqP(t)

≤ M
(

S – S3

S

)
(r – βSI – d1S + γ I)

+ (I – I3)
(

βS –
αP

1 + aI
– (d2 + γ )

)
+ (1 + aI3)(P – P3)

(
αI

1 + aI
–

d3

c

)

≤ M
(

S – S3

S

)(
–d1(S – S3) + γ (I – I3) – βI3(S – S3) – βS(I – I3)

)

+ (I – I3)
(

βS –
αP

1 + aI
– βS3 +

αP3

1 + aI3

)

+ (1 + aI3)(P – P3)α
(

I
1 + aI

–
I3

1 + aI3

)

≤ –
(d1 + βI3)M

S
(S – S3)2 +

γ M
S

(S – S3)(I – I3)

– βM(S – S3)(I – I3) + (I – I3)
(

βS –
αP

1 + aI
– βS3 +

αP3

1 + aI3

)

+ (1 + aI3)(P – P3)α
(

I
1 + aI

–
I3

1 + aI3

)

≤ –
(d1 + βI3)M

S
(S – S3)2 +

γ M
S3

(S – S3)(I – I3)

–
γ M
SS3

(S – S3)2(I – I3) – βM(S – S3)(I – I3)

+ (I – I3)
(

βS –
αP

1 + aI
– βS3 +

αP3

1 + aI3

)

+ (1 + aI3)(P – P3)α
(

I
1 + aI

–
I3

1 + aI3

)

≤ M(S – S3)2

SS3
(γ I3 – βI3S3 – d1S3)

+
1
S3

(S – S3)(I – I3)(γ M – βMS3 + βS3)

+
αP3(I – I3)

1 + aI3
–

αP3(I – I3)
1 + aI

–
γ MI
SS3

(S – S3)2

≤ –
rM(S – S3)2

SS3
+

1
S3

(S – S3)(I – I3)(γ M – βMS3 + βS3)

+
αaP3(I2 – 2II3 + I2

3 )
(1 + aI3)(1 + aI)

–
γ MI(S2 – 2SS3 + S2

3)
SS3

≤ –
rM(S – S3)2

SS3
+

1
S3

(S – S3)(I – I3)(γ M – βMS3 + βS3)

+
αaP3(θ2 – 2ξ I3 + I2

3 )
(1 + aI3)(1 + aξ )

–
γ Mξ (ξ 2 – 2θS3 + S2

3)
θS3

.

Suppose M = βS3
βS3–γ

= βS3(1+aI3)
αP3+d2(1+aI3) > 0 and ξ < S, I < θ . Thus, cDqV (S, I, P) ≤ 0, when

αaP3θS3(θ2 – 2ξ I3 + I2
3 ) < γ ξM(1 + aI3)(1 + aξ )(ξ 2 – 2θS3 + S2

3). By Lemma 4.6 in [58],
it is proof that the interior equilibrium point E3 is globally asymptotically stable. �
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Figure 1 Time series and phase diagram of the predator-extinction equilibrium point E2(8.9167, 0.9921, 0)
and axial equilibrium point E1(11, 0, 0) with different values of β and q = 0.9

3 Numerical simulations
In this section, numerical simulations of the fractional-order eco-epidemiological model
(3) are conducted to illustrate the theoretical results obtained before. The generalized
Adams–Bashforth–Moulton type predictor-corrector scheme is applied in order to find
an approximate solution for our fractional-order system [59, 60]. The role of prey’s dis-
ease (β), predator’s attack rate (α), half saturation constant (a), infected prey’s death rate
(d2) and fractional order (q) are discussed to validate our fractional-order model (3). We
consider the following set of parameters:

r = 11, β = 1, d1 = 1, d2 = 2.1, d3 = 0.5, c = 1,

γ = 0.04, α = 1 and a = 1,
(9)

which were also used for the integer-order model [11]. For the parameter set (9), the
condition �0 = 5.14019 > 1 holds and we get the predator-extinction equilibrium point
E2(S2, I2, 0) = (2.14, 4.21905, 0), also the conditions α = 1 > ad3

c = 0.5 and �0 = 5.14019 >
1+ βd2d3

d1(γ +d2)(cα–ad3) = 1.98131 hold and one gets the interior equilibrium point E3(S3, I3, P3) =
(5.52, 1, 6.76). The axial equilibrium point is E1(S1, 0, 0) = (11, 0, 0).

