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Abstract
This paper is concerned with a class of fractional neutral stochastic integro-differential
equations with impulses driven by fractional Brownian motion (fBm). First, by means
of the resolvent operator technique and contraction mapping principle, we can
directly show the existence and uniqueness result of mild solution for the
aforementioned system. Then we develop a new impulsive-integral inequality to
obtain the global attracting set and pth moment exponential stability for this type of
equation. Worthy of note is that this powerful inequality after little modification is
applicable to the case with delayed impulses. Moreover, sufficient conditions which
guarantee the pth moment exponential stability for some pertinent systems are
stated without proof. In the end, an example is worked out to illustrate the theoretical
results.
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1 Introduction
In recent two decades, fractional stochastic evolution equations have grabbed the atten-
tion of many researchers, owing to their applications in various fields, such as physics,
chemistry, viscoelasticity, heat conduction, aerodynamics, electrodynamics of complex
medium, electricity mechanics, and so forth (see, e.g., [1–4] and the references therein).
Meanwhile, impulsive dynamical systems arise as a natural characterization of these real-
world phenomena and processes which are frequently subject to instantaneous perturba-
tions and experience abrupt changes (impulses). For details on theory and applications
of such systems, we refer to the monographs [5, 6], the papers [7, 8] etc. and the refer-
ences therein. Moreover, considering that the evolution of abundant dynamical systems
depends not only on current state and past state but also upon the derivative of the history
state, many authors have studied impulsive fractional neutral stochastic evolution equa-
tions (IFNSEEs). The accumulated results mainly focus on well-posedness, stability and
controllability; for instance, see [9–11] and the references therein.

On the other hand, along with the research of stability (see, e.g., [7–9, 12, 13] and the
references therein), there has been an increasing interest in study on global attracting sets
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of stochastic dynamical systems over the last few years, since attracting sets guarantee
the solutions enter some sets and do not exist. Among others, motivated by Chen’s work
[13], Long et al. [14] examined the global attractiveness and exponential stability of impul-
sive stochastic neutral evolution equations driven by Q-Wiener process. Li [15] discussed
the global attracting set and quasi-invariant set of impulsive neutral stochastic functional
partial differential equations driven by fractional Brownian motion (fBm), where the Hurst
exponent H ∈ ( 1

2 , 1). Also, the global attracting set of the neutral stochastic partial differ-
ential equation with finite delay and additive α-stable process is given by Liu and Li [16].
Duan and ren [17] proved the attractiveness and quasi-invariant set of impulsive neutral
stochastic integro-differential equation driven by fBm with Hurst parameter 1

2 < H < 1. In
view of the practicability of second-order stochastic differential equations (see, e.g., [18]),
Xu et al. [19] showed global attracting sets of second-order neutral stochastic evolution
equations driven by a fBm and an independent standard Wiener process, without con-
sidering impulsive effects. Here it is worth noting that Deng and Shu [20] established an
impulsive-integral inequality to obtain the exponential stability of mild solution to impul-
sive neutral stochastic functional differential equations driven by fBm with noncompact
semigroup. Different from the papers mentioned above, Xu and Luo [21] derived the global
attracting set and exponential stability of neutral stochastic evolution equations driven by
fBm with the Hurst exponent H ∈ (0, 1

2 ). Nevertheless, the aforementioned papers can-
not answer the question that if the first or the second-order derivative is replaced by a
fractional-order derivative. That is to say, there is no study on global attracting sets and
exponential stability of impulsive fractional neutral stochastic evolution equations driven
by fBm in the existing literature. Moreover, in some real-world problems, the impulsive
functions depend on former state variables [22], i.e., �x(tk) = Ik(xt–

k
). All these facts push

us to develop and explore techniques and methods for the global attractiveness and expo-
nential stability of IFNSEEs, especially with delayed impulses.

Based on the above statement and analysis, this work will be devoted to deriving the
global attracting set and exponential stability for IFNSEEs. We use the resolvent opera-
tor technique, inequality technique and stochastic analysis theory to attain this goal. In
addition, we summarize and highlight the contributions of this paper as follows.

• The global attracting set and exponential stability of a class of fractional neutral
stochastic integro-differential equations with impulses driven by fBm are obtained.

• We establish a new impulsive-integral inequality, and this key inequality is applicable
to investigate the global attracting set and exponential stability for various types of
neutral stochastic evolution equations with delayed impulses.

• By the established impulsive-integral inequality, we develop the pth moment
exponential stable results of some pertinent systems without proof.

The rest of this paper is organized as follows. Section 2 introduces some preliminary
notations, lemmas, hypotheses, definitions and the mathematical model. Section 3 focuses
on proposing a new impulsive-integral inequality which is a key tool in proving the global
attracting set and exponential stability of mild solutions for IFNSEEs. Some useful remarks
are also discussed. In Sect. 4, the global attracting set of the considered system is proved
and exponential stable results of the concerned system and relevant systems are presented.
In Sect. 5, an example is provided to illustrate the obtained theoretical results. Finally, we
give the conclusion of this paper in Sect. 6.
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2 Preliminary
(Ω ,F ,P) stands for a complete probability space equipped with a normal filtration {Ft}t≥0

satisfying the usual conditions. Let H, K be two real, separable Hilbert spaces and L(K,H)
represents the family of all bounded linear operators from K to H. For simplicity, we use
the same notation ‖ · ‖ to express the norms in H, K and L(K,H). Let K0 = Q 1

