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Abstract
In this paper, we broaden the utilization of a beautiful computational scheme,
residual power series method (RPSM), to attain the fractional power series solutions of
nonhomogeneous and homogeneous nonlinear time-fractional systems of partial
differential equations. This paper considers the fractional derivatives of Caputo-type.
The approximate solutions of given systems of equations are calculated through the
utilization of the provided initial conditions. This iterative scheme generates the fast
convergent series solutions with conveniently determinable components. The
implementation of this numerical scheme clearly exhibits its effectiveness, reliability
and easiness regarding the procedure of the solution, as well as its better
approximation. The repercussions of the fractional order of Caputo derivatives on
solutions are depicted through graphical presentations for various particular cases.
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1 Introduction
Physical phenomena of the miscellaneous fields of engineering and science can be mod-
elled very appropriately by utilizing fractional partial differential equations (FPDEs).
Presently the theory of fractional calculus is equipped with fantastic tools to describe the
dynamical behaviour, and memory related characteristics of scientific systems and pro-
cesses. Various authors have used fractional differential equations (FDEs) in the modelling
and analysis of scientific phenomena in different fields of knowledge [1–3]. Presently the
theory of fractional calculus has been widely utilized in various fields and it is growing
very fast in developing models due to its relation with memory and fractals which are
abundant in real physical systems. Fractional order modelling minimizes the inaccuracy
that arises from the ignorance of significant real parameters. It permits a greater degree
of freedom in the model compared to an integer-order system. FDEs are equipped with
magnificent techniques for the characterization of hereditary and memory characteristics
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which are simply ignored by the integer order system. In addition, they are also suitable in
modelling the behaviour of real systems and also relevant in the investigation of dynami-
cal systems. FDEs are also appropriate in case of modelling of systems with longer-range
interactivity both in time and space. Fractional order systems are normally associated to
the systems of memory which allows the incorporation of several types of information.
The stability region increases in case of a fractional order system as compared to its in-
teger order framework. Fractional calculus also provides non-local fractional derivative
operators and numerical results with high accuracy. In addition, fractional order systems
ultimately converge to the integer-order systems.

The non-local property of the fractional operator is the most advantageous feature in
this context. The theory of fractional calculus develops many generalizations with re-
spect to non-local characteristics of fractional operators, enhanced degree of freedom,
maximum utilization of information, and these characteristics only occur in the case of
fractional order systems and not of integer-order systems. The numerical schemes pro-
vided by fractional calculus originate the deeper understanding of complex systems and
reduce the computational work regarding the solution procedure. Accurate analytical so-
lutions are not found easily in the case of FDEs. Thus in the last two decades, many itera-
tive schemes such as Adomian decomposition method (ADM) [4–6], Variational iteration
method (VIM) [7–10], Homotopy perturbation method (HPM) [11, 12], Homotopy per-
turbation transform method (HPTM), residual power series method (RPSM), etc., have
been developed to determine the numerical solutions of several classes of fractional ordi-
nary differential equations (ODEs) and partial differential equations (PDEs).

During the last decade, FDEs have gained popularity due to their extensive usefulness
and relevance regarding the investigation of behaviour of real physical models. In the re-
cent years, many authors have tried to solve various types of PDEs in different fields and
obtained numerical solutions by using different approximation techniques. Some authors
have acquired exact solutions of time-fractional PDEs by employing latest iterative tech-
nique [13]. Ceser et al. [14] have used a differential transform scheme to handle the sys-
tem of FPDEs. In 2013, Neamaty et al. [15] utilized an iterative Laplace transform scheme
and wavelet operational method, respectively, to handle a system of FPDEs. Babolian et
al. [16] have used the combination of ADM and Spectral scheme to acquire the solution
of FPDEs. In addition, the exact solutions of FPDEs by using the sub-equation method
have been derived by Bekir et al. [17]. Wang et al. [18] have applied a fractional modified
sub-equation scheme, and Gupta et al. [19] have employed Laplace transform to solve a
system of FPDEs. Very recently a variety of FPDEs have been analysed by using Laplace
VIM and Laplace ADM [20], modified HPM [21], HPM [22]. Neamaty et al. [23] have tried
variational homotopy perturbation iteration method (VHPIM) and Zayed et al. [24] have
utilized complex transformation for nonlinear FPDEs arising in mathematical physics.