From Theorem 3, when β = 0.02 and q = 0.9, the condition of �0 = 0.102804 < 1 holds
and the axial equilibrium point E1(11, 0, 0) of the fractional-order system (3) is locally
asymptotically stable as indicated in Fig. 1(b).

Following Theorem 4, when β = 0.24 and q = 0.9, the condition of �0 = 1.23364 < 1 +
βd2d3

d1(γ +d2)(cα–ad3) = 1.23551 holds and the predator-extinction equilibrium point E2(8.91667,
0.992063, 0) of the fractional-order system (3) is locally asymptotically stable as shown in
Fig. 1(a).

One can observe that, the dynamics of the population is stable around the interior
equilibrium point E3(5.52, 1, 6.76) in the presence of a prey’s disease (β = 1) as shown in
Fig. 2(a) coinciding with the bifurcation diagram 5. Furthermore, the infected prey and
predator population go to extinction in the absence of prey’s disease (β = 0) as indicated
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Figure 2 Time series and phase diagram of the stable interior equilibrium point E3(5.52, 1, 6.76) and axial
equilibrium point E1(11, 0, 0) with different values of β and q = 0.9

Figure 3 Bifurcation diagram of the fractional-order model (3) with respect to prey’s disease (β) when q = 1

in Fig. 2(b) concurring with Fig. 5. Therefore, the prey’s disease (β) has a crucial role in
population dynamics and may make the dynamics stable between populations.

For better visualization of the impact of β on the dynamics of the integer-order eco-
epidemiological model (when q = 1), we draw the bifurcation diagram with respect to β

as shown in Fig. 3 coinciding with Fig. 4 and 6. The transcritical bifurcations and supercrit-
ical Hopf bifurcations values localized at βtr1 = 0.194545, βtr2 = 0.240449, β∗

1 = 0.608815
and β∗

2 = 2.19262, respectively, are shown in Fig. 3. It is observed that the system (3) shows
stable extinction of the infected prey and predator populations for β < βtr1, stable extinc-
tion of the predator population for βtr1 < β < βtr2, stable coexistence of populations for
βtr2 < β < β∗

1 , cyclic dynamics occur for β∗
1 < β < β∗

2 and stable coexistence of populations
for β > β∗

2 as shown in Fig. 3 coinciding with Figs. 4 and 6.
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Figure 4 Time series and phase diagram of model (3) with different values of β and q = 1

Figure 5 Bifurcation diagram of the fractional-order model (3) with respect to prey’s disease (β) when
q = 0.95

To depict the impact of prey’s disease (β) on the dynamics of the fractional-order eco-
epidemiological model (3) (when q = 0.9) the bifurcation diagram is depicted in Fig. 3
with respect to β . The transcritical bifurcation value localized at βtr = 0.240449 is shown
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Figure 6 Stability regions of the fractional-order model (3) in the(β–q) plane

in Fig. 5. From Fig. 3 it is observed that the integer-order system (when q = 1) shows a limit
cycle for β∗

1 < β < β∗
2 , which leads to the coexistence of populations in fractional-order case

(when q = 0.95) as shown in Fig. 5 coinciding with Fig. 6. Therefore, the fractional order
(q) and prey’s disease (β) have stabilization effects and may help to control the disease.

Figure 6 shows the stability regions of the fractional-order system (3) with respect to the
prey’s disease (β) and fractional order (q). The regions are divided into four distinguished
parts, where the yellow region shows the stable of axial equilibrium point E1, the red region
shows stability of the predator-extinction equilibrium point E2, the blue region indicates
the stability of the interior equilibrium point E3 and the green region shows a limit cycle
oscillation coinciding with theoretical results obtained before concurringring with Figs. 3,
4 and 5. If we fix the parameter β = 1.5, then for q < 0.966137 the fractional-order system
(3) is stable and the system changes its stability to show a limit cycle oscillation for q >
0.966137. It is to be noted that the three-species coexistence equilibrium point E3 of the
system (3) is stable in the fractional-order case when q = 0.95 becomes unstable in the
integer-order case when q = 1. Therefore, the fractional order (q) has stabilization effects
and can be used to control the persistence of species in the ecosystem.