2 K, and
L0

2 = L2(K0,H) be a separable Hilbert space of all Hilbert–Schmidt operators from Q 1
2 K

to H with the norm ‖ · ‖L0
2
.PC([–r, 0];H) indicates the space of all càdlàg functions ψ from

[–r, 0] to H, and for ψ(t) ∈PC , ‖ψ‖PC = sup–r≤t≤0 ‖ψ(t)‖.
Q ∈ L(K,K) denotes a non-negative self-adjoint operator and let L0

Q(K,H) be the space
of all ξ ∈ L(K,H) such that ξQ 1

2 is a Hilbert–Schmidt operator endowed with the norm
‖ξ‖2

L0
Q(K,H) = tr(ξQξ ∗). Consider the following series:

BH
Q (t) =

∞∑

n=1

βH
n (t)Q

1
2 en, t ≥ 0,

where {βH
n (t)}n∈N is a sequence of two-sided one-dimensional standard fBm mutually

independent on (Ω ,F ,P) and {en}n∈N is a complete orthonormal basis in K. This se-
ries converges in the space K when Q is a non-negative self-adjoint trace class operator,
namely, BH

Q (t) ∈ L2(Ω ,K). Then the above BH
Q (t) is called a K-valued Q-cylindrical fBm

with covariance operator Q. For example, if {λn}n∈N is a bounded sequence of non-negative
real numbers such that Qen = λnen, supposing that Q is a nuclear operator in K (that is,∑∞

n=1 λn < ∞), then the K-valued Q-cylindrical fBm

BH
Q (t) =

∞∑

n=1

βH
n (t)Q

1
2 en =

∞∑

n=1

√
λnβ

H
n (t)en, t ≥ 0,

is well-defined. For more details on fBm BH
Q (t) and the stochastic integral with respect to

fBm BH
Q (t), one can refer to [23, 24].

In this paper, we discuss the impulsive fractional neutral stochastic integro-differential
equation driven by fBm of the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDα
t [x(t) – g(t, xt)] = A[x(t) – g(t, xt)] + I

2–α
t (f (t, xt))

+ h(t, xt) dW (t)
dt + σ (t)

dBH
Q (t)
dt , t �= tk , t ∈ J ,

�x(tk) = Ik(x(t–
k )), �x′(tk) = Gk(x(t–

k )), t = tk , k = 1, 2, . . . ,

x(t) = ψ(t) ∈PCb
F0

([–r, 0];H), t ∈ [–r, 0],
d
dt [x(t) – g(t, xt)]t=0 = ϕ ∈H,

(1)

where cDα
t is the fractional derivative of order α ∈ (1, 2) in the sense of Caputo, A : D(A) ⊆

H →H is a densely defined closed linear operator, Iαt denotes the αth order fractional in-
tegral, the functions g, f : J ×PC →H, h : J ×PC → L0

2, σ : J → L0
Q(K,H), Ik , Gk : PC →H

are appropriate continuous functions, the history process xt = x(t + τ ), –r ≤ τ ≤ 0 is PC-
valued, BH

Q (t) denotes a fractional Brownian motion with Hurst exponent H ∈ ( 1
2 , 1), W (t)

symbolizes a standard Wiener process independent of BH
Q (t). PCb

F0
([–r, 0];H) represents

the family of all almost surely bounded, F0-measurable, PC-valued random variables.
Moreover, �x(tk) = x(t+

k ) – x(t–
k ), �x′(tk) = x′(t+

k ) – x′(t–
k ), x(t+

k ) and x(t–
k ) stand for the right
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and left limits of x(t) at tk , x′(t+
k ) and x′(t–

k ) indicate the right and left limits of x′(t) at tk , and
the fixed impulsive sequence tk satisfies 0 < t1 < · · · < tk < tk+1 < · · · with limk→∞ tk = ∞.

Before starting the analyses, we state some basic definitions and introduce the required
lemmas.

Definition 2.1 ([1]) For the function f ∈ L1((0, T), H), 0 < T < ∞, the Riemann–Liouville
fractional integral of f of order α > 0 is given as

RL
I
α
t f (t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds.

Definition 2.2 ([1]) For the function f ∈ L1((0, T),H), the fractional derivative of f of
order α in the Riemann–Liouville sense is given by

RLDα
t f (t) =

dm

dtm I
m–α
t f (t), m – 1 < α < m, m ∈ N

+,

where RL
I

m–α
t f ∈ Zm,1((0, T),H). Zm,1((0, T),H) is the Sobolev space defined by

Zm,1(
(0, T),H

)
=

{
x ∈H,∃w ∈ L1(

(0, T),H
)

: x(t) =
m–1∑

k=0

ek
tk

k!

+
tm–1

(m – 1)!
∗ w(t)

}
,

where w(t) = xm(t), ek = xk(0).

Definition 2.3 ([1]) For the function f ∈ Cm–1((0, T),H) ∩ L1((0, T),H), the fractional
derivative of f of order α in the Caputo sense is defined by

cDα
t f (t) =

1
Γ (m – α)

∫ t

0
(t – s)m–α–1f m(s) ds, m – 1 < α < m.

Definition 2.4 ([25]) Let A : D(A) ⊆H →H be a closed linear operator. Then A is called
a (M, θ ,α,μ)-type sectorial operator if there exist three constants μ ∈ R, θ ∈ (0, π

2 ) and
M > 0 such that

(a) The α-resolvent of A exists an exterior of the sector

μ + Sθ =
{
μ + λα : λ ∈C,

∣∣Arg
(
–λα

)∣∣ < θ
}

,

(b) ‖R(λα , A)‖ = ‖(λαI – A)–1‖ ≤ M
|λα–μ| , λ

α /∈ μ + Sθ .