Additionally, Singh et al. [25] have presented the analysis of coupled fractional Burger’s
equations by employing a homotopy technique. In 2017, FPDEs have been handled by
using Muntz–Legendre polynomial approach [26], fractional complex differential trans-
form scheme [27], and two-dimensional Laplace transform [28]. Recently the FPDEs with
Caputo–Fabrizio fractional operator have been investigated through HPTM by Gomez-
Aguilar et al. [29]. Singla et al. [30] have derived solutions of Nizhnik–Novikov–Veselov
(NNV) system, Burger system and Navier–Stokes equations by using a generalized Lie
symmetry approach. Generalized solitary wave solutions for fractional Klein–Gordon
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equation have been derived by an exp-function scheme [31]. In 2018, FPDEs were anal-
ysed by a B-spline polynomial approach [32] and hybrid Laplace transform technique [33].
Wang et al. [34] have gained solutions for FPDEs with proportional delay with iterative
RPSM and HATM schemes.

Recently a bunch of new mathematical models have been studied by some authors with
various singular and non-singular fractional derivative operators. Baleanu et al. [35] have
handled the fractional Lagrangian and fractional Hamilton’s equations of the movement
of a particle in a round-shaped cavity with fractional derivative in Caputo sense and with
Mittag-Leffler kernel. Recently some researchers have studied new mathematical models
with fractional derivative operators related to the field of medical science and diseases.
Baleanu et al. [36] have studied a newly generated fractional model for a tumor-immune
surveillance with singular and non-singular derivative operators. In 2019, Jajarmi et al.
[37] investigated a mathematical model of dengue fever outbreak based on FDEs. In this
sequence, a new fractional mathematical model of diabetes and tuberculosis co-existence
with a Mittag-Leffler non-singular derivative operator has also been analysed by Jajarmi
et al. [38].

Over a decade ago, Baleanu et al. [39] derived the Lagrangians with linear velocities with
RL fractional derivatives. Recently Baleanu and his co-workers have contributed to the
classical and fractional study of physical systems with different types of fractional deriva-
tive operators. Baleanu et al. [40] have explored unusual characteristics of a physical model
in the form of fractional Euler–Lagrange equations elucidating the motion of a capacitor
microphone within non-singular derivative. Investigation of new features of a fractional
model of spring pendulum and two coupled pendulums have been also carried out by
Baleanu et al. [41, 42]. Some time ago a group of authors studied the fractional optimal
control problems by using certain approximation schemes. Mohammadi et al. [43] pre-
sented a numerical scheme based on hybrid Chelyshkov functions (HCFs) to handle a
class of fractional optimal control problems (FOCPs). In this sequence, a new approxi-
mation approach has been utilized to investigate the nonlinear FOCPs by Jajarmi et al.
[44].

This paper presents the execution of RPSM to compute the fractional power series (FPS)
solutions of nonhomogeneous and homogeneous nonlinear systems of FPDEs arising in
physical sciences as given below:

Problem 1 Solve the nonhomogeneous nonlinear fractional system

Dα
ζ u + vuϑ + u = 1, Dα

ζ v – uvϑ – v = 1, (1.1)

subject to initial conditions

u(ϑ , 0) = eϑ , v(ϑ , 0) = e–ϑ , 0 < α ≤ 1.

Problem 2 Solve the homogeneous nonlinear fractional system

Dα
ζ u + vϑwη – vηwϑ = –u, Dα

ζ v + uϑwη + uηwϑ = v,

Dα
ζ w + uϑvη + uηvϑ = w,

(1.2)
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subject to the initial conditions

u(ϑ ,η, 0) = eϑ+η, v(ϑ ,η, 0) = eϑ–η, w(ϑ ,η, 0) = e–ϑ+η,

where 0 < α ≤ 1 signifies the order of fractional time derivative.

Various definitions have been established for a fractional derivative. But this paper deals
with a fractional derivative of Caputo type because it handles initial value problems (IVPs)
in a very efficient way. The RPSM beautifully handles the systems of nonlinear ODEs and
PDEs and computes the analytical solutions in a Taylor series form. It was first proposed
and utilized by O.A. Arqub [45] to investigate the fuzzy differential equations so as to eval-
uate the coefficients of a power series solution. In addition, RPSM has been also applied
to Lane–Emden equation, composite and non-composite DEs, regular IVP and fractional
order boundary value problems (BVPs) [46–49]. Many authors have used RPSM to solve
the problems of diverse streams of science and engineering [50–55].