According to Theorem 6 one can observe that the condition of �0 = 0.1048 < 1 holds
when β = 0.02, and the axial equilibrium point E1(11, 0, 0) of the fractional-order system
(3) is globally asymptotically stable as indicated in Fig. 7.

Figure 8 indicates that all trajectories with different positive initial conditions converge
to the equilibria with predator-extinction outcome, E2 when β = 0.24, which indicates
that E2 is globally asymptotically stable. In this case �0 = 1.23364 < 1 + βd2d3

d1(γ +d2)(cα–ad3) =
1.23551, concurring with the results of Theorem 7.

Figure 9 shows the bifurcation diagram around the interior equilibrium point E3 with
respect to the predator’s attack rate (α) when q = 0.9. It can be observed that the fractional-
order eco-epidemiological model (3) goes through the transcritical bifurcation value at
αtr = 0.61851 and two supercritical Hopf bifurcation values at α∗

1 = 1.10378 and α∗
2 =
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Figure 7 Global asymptotic stability of the axial equilibrium point E1 with different initial values when
β = 0.02 and q = 0.9

Figure 8 Global asymptotic stability of the predator-extinction equilibrium point E2 with different initial
values when β = 0.24 and q = 1

4.3697, respectively, as shown in Fig. 9. One can observe that below the transcritical bifur-
cation value, the predator population goes extinct and the populations of susceptible prey
and infected prey survive as depicted in Fig. 9 corresponding to Fig. 10 when α = 0.25. For
the predator’s attack rate (α) between the transcritical bifurcation value (αtr = 0.61851)
and supercritical Hopf bifurcation value (α∗

1 = 1.10378) the system depicts the stable co-
existence of susceptible prey, infected prey and predator populations as shown in Fig. 9
concurring with Fig. 10 when α = 0.99. For the predator’s attack rate (α) between super-
critical Hopf bifurcation values (α∗

1 = 1.10378 and α∗
2 = 4.3697) the system shows a limit

cycle oscillation as exhibited in Fig. 9 concurring with Fig. 10 when α = 1.5 and α = 4.
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Figure 9 Bifurcation diagram of the fractional-order model (3) with respect to predator’s attack rate (α) when
q = 0.9

Figure 10 Time series and phase diagram of the fractional-order model (3) with different values of predator’s
attack rate (α) when q = 0.9
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Figure 11 Bifurcation diagram of the fractional-order model (3) with respect to half saturation constant (a)
when q = 1

Figure 12 Bifurcation diagram of the fractional-order model (3) with respect to half saturation constant (a)
when q = 0.9

Above the supercritical Hopf bifurcation value (α∗
2 = 4.3697) the system exhibits the sta-

ble coexistence of populations as shown in Fig. 9 coinciding with Fig. 10 when α = 4.5.
Therefore, one can control the coexistence of populations by setting the predator’s attack
rate between αtr = 0.61851 and α∗

1 = 1.10378 or above the supercritical Hopf bifurcation
value (α∗

2 = 4.3697). Note that the predator’s attack rate (α) has a crucial effect on the
dynamics of the fractional-order model (3) as shown in Fig. 9 coinciding with Fig. 10.

Figures 11 and 12 show the bifurcation analysis of the fractional-order system (3) with
respect to half saturation constant (a) for integer-order case (when q = 1) and fractional-
order case (when q = 0.9), respectively. Figure 11 shows that two Hopf bifurcation points
and one transcritical bifurcation point emerge in the integer-order case (when q = 1). On
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Figure 13 Stability regions of the fractional-order model (3) in (a–q) plane

Figure 14 Bifurcation diagram of the fractional-order model (3) with respect to the infected prey’s death rate
(d2) when q = 0.9

the other hand only one transcritical bifurcation point is observed in fractional-order case
(when q = 0.9) and this is clearly shown in Fig. 12 coinciding with Fig. 13.

The stability regions of the fractional-order system (3) with respect to the half saturation
constant (a) and fractional order (q) are presented in Fig. 13. The blue region shows the
stability of the interior equilibrium point E3, the green region shows a limit cycle oscilla-
tion, the red region shows stability of predator-extinction equilibrium point E2.