Lemma 2.5 ([26]) Assume that A is a (M, θ ,α,μ)-type sectorial operator, and f fulfills the
uniform Hölder condition with index γ ∈ (0, 1], then the unique solution of the following
Cauchy problem:

⎧
⎨

⎩

cDα
t x(t) = Ax(t) + f (t), 1 < α < 2, t ∈ [0, T],

x(0) = x0 ∈H, x′(0) = x1 ∈H,
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is given as

x(t) = Sα(t)x0 + Kα(t)x1 +
∫ t

0
Tα(t – s)f (s) ds.

Note that the operators Sα(t), Kα(t), Tα(t) are determined by

Sα(t) =
1

2π i

∫

C
eλtλα–1R

(
λα , A

)
dλ,

Kα(t) =
1

2π i

∫

C
eλtλα–2R

(
λα , A

)
dλ,

Tα(t) =
1

2π i

∫

C
eλtR

(
λα , A

)
dλ,

where C is a suitable path with λα /∈ μ + Sθ , λ ∈C.

Then, following Theorem 4.3 in Ref. [26] and Lemma 2.1, Definition 3.1 in Ref. [27], we
introduce the definition of mild solution to the considered system (1).

Definition 2.6 An H-valued stochastic process x(t) is said to be a mild solution to Eq. (1),
if

(a) x(t) is Ft-adapted for each t ∈ [0, T], with P{ω :
∫ T

0 ‖x(t)‖2 dt < ∞} = 1 almost
surely;

(b) x(t) ∈H, 0 ≤ t ≤ T has càdlàg paths a.s., and for arbitrary t ∈ [0, T], x(t) satisfies the
integral equation as follows:

x(t) = Sα(t)
[
ψ(0) – g(0,ψ)

]
+ Kα(t)ϕ + g(t, xt) +

∫ t

0
Kα(t – s)f (s, xs) ds

+
∫ t

0
Tα(t – s)h(s, xs) dW (s) +

∫ t

0
Tα(t – s)σ (s) dBH

Q (s)

+
∑

0<tk <t

Sα(t – tk)Ik
(
x
(
t–
k
))

+
∑

0<tk<t

Kα(t – tk)Gk
(
x
(
t–
k
))

,

x(t) = ψ(t) ∈PCb
F0

(
[–r, 0];H

)
, t ∈ [–r, 0].

Definition 2.7 ([14]) The set S ⊂ H is called a global attracting set for Eq. (1), if for any
initial data ψ ∈PCb

F0
, the solution xt(0,ψ) converges to S as t → +∞ i.e.,

dist
(
xt(0,ψ),S

) → 0 as t → +∞,

where dist(x,S) = infy∈SE(‖x – y‖).

Definition 2.8 ([14]) The mild solution x(t) for system (1) with initial condition ψ ∈PCb
F0

is said to be pth moment exponentially stable if there exist a pair of constants M ≥ 1 and
η > 0 such that

E
∥∥x(t)

∥∥p ≤ Me–ηt , t ≥ 0, p ≥ 2.
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Lemma 2.9 ([28]) Suppose that Ψ (t), t ≥ 0 is a L0
2-valued predictable process, then, for

any arbitrary p ≥ 2, there exists a constant Cp > 0 such that

sup
t∈[0,T]

E

∥∥∥∥
∫ t

0
Ψ (s) dW (s)

∥∥∥∥
p

≤ Cp

(∫ T

0

(
E

∥∥Ψ (s)
∥∥p

L0
2

)2/p ds
)p/2

,

where Cp = (p(p – 1)/2)p/2.

Lemma 2.10 ([28]) Let p ≥ 2 and x, y ∈H, then, for any δ ∈ (0, 1],

‖x + y‖p ≤ (1 + δ)p–1‖x‖p + (1 + 1/δ)p–1‖y‖p,

‖x + y‖p ≤ ‖x‖p/δp–1 + ‖y‖p/(1 – δ)p–1.

So as to achieve the desired goals, we impose the following hypotheses for the concerned
system (1).

(H1) The α-resolvent family Sα(t), Kα(t), Tα(t) generated by the sectorial operator A is
compact on D(A), and for all t ≥ 0, there exist four constants M̃ ≥ 1 and γ1,γ2,γ3 >
0 such that

∥∥Sα(t)
∥∥ ≤ M̃e–γ1t ,

∥∥Kα(t)
∥∥ ≤ M̃e–γ2t ,

∥∥Tα(t)
∥∥ ≤ M̃e–γ3t .

(H2) (a) The function g(t, ·) ∈ D((–A)β ) for β ∈ (0, 1] and the mapping (–A)βg(t, ·) is
globally Lipschitz continuous, i.e., for ∀ξ ,η ∈PC , t ≥ 0, there exists a positive con-
stant k0 such that

∥∥(–A)βg(t, ξ ) – (–A)βg(t,η)
∥∥ ≤ k0‖ξ – η‖PC ,

and g(t, 0) = 0, the inequality δ = ‖(–A)–β‖k0 < 1 holds.
(b) The operator P : PC([–r, T],H) → PC([0, T],H) is a completely continuous

operator defined by Pxt = d
dt (g(t, xt)) such that the set {Pxt : xt ∈PC([–r, T],H), t ∈

[0, T]} is precompact in H.
(H3) The coefficient functions f (t, ·), h(t, ·) are globally Lipschitz continuous, that is, for