Recently, Kumar et al. [56–58] have presented the analysis of the fractional exother-
mic reactions model, the fractional vibration equation and new fractional SIRS-SI malaria
disease model with a variety of fractional operators with different kinds of kernel. Very
recently a new investigation of Drinfeld–Sokolov–Wilson (DSW) equation was carried
out by Bhatter et al. [59]. Singh et al. [60] have explored the new features of fractional
Biswas–Milovic model with Mittag-Leffler kernel. In 2019, fractional Black–Scholes equa-
tions have been studied via RPSM by Dubey et al. [61].

The suggested nonhomogeneous and homogeneous systems of nonlinear fractional
PDEs with Caputo derivatives, to the best of our knowledge, have not been handled uti-
lizing RPSM in the available literature, yet. The main reason to choose the RPSM for ap-
plication is that it effectively produces the approximate analytical solution of FDEs in the
power series form with high accuracy and fast convergence. The primary purpose of the
present work is to analyse the given systems of fractional PDEs with Caputo time deriva-
tives through RPSM. The present work derives the fractional power series (FPS) solutions
of the above-mentioned systems of FPDEs and further investigates the variations of nu-
merical results obtained in a series form regarding time and several values of fractional
parameter α through the two-dimensional and three-dimensional graphs.

There are various methods in the available literature that have been used to handle the
above mentioned systems of FPDEs. Many researchers like Jafari et al. [62, 63]; Wazwaz
[64]; Aminikhah et al. [65] and Koçak et al. [66] have successfully utilized a variety of
schemes to handle these systems of nonlinear fractional PDEs. But the RPSM has never
been used to handle these systems of FDEs. The novelty of the present paper lies in the
smooth implementation of RPSM to the systems of nonlinear PDEs arising in physical
sciences, along with depiction of variation of numerical results regarding various values
of fractional parameter α. The other novel factor in the proposed work is the handling of
the set of nonlinear PDEs with Caputo fractional derivative (CFD). However, Riemann–
Liouville (RL) fractional integral and derivative operators have been used significantly in
the derivation of other fractional integral and derivative operators. But various problems
of applied nature require conveniently suitable format of fractional derivatives, for in-
stance, the Caputo derivative which delivers easy to deal with initial conditions having
clear elucidation for the FDEs. This fact promotes the CFD as a more appropriate operator
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in comparison to the Riemann–Liouville definition regarding the application. However, it
is noteworthy that the Caputo derivative demands the possibility of evaluation of the nth
derivative of a function which makes its scope broader than its RL substitute. But a large
class of mathematical functions that appear in applications satisfy this requirement.

This paper significantly presents the implementation of the RPSM to the systems of
PDEs of nonlinear nature with Caputo fractional derivatives. This recently generated it-
erative scheme provides the solutions in analytical Taylor series form for the systems of
ODEs and PDEs of both linear and nonlinear type. This semi-analytic technique actually
utilizes the generalized Taylor series expansion accompanying the residual error function
to build up the solution in a form of FPS expansion for a class of nonlinear FDEs without
incorporating any additional restrictions. Utilizing the idea of residual error, a numerical
solution is achieved straightforwardly in the form of truncated series. The primary ben-
efit of this technique over the others is that it is directly applicable to the stated system
with a proper pick of an initial guess approximation and it also lessens the complications
originating in calculation of intricate terms. The remaining part of the manuscript is struc-
tured as follows: Sect. 2 describes the elemental concepts and formulae connected to the
field of fractional calculus and theorems of fractional power series. Section 3 presents the
fundamental procedure of RPSM. In Sects. 4 and 5, we present the application of RPSM
to Problems 1 and 2, respectively, and related graphs are also presented there. Section 6
provides the numerical results and discussion. Finally, Sect. 7 records the concluding re-
marks.