In order to show the impact of infected prey’s death rate (d2) on the dynamics of the
fractional-order eco-epidemiological model (3) the bifurcation diagram of the interior
equilibrium point E3 is drawn when (q = 0.9) as shown in Fig. 14. The supercritical Hopf
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Figure 15 Time series and phase diagram of the fractional-order model (3) with different values of infected
prey’s death rate (d2) when q = 0.9

Figure 16 Bifurcation diagram of the fractional-order model (3) with respect to fractional order (q)

bifurcation value centralizes at d∗
2 = 1.67897 as indicated in Fig. 14. When d2 > d∗

2 , the
interior equilibrium point E3 is locally asymptotically stable as depicted in Fig. 14 concur-
ring with Fig. 15(a) when d2 = 2. For d2 < d∗

2 , the system shows an unstable coexistence of
susceptible prey, infected prey and predator populations as exhibited in Fig. 14 coinciding
with Fig. 15(b) when d2 = 0.5. Therefore, one can observe that the infected prey’s death
rate (d2) has a critical role in the dynamics of the fractional-order model (3).

For better understand the effects of fractional order (q) on the dynamics of system
(3) one can draw the bifurcation diagram considering fractional order (q) as a bifurca-
tion parameter. Figure 16 exhibits the bifurcation diagrams for susceptible prey, infected
prey and predator populations with respect to q. The supercritical Hopf bifurcation value
centralizes at q∗ = 0.95653 as indicated in Fig. 16. When q < q∗, the interior equilibrium
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Figure 17 Time series and phase diagram of the fractional-order model (3) with different values of fractional
order (q)

point E3(5.52, 1, 6.76) is locally asymptotically stable as shown in Fig. 16 concurring with
Fig. 17(c) when q = 0.94. For q > q∗, the system undergoes limit cycle oscillations as exhib-
ited in Fig. 16 coinciding with Fig. 17(b) when q = 0.96. It is important to notice that when
q = 1 the fractional-order eco-epidemiological model (3) reduces to the epidemiological
model [11]. Also, when q = 1 and γ = 0 the fractional-order eco-epidemiological model
(3) reduces to the classical epidemiological model [10].

One can observe that the integer-order model (when q = 1) shows periodic limit cycle
dynamics as shown in Fig. 16 concurring with Fig. 17(a) when q = 1. Furthermore, in the
fractional-order case (when q = 0.94) the system exhibits the stable co-existence of sus-
ceptible prey, infected prey and predator as indicated in Fig. 16 coinciding with Fig. 17(c)
when q = 0.94. Hence, the fractional order (q) has stabilization effects and it may help to
control the coexistence between of susceptible prey, infected prey and predator popula-
tions when 0 < q < q∗.

4 Conclusion
In this paper, a fractional-order eco-epidemiological model incorporating the predator’s
attack rate (α) and half saturation constant (a) with infection in the prey population is for-
mulated and analyzed in which the populations have been divided into susceptible prey,
infected prey and predator. A sufficient condition for the existence as well as uniqueness of
the fractional-order eco-epidemiological model (3) has been obtained. It has been proved
that the solutions of the fractional-order system of differential equations (3) are uniformly
bounded and non-negative. The local and global stability of the equilibrium points of the
fractional-order eco-epidemiological model (3) has been investigated. The threshold pa-
rameter (�0) has been used to determine the existence and stability conditions of the equi-
librium points. It has noted that the axial equilibrium point E1 is locally asymptotically sta-
ble when the predator-extinction equilibrium point E2 and the interior equilibrium point
E3 do not exist. Numerical simulations have been conducted to illustrate our analytical re-
sults. For better visualization of the effects of the prey’s disease (β), predator’s attack rate
(α), half saturation constant (a), infected prey’s death rate (d2) and fractional order (q) on
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the dynamics of the fractional-order eco-epidemiological model (3) we have drawn the
bifurcation diagrams with respect to β ,α, a, d2 and q, respectively. It has been shown that
the prey’s disease may stabilize the system. Also, it has to be noted the predator’s attack
rate, the half saturation constant and the infected prey’s death rate have crucial effect on
the dynamics of the fractional-order model (3). Furthermore, it is observed that the frac-
tional order (q) is important for the stabilization of the system and it may help to control
the coexistence between of susceptible prey, infected prey and predator populations when
0 < q < q∗.
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