∀ξ ,η ∈PC , there exist positive constants Cf , Ch, lf , lh such that

∥∥f (t, ξ ) – f (t,η)
∥∥ ≤ Cf ‖ξ – η‖PC ,

∥∥f (t, 0)
∥∥ ≤ lf ,

∥∥h(t, ξ ) – h(t,η)
∥∥

L0
2
≤ Ch‖ξ – η‖PC ,

∥∥h(t, 0)
∥∥

L0
2
≤ lh,

for all t ≥ 0.
(H4) The function σ : [0, +∞) → L0

Q(K,H) satisfies for the complete orthonormal basis
{en}n∈N+ ∈K, the condition that

∞∑

n=1

∥∥σ (t)Q
1
2 en

∥∥
L2([0,T];H) < ∞,

∞∑

n=1

∥∥σ (t)Q
1
2 en

∥∥ is uniformly convergent for t ∈ [0, T].
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(H5) For every k = 1, 2, . . . , there exist positive constants ck , dk for all x, y ∈H such that

∥∥Ik(x) – Ik(y)
∥∥ ≤ ck‖x – y‖,

∥∥Ik(0)
∥∥ = 0,

∥∥Gk(x) – Gk(y)
∥∥ ≤ dk‖x – y‖,

∥∥Gk(0)
∥∥ = 0,

and
∑∞

k=1 ck ,
∑∞

k=1 dk < +∞.

Remark 2.11 According to the estimates on ‖Sα(t)‖, ‖Kα(t)‖, ‖Tα(t)‖ in Ref. [25], we know
they are not only bounded, but tend to zero as t → ∞ when μ < 0 and given φ ∈ (0,π ). So
combining with the work of Ref. [27], Hypothesis (H1) is justified.

Under assumptions (H1)–(H5), by virtue of inequality techniques and the Banach fixed
point theorem, one can obtain the existence and uniqueness of mild solution for system
(1) on [–r, T], 0 < T < ∞ without difficulty.

3 Impulsive-integral inequality
In this part, we prove the following impulsive-integral inequality which will be used to
obtain the global attracting set and pth moment exponential stability of system (1).

Lemma 3.1 Assume that y(t) : [–r, +∞) →R
+ is a solution of the delay integral inequality:

y(t) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a1e–γ1t + a2e–γ2t + a3‖yt‖PC + a4
∫ t

0 e–γ2(t–s)‖ys‖PC ds

+ a5
∫ t

0 e–γ3(t–s)‖ys‖PC ds +
∑

0<tk<t cke–γ1(t–tk )y(t–
k )

+
∑

0<tk<t dke–γ2(t–tk )y(t–
k ) + a6, t ≥ 0,

ψ(t), t ∈ [–r, 0],

(2)

where ψ(t) ∈ PC([–r, 0];R+), γ1,γ2,γ3 > 0 and ai (i = 1, 2, . . . , 6), ck , dk (k = 1, 2, . . .) are
non-negative constants. If

a3 +
a4

γ2
+

a5

γ3
+

∞∑

k=1

ck +
∞∑

k=1

dk
�= κ < 1, (3)

then we have

y(t) ≤ Ke–γ t +
a6

1 – κ
, ∀t ≥ 0,

where γ ∈ (0,γ ∗), γ ∗ = min{γ1,γ2,γ3}, K ≥ ‖ψ‖PC and

a1 + a2

K
+ a3eγ r +

a4eγ r

γ2 – γ
+

a5eγ r

γ3 – γ
+

∞∑

k=1

ck +
∞∑

k=1

dk < 1. (4)

Proof First we remark that once the inequality (3), i.e., κ < 1 is determined, there exist
constants γ ∈ (0,γ ∗), K ≥ ‖ψ‖PC such that Eq. (4) is workable. Next, we prove the state-
ment by contradiction. If the assertion of Lemma 3.1 was false, there must be a t̂ > 0 such
that

y(̂t) ≥ Ke–γ t̂ +
a6

1 – κ
(5)
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and

y(t) < Ke–γ t +
a6

1 – κ
, t ∈ [–r,̂ t]. (6)

In view of (2) and (6), we derive

y(̂t) ≤ a1e–γ1̂t + a2e–γ2̂t + a3‖ŷt‖PC + a4

∫ t̂

0
e–γ2(̂t–s)‖ys‖PC ds

+ a5

∫ t̂

0
e–γ3(̂t–s)‖ys‖PC ds +

∑

0<t<̂t

cke–γ1(̂t–tk )y
(
t–
k
)

+
∑

0<t<̂t

dke–γ1(̂t–tk )y
(
t–
k
)

+ a6

≤ a1e–γ1̂t + a2e–γ2̂t + a3

[
Ke–γ t̂eγ r +

a6

1 – κ

]

+ a4

∫ t̂

0
e–γ2(̂t–s)

[
Ke–γ seγ r +

a6

1 – κ

]
ds

+ a5

∫ t̂

0
e–γ3(̂t–s)

[
Ke–γ seγ r +

a6

1 – κ

]
ds

+
∑

0<tk <̂t

cke–γ1(̂t–tk )
[

Ke–γ t–
k +

a6

1 – κ

]

+
∑

0<tk <̂t

dke–γ2(̂t–tk )
[

Ke–γ t–
k +

a6

1 – κ

]

≤
(

a1 + a2

K
+ a3eγ r +

a4eγ r

γ2 – γ
+

a5eγ r

γ3 – γ
+

∞∑

k=1

ck +
∞∑

k=1

dk

)
Ke–γ t̂

+

(
a3 +

a4

γ2
+

a5

γ3
+

∞∑

k=1

ck +
∞∑

k=1

dk

)
a6

1 – κ
+ a6, (7)

owing to Eqs. (3) and (4), it follows that

y(̂t) < Ke–γ t̂ +
a6

1 – κ
, (8)

this contradicts the inequality (5). Hence the conclusion in Lemma 3.1 is proved. �

Remark 3.2 It should be pointed out that when the y(t–
k ) of (2) changes to yt–

k
, we only

need to modify (4) to

a1 + a2

K
+ eγ r

(
a3 +

a4

γ2 – γ
+

a5

γ3 – γ
+

∞∑

k=1

ck +
∞∑

k=1

dk

)
< 1, (9)

Lemma 3.1 still holds.