2 Preliminaries and notations
This part formally presents some essential definitions related to the stream of the frac-
tional calculus and some fundamental theorems related to the FPS expansion as follows:

Definition 2.1 ([67]) The fractional integral operator of order μ (μ ≥ 0) of g(y) of
Riemann–Liouville (RL) type is defined as

Jμg(y) =
1

Γ (μ)

∫ y

0
(y – ϑ)μ–1g(ϑ) dϑ , μ > 0, y > 0,

J0g(y) = g(y).

Definition 2.2 ([67]) The fractional derivative of g(y), y > 0, in the RL sense is defined as

Dμ
y g(y) = Dn

y Jn–μ
y g(y) =

dn

dyn
1

Γ (n – α)

∫ y

0

g(ϑ)
(y – ϑ)μ+1–n dϑ .

Definition 2.3 ([67]) The β-order fractional derivative operator of Caputo type for the
function g(y), y > 0, is formulated as

Dβg(y) = Jκ–βDκg(y) =
1

Γ (κ – β)

∫ y

0
(y – ϑ)κ–β–1 dκ

dϑκ
g(ϑ) dϑ ,

κ – 1 < β ≤ κ , y > 0,κ ∈ N,

where Dκ signifies the κ-order Newtonian derivative.
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The following expressions hold true in the context of Caputo derivative:

Dβyγ = 0, γ < β ,

Dβyγ =
Γ (γ + 1)

Γ (γ + 1 – β)
yγ –β , γ ≥ β .

Definition 2.4 ([68]) The fractional derivative of order α > 0 in the Caputo sense is stated
as

Dα
ξ v(y, ξ ) =

∂αv(y, ξ )
∂ξα

=

⎧⎨
⎩

1
Γ (q–α)

∫ ξ

0 (ξ – ϑ)q–α–1 ∂qv(y,ϑ)
∂ξq dϑ , q – 1 < α < q,

∂qv(y,ξ )
∂ξq , α = q ∈ N.

Definition 2.5 ([69]) The Mittag-Leffler function Eσ (ζ ) with σ > 0 is defined as

Eσ (ζ ) =
∞∑

=0

ζ n

Γ (σ
 + 1)
.

Definition 2.6 ([70, 71]) An FPS expansion about the point ζ = ζ0 is represented as

∞∑

=0

c
(ζ – ζ0)
γ = d0 + d1(ζ – ζ0)γ + d2(ζ – ζ0)2γ + · · · , 0 ≤ 
 – 1 < γ ≤ 
, ζ ≥ ζ0.

Theorem 2.1 ([70, 71]) Let the FPS representation for the function ℘ at ζ = ζ0 be of the
form ℘(ζ ) =

∑∞

=0 c
(ζ – ζ0)
γ , ζ0 ≤ ζ < ζ0 + �, where � signifies the radius of convergence.

If D
γ ℘(ζ ),
 = 0, 1, 2, 3, . . . are continuous on the interval (ζ0, ζ0 +�), the multipliers c
 are
provided by the expression c
 = D
γ ℘(ζ0)

Γ (1+
γ ) ,
 = 0, 1, 2, . . . where D
γ = Dγ Dγ · · ·Dγ (
 times).

Definition 2.7 ([70, 71]) A multiple FPS expansion about the point ζ = ζ0 for the function
℘ is expressed in the form

∑∞

=0 ℘
(z)(ζ – ζ0)
γ . Here ζ signifies a variable and ℘
(z) are

the coefficients of the expansion series.

Theorem 2.2 ([70, 71]) Let the multiple FPS expansion at ξ = ξ0 for the function ϑ(z, ζ )
be of the form ϑ(z, ζ ) =

∑∞

=0 ℘
(z)(ζ – ζ0)kα , z ∈ I, ζ0 ≤ ζ < ζ0 + �, 0 ≤ 
 – 1 < γ ≤ 
, ζ ≥ ζ0.

If D
γ

ζ ϑ(z, ζ ),
 = 0, 1, 2, 3, . . . are continuous on the interval I × (ζ0, ζ0 + �) then the coef-

ficients ℘
 are determined as ℘
(z) =
D
γ

ζ ϑ(z,ζ0)
Γ (1+
γ ) ,
 = 0, 1, 2, . . . .