Remark 3.3 Incidentally, Lemma 3.1 contains and improves some recent results, e.g.,
Lemma 3.1 in [14], Lemma 3.3 in [17] and Lemma 3.1 in [19]. In other words, Lemma 3.1
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expands the application scope of impulsive-integral inequalities to study the global attract-
ing set and exponential stability.

4 Global attracting set and pth moment exponential stability
Before proceeding any further, we state two needed lemmas. Thanks to assumptions on
Tα(t), together with the techniques shown in Ref. [15], the proofs of the following two
lemmas are straightforward and so will not be given.

Lemma 4.1 For any σ : [0, +∞] → L0
Q(K,H) that satisfies condition (H4) and

supt≥0 ‖σ (t)‖L0
Q

< ∞, there exists a constant C > 0 depending on M̃, H , γ3 and p such that

E

∥∥∥∥
∫ t

0
Tα(t – s)σ (s) dBH

Q (s)
∥∥∥∥

p

≤ C sup
t≥0

∥∥σ (t)
∥∥p

L0
Q

,

for any p ≥ 2 and t ≥ 0.

Lemma 4.2 If σ : [0, +∞] → L0
Q(K,H) satisfies Hypothesis (H4) with

∫ +∞

0
eγ3s∥∥σ (s)

∥∥2
L0

Q
ds < ∞,

then we have

E

∥∥∥∥
∫ t

0
Tα(t – s)σ (s) dBH

Q (s)
∥∥∥∥

p

≤ Ce–γ3t ,

for any p ≥ 2 and t ≥ 0, where the constant C > 0 depends on M̃, H , p, γ3.

Then we will show and prove our main results in the next section.

Theorem 4.3 Let Hypotheses (H1)–(H5) and supt≥0 ‖σ (t)‖L0
Q

< ∞ hold, then S = {x(t) ∈
H | E‖x(t)‖p ≤ (1 – κ̂)–1â6} is the global attracting set of system (1) provided that

κ̂ = δ +
14p–1M̃pγ

–p
2 Cp

f

(1 – δ)p–1 +
14p–1M̃pγ

– p
2

3 Cp
h( p(p–1)

2 )
p
2 ( p–2

2p–2 )
p
2 –1

(1 – δ)p–1

+
7p–1M̃p((

∑∞
k=1 ck)

p
q +1 + (

∑∞
k=1 dk)

p
q +1)

(1 – δ)p–1 < 1, (10)

where p ≥ 2, 1 < q ≤ 2 with 1
p + 1

q = 1, and

â6 =
14p–1M̃pγ

–p
2 lp

f + 14p–1M̃pγ
– p

2
3 lp

h( p(p–1)
2 )

p
2 ( p–2

2p–2 )
p
2 –1

(1 – δ)p–1

+
7p–1C supt≥0 ‖σ (t)‖p

L0
Q

(1 – δ)p–1 .
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Proof It follows from Definition 2.6 that

E
∥∥x(t)

∥∥p ≤ 1
δp–1 E

∥∥g(t, xt)
∥∥p +

1
(1 – δ)p–1 E

∥∥x(t) – g(t, xt)
∥∥p

≤ 1
δp–1 E

∥∥g(t, xt)
∥∥p +

1
(1 – δ)p–1

{
14p–1

E
∥∥Sα(t)ψ(0)

∥∥p

+ 14p–1
E

∥∥Sα(t)g(0,ψ)
∥∥p + 7p–1∥∥Kα(t)ϕ

∥∥p

+ 7p–1
E

∥∥∥∥
∫ t

0
Kα(t – s)f (s, xs) ds

∥∥∥∥
p

+ 7p–1
E

∥∥∥∥
∫ t

0
Tα(t – s)h(s, xs) dW (s)

∥∥∥∥
p

+ 7p–1
E

∥∥∥∥
∫ t

0
Tα(t – s)σ (s) dBH

Q (s)
∥∥∥∥

p

+ 7p–1
E

∥∥∥∥
∑

0<tk<t

Sα(t – tk)Ik
(
x
(
t–
k
))∥∥∥∥

p

+ 7p–1
E

∥∥∥∥
∑

0<tk<t

Kα(t – tk)Gk
(
x
(
t–
k
))∥∥∥∥

p}

≤ δE‖xt‖p
PC +

14p–1

(1 – δ)p–1 (F1 + F2) +
7p–1

(1 – δ)p–1

8∑

j=3

Fj. (11)

Now, we estimate each term on the right-hand side of the above formula one by one. In
terms of Hypotheses (H1) and (H2), we get

F1 + F2 ≤ M̃pe–pγ1t
E

∥∥ψ(0)
∥∥p + M̃pe–pγ1tδp

E‖ψ‖p
PC

≤ M̃p(
1 + δp)

E‖ψ‖p
PCe–γ1t ,

F3 ≤ M̃p
E‖ϕ‖pe–γ2t .

(12)

By the aid of (H3) and Hölder’s inequality, one can easily obtain

F4 ≤ E

(∫ t

0
M̃e–γ2(t–s)(Cf ‖xs‖PC +

∥∥f (s, 0)
∥∥)

ds
)p

≤ 2p–1M̃pγ2
1–pCp

f

∫ t

0
e–γ2(t–s)

E‖xs‖p
PC ds + 2p–1M̃pγ2

–plp
f . (13)

To proceed, the Hypothesis (H3) and Lemma 2.9 lead to

F5 ≤ M̃p
(

p(p – 1)
2

)p/2(∫ t

0

(
e–pγ3(t–s)

E
∥∥h(s, xs)

∥∥p
L0

2

)2/p ds
)p/2

= M̃p
(

p(p – 1)
2

) p
2
(∫ t

0
e– 2γ3(p–1)(t–s)

p–2 ds
) p

2 –1 ∫ t

0
e–γ3(t–s)

E
∥∥h(s, xs)

∥∥p
L0

2
ds

≤ 2p–1M̃pCp
h

(
p(p – 1)

2

) p
2
(

p – 2
2γ3(p – 1)

) p
2 –1 ∫ t

0
e–γ3(t–s)

E‖xs‖p
PC ds

+ 2p–1M̃p
(

p(p – 1)
2

) p
2
(

p – 2
2(p – 1)

) p
2 –1

γ
– p

2
3 lp

h. (14)
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Thanks to Lemma 4.1, we directly obtain

F6 ≤ C sup
t≥0

∥∥σ (t)
∥∥p

L0
Q

. (15)

For 1 < q ≤ 2 with 1
p + 1

q = 1, by utilizing condition (H5) and Hölder’s inequality, we arrive
at

F7 ≤ E

(∑

0<tk

∥∥Sα(t – tk)
∥∥∥∥Ik

(
x
(
t–
k
))∥∥

)p

≤ M̃p
E

( ∑

0<tk<t

cke–γ1(t–tk )∥∥x
(
t–
k
)∥∥

)p

≤ M̃p

( ∞∑

k=1

ck

) p
q ∑

0<tk<t

cke–γ1(t–tk )
E

∥∥x
(
t–
k
)∥∥p, (16)

repeating the above computing for the term F8, we deduce that

F8 ≤ E

(∑

0<tk

∥∥Kα(t – tk)
∥∥∥∥Gk

(
x
(
t–
k
))∥∥

)p

≤ M̃p

( ∞∑

k=1

dk

) p
q ∑

0<tk <t

dke–γ2(t–tk )
E

∥∥x
(
t–
k
)∥∥p. (17)

Putting (12)–(17) together into (11), we have

E
∥∥x(t)

∥∥p ≤ δE‖xt‖p
PC +

14p–1

(1 – δ)p–1
(
M̃p(

1 + δp)
E‖ψ‖p

PCe–γ1t)

+
7p–1

(1 – δ)p–1

{
M̃p

E‖ϕ‖pe–γ2t + 2p–1M̃pγ2
–plp

f

+ 2p–1M̃pγ2
1–pCp

f

∫ t

0
e–γ2(t–s)

E‖xs‖p
PC ds

+ 2p–1M̃pCp
h

(
p(p – 1)

2

) p
2
(

p – 2
2γ3(p – 1)

) p
2 –1

×
∫ t

0
e–γ3(t–s)

E‖xs‖p
PC ds

+ 2p–1M̃p
(

p(p – 1)
2

) p
2
(

p – 2
2(p – 1)

) p
2 –1

γ
– p

2
3 lp

h

+ C sup
t≥0

∥∥σ (t)
∥∥p

L0
Q

+ M̃p

( ∞∑

k=1

ck

) p
q ∑

0<tk <t

cke–γ1(t–tk )
E

∥∥x
(
t–
k
)∥∥p

+ M̃p

( ∞∑

k=1

dk

) p
q ∑

0<tk<t

dke–γ2(t–tk )
E

∥∥x
(
t–
k
)∥∥p

}
. (18)
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Let â3 = δ, and

â1 =
14p–1

(1 – δ)p–1 M̃p(
1 + δp)

E‖ψ‖p
PC ,

â2 =
7p–1

(1 – δ)p–1 M̃p
E‖ϕ‖p,

â4 =
14p–1

(1 – δ)p–1 M̃pγ2
1–pCp

f ,

â5 =
14p–1

(1 – δ)p–1 M̃pCp
h

(
p(p – 1)

2

) p
2
(

p – 2
2γ3(p – 1)

) p
2 –1

,

â6 =
14p–1M̃pγ

–p
2 lp

f + 14p–1M̃pγ
– p

2
3 lp

h( p(p–1)
2 )

p
2 ( p–2

2p–2 )
p
2 –1

(1 – δ)p–1

+
7p–1C supt≥0 ‖σ (t)‖p

L0
Q

(1 – δ)p–1 ,

ĉk =
7p–1M̃p(

∑∞
k=1 ck)

p
q ck

(1 – δ)p–1 , d̂k =
7p–1M̃p(

∑∞
k=1 dk)

p
q dk

(1 – δ)p–1 .

The inequality (10) implies that

â3 +
â4

γ2
+

â5

γ3
+

∞∑

k=1

ĉk +
∞∑

k=1

d̂k
�= κ̂ < 1.

Since ψ ∈PCb
F0

([–r, 0];H), there exists K̂ ≥ ‖ψ‖PC such that

â1 + â2

K̂
+ â3eγ r +

â4eγ r

γ2 – γ
+

â5eγ r

γ3 – γ
+

∞∑

k=1

ĉk +
∞∑

k=1

ĉk < 1,

with γ ∈ (0,γ ∗), γ ∗ = min{γ1,γ2,γ3}. Then it follows from Lemma 3.1 that

E
∥∥x(t)

∥∥p ≤ K̂e–γ t + (1 – κ̂)–1â6.

Therefore, in view of Definition 2.7, we complete the proof of Theorem 4.3. �

Theorem 4.4 Suppose that the hypotheses of Theorem 4.3 are satisfied with lf = lg = 0,

∫ +∞

0
eγ3s∥∥σ (s)

∥∥2
L0

Q
ds < ∞, (19)

and

κ̂ = δ +
14p–1M̃pγ

–p
2 Cp

f

(1 – δ)p–1 +
14p–1M̃pγ

– p
2

3 Cp
h( p(p–1)

2 )
p
2 ( p–2

2p–2 )
p
2 –1

(1 – δ)p–1

+
7p–1M̃p((

∑∞
k=1 ck)

p
q +1 + (

∑∞
k=1 dk)

p
q +1)

(1 – δ)p–1 < 1.
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Then the mild solution of system (1) is pth moment exponentially stable.
Proceeding as in the proof of Theorem 4.3, by virtue of Lemmas 4.2 and 3.1, one can

verify Theorem 4.4 holds. We omit details of the proof here.
At the end of this part, some pertinent results are stated without proof.
If the neutral term g(t, ·) = 0, the system (1) reduces to the following impulsive fractional

stochastic partial functional integro-differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDα
t x(t) = Ax(t) + I

2–α
t (f (t, xt)) + h(t, xt) dW (t)

dt

+ σ (t)
dBH

Q (t)
dt , t �= tk , t ∈ J ,

�x(tk) = Ik(x(t–
k )), �x′(tk) = Gk(x(t–

k )), t = tk , k = 1, 2, . . . ,

x(t) = ψ(t) ∈PCb
F0

([–r, 0];H), t ∈ [–r, 0],

x′(0) = ϕ ∈H.

(20)

Corollary 4.5 Assume that Hypotheses (H1), (H3)–(H5) with lf = lg = 0 and
∫ +∞

0 eγ3s ×
‖σ (s)‖2

L0
Q

ds < ∞ are satisfied. If for any p ≥ 2, 1 < q ≤ 2 with 1
p + 1

q = 1,

κ̂ = 7p–1M̃pγ
–p
2 Cp

f + 7p–1M̃pγ
– p

2
3 Cp

h

(
p(p – 1)

2

) p
2
(

p – 2
2p – 2

) p
2 –1

+ 7p–1

( ∞∑

k=1

ck

) p
q +1

+ 7p–1

( ∞∑

k=1

dk

) p
q +1

< 1,

then the mild solution to system (20) is exponentially stable in pth moment.

When �x(tk),�x′(tk) = 0, k = 1, 2, . . . , the system (1) degenerates to fractional neutral
stochastic partial functional integro-differential equation without impulses as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
t [x(t) – g(t, xt)] = A[x(t) – g(t, xt)] + I

2–α
t (f (t, xt))

+ h(t, xt) dW (t)
dt + σ (t)

dBH
Q (t)
dt , t ∈ J ,

x(t) = ψ(t) ∈PCb
F0

([–r, 0];H), t ∈ [–r, 0],
d
dt [x(t) – g(t, xt)]t=0 = ϕ ∈H.

(21)

Corollary 4.6 Suppose that assumptions (H1), (a) of (H2), (H3) and (H4) with lf = lg = 0,
∫ +∞

0 eγ3s‖σ (s)‖2
L0

Q
ds < ∞ and the inequality

10p–1
(

M̃pγ
–p
2 Cp

f + M̃pγ
– p

2
3 Cp

h

(
p(p – 1)

2

) p
2
(

p – 2
2p – 2

) p
2 –1)

< (1 – δ)p

hold, then the mild solution of system (21) is pth moment exponentially stable.
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If the neutral term g(t, ·) = 0 and �x(tk),�x′(tk) = 0, k = 1, 2, . . . , the system (1) degrades
to fractional stochastic partial functional integro-differential equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
t x(t) = Ax(t) + I

2–α
t (f (t, xt)) + h(t, xt) dW (t)

dt

+ σ (t)
dBH

Q (t)
dt , t ∈ J ,

x(t) = ψ(t) ∈PCb
F0

([–r, 0];H), t ∈ [–r, 0],

x′(0) = ϕ ∈H.

(22)

Corollary 4.7 Let us assume that conditions (H1), (H3), (H4) with lf = lg = 0,
∫ +∞

0 eγ3s ×
‖σ (s)‖2

L0
Q

ds < ∞ and the following inequality:

5p–1M̃p
(

γ
–p
2 Cp

f + γ
– p

2
3 Cp

h

(
p(p – 1)

2

) p
2
(

p – 2
2p – 2

) p
2 –1)

< 1,

hold, then the mild solution for system (22) is pth moment exponentially stable. In partic-
ular, when γ 2

2 > 5M̃2C2
f , the mild solution of system (22) is exponentially stable in mean

square.

Remark 4.8 Thanks to Remark 3.2, our approach in this paper is applicable for FNSEEs
involving delayed impulses:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDα
t [x(t) – g(t, xt)] = A[x(t) – g(t, xt)] + I

2–α
t (f (t, xt))

+ h(t, xt) dW (t)
dt + σ (t)

dBH
Q (t)
dt , t �= tk , t ∈ J ,

�x(tk) = Ik(xt–
k

), �x′(tk) = Gk(xt–
k

), t = tk , k = 1, 2, . . . ,

x(t) = ψ(t) ∈PCb
F0

([–r, 0];H), t ∈ [–r, 0],
d
dt [x(t) – g(t, xt)]t=0 = ϕ ∈H,

(23)

i.e., our results can be easily extended to FNSEEs with delayed impulses.

5 Example
Example 5.1 We consider the following impulsive fractional neutral stochastic integro-
differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α [x(t)–β1xt ]
∂tα = ∂2

∂z2 [x(t) – β1xt] + I
2–α
t (β2xt + χ2) + (β3xt + χ2) dW (t)

dt

+ σ (t)
dBH

Q (t)
dt , t ≥ 0, t �= tk , 0 ≤ z ≤ π ,

�x(tk) = β4
k2 x(t–

k ), �x′(tk) = β5
k2 x(t–

k ), t = tk , k = 1, 2, . . . ,

x(t, 0) = x(t,π ) = 0,

x(t) = ψ(t) ∈PCb
F0

([–r, 0]; L2[0,π ]), t ∈ [–r, 0],
d
dt [x(t) – β1xt]t=0 = ϕ ∈ L2[0,π ],

(24)

where βi, i = 1, 2, . . . , 5, χj, j = 1, 2 are positive constants, W (t) is a Wiener process, σ (t) is
a continuous function satisfying Hypothesis (H4) with supt≥0 ‖σ (t)‖L0

Q
< ∞, and BH

Q (t) is a
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fractional Brownian motion. Define H = L2[0,π ], A = ∂2

∂z2 and D(A) = H
1
0(0,π ) ∩H

2(0,π ).
Then

Aw = –
∞∑

n=1

n2〈
w, en(z)

〉
en(z), w ∈D(A),

where en(z) =
√

2
π

sin(nz), 0 ≤ z ≤ π , n ∈ N. It is well known that A is the infinitesimal
generator of a strongly continuous semigroup of bounded linear operators T(t) : H → H

and it is given by

T(t)w =
∞∑

n=1

e–n2t〈w, en(z)
〉
en(z), w ∈H and

∥∥T(t)
∥∥ ≤ e–π2t .

Based on Ref. [26], then we can define the solution operators Sα(t), Kα(t), Tα(t) such that
‖Sα(t)‖ ≤ e–γ1t , ‖Kα(t)‖ ≤ e–γ2t , ‖Tα(t)‖ ≤ e–γ3t with M̃ = 1, where γ1,γ2,γ3 < π2.

Fix β = 3/4, from the definition of (–A)–3/4 [29], we have ‖(–A)–3/4‖ ≤ 1
π3/2 and

‖(–A)3/4‖ = 1.
Let g(t, xt) = β1xt , f (t, xt) = β2xt + χ1, h(t, xt) = β3xt + χ2.
Then Hypotheses (H2), (H3) and (H5) are satisfied with

δ =
∥∥(–A)–β

∥∥β1 =
β1

π3/2 , Cf = β2, Ch = β3,

lf = χ1, lh = χ2, ck =
β4

k2 , dk =
β5

k2 .

Let p = 2, then we have

κ̂ = δ +
14γ –2

2 β2
2

1 – δ
+

14γ –1
3 β2

3
1 – δ

+
7((

∑∞
k=1

β4
k2 )2 + (

∑∞
k=1

β5
k2 )2)

1 – δ

=
β1

π3/2 +
14γ –2

2 β2
2

1 – β1
π3/2

+
14γ –1

3 β2
3

1 – β1
π3/2

+
7π4(β2

4 + β2
5 )

36(1 – β1
π3/2 )

=: κ̂0,

â6 =
14γ –2

2 χ2
1 + 14γ –1

3 χ2
2 + 7C supt≥0 ‖σ (t)‖2

L0
Q

1 – β1
π3/2

.

From Theorem 4.3, we conclude that S = {x(t) ∈H | E‖x(t)‖2 ≤ (1 – κ̂0)–1â6} is the global
attracting set of system (24) provided that κ̂0 < 1. In particular, when χ1 = χ2 = 0 and κ̂0 < 1,
by Theorem 4.4, the mild solution of system (24) is exponentially stable in mean square.

6 Conclusion
In this paper, by establishing a new impulsive-integral inequality, we obtain the global at-
tracting sets and some sufficient conditions which guarantee the pth moment exponential
stability of mild solutions for impulsive fractional neutral stochastic integro-differential
equations driven by fBm and standard Bm. And by a suitable modification to our proposed
inequality, we show that it is applicable for neutral stochastic differential equations with
delayed impulses. In our future work, we will consider the following three issues. Firstly, we
will discuss the existence, uniqueness, exponential stability and approximate controllabil-
ity of the system (1) with non-instantaneous impulses. Secondly, we will explore the global
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attracting sets and exponential stability for another kind of fractional neutral stochastic
integro-differential equations driven by fBm, like the system in Ref. [9]. Thirdly, in view of
the research development of infinite dimension G-Brownian motion and infinite dimen-
sion stochastic calculus in G-framework, we will investigate the global attracting sets and
exponential stability of impulsive neutral stochastic partial functional integro-differential
equations driven by G-Brownian motion.
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