Therefore the FPS expansion of ϑ(z, ζ ) at ζ0 will be of the form

ϑ(z, ζ ) =
∞∑

=0

D
γ

ζ ϑ(z, ζ0)
Γ (1 + 
γ )

(ζ – ζ0)
γ , z ∈ I, ζ0 ≤ ζ < ζ0 + �, 0 ≤ 
 – 1 < γ ≤ 
,

which is actually the formula of a generalized Taylor series.
The classical Taylor series for γ = 1 is produced as

ϑ(z, ζ ) =
∞∑

=0

∂kϑ(z, ζ0)
∂ζ 


(ζ – ζ0)
Γ (
 + 1)

, z ∈ I, ζ0 ≤ ζ < ζ0 + �.
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Corollary 2.1 ([70, 71]) Let ϑ(z,ω, ζ ) have a multiple FPS representation about the point
ζ = ζ0 of the form

ϑ(z,ω, ζ ) =
∞∑

=0

℘
(z,ω)(ζ – ζ0)
γ , (z,ω) ∈ I × I, ζ0 ≤ ζ < ζ0 + �.

If D
γ

ζ ϑ(z,ω, ζ ),
 = 0, 1, 2, 3, . . . are continuous on I × I × (ζ0, ζ0 + �) then ℘
(z,ω) =
D
γ

ζ ϑ(z,ω,ζ0)
Γ (1+
γ ) ,
 = 0, 1, 2, . . . .

3 RPSM: fundamental procedure
In this section, the basic procedure of residual power series (RPS) algorithm is provided.

For the purpose of illustration of fundamental procedure of RPSM for fractional order
PDEs, the ensuing fractional PDE is taken which is about to be mentioned here:

Dλγ

ζ w(ϑ , ζ ) + E[ϑ]w(ϑ , ζ ) + F[ϑ]w(ϑ , ζ ) = H(ϑ , ζ ),

ζ > 0,ϑ ∈ �,λ – 1 < λγ ≤ λ, (3.1)

subject to the conditions:

h0(ϑ) = w(ϑ , 0) = h(ϑ), h(λ–1)(ϑ) = D(λ–1)γ
ζ w(ϑ , 0) = q(ϑ), (3.2)

where Dλγ

ζ = ∂λγ

∂ζλγ specifies the fractional derivative in Caputo sense; F[ϑ] and E[ϑ] charac-
terize the nonlinear and linear operators in ϑ and H(ϑ , ζ ) denotes a continuous function.

As stated by RPS algorithm, the solution of equations (3.1)–(3.2) can be expressed as
an FPS expansion about the point ζ = 0. Now it is assumed that the solution of the above
mentioned PDE acquires the series expansion form as

w(ϑ , ζ ) =
∞∑
λ=0

hλ(ϑ)
ζ λγ

Γ (1 + λγ )
, 0 < γ ≤ 1,ϑ ∈ I, 0 ≤ ζ . (3.3)

Therefore, the approximate analytical solution for equations (3.1) and (3.2) in the shape
of an infinite FPS is provided by the RPS algorithm. In this sequence, the 
th truncated
series of w(ϑ , ζ ), i.e. w
(ϑ , ζ ) is defined as

w(ϑ , ζ ) =

∑

λ=0

hλ(ϑ)
ζ λγ

Γ (1 + λγ )
, 0 < γ ≤ 1,ϑ ∈ I, 0 ≤ ζ ,
 = 1,∞. (3.4)

Clearly, the initial condition (3.2) is satisfied by w(ϑ , ζ ) thus from equation (3.3), the
following algebraic expression is obtained:

w(ϑ , 0) = h0(ϑ) = h(ϑ). (3.5)

From equation (3.4), the initial guess approximation of w(ϑ , ζ ) may be expressed as

w0(ϑ , ζ ) = h0(ϑ) = h(ϑ). (3.6)
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Now the expansion series of equation (3.4) can be rewritten as

w
(ϑ , ζ ) = h(ϑ) +

∑

λ=1

hλ(ϑ)
ζ λγ

Γ (1 + λγ )
, 0 < γ ≤ 1,ϑ ∈ I, 0 ≤ ζ ,
 = 1,∞. (3.7)

Now to compute the values of multipliers hλ(ϑ),λ = 1, 2, 3, . . . ,
 in the series expansion
of w
(ϑ , ζ ) in equation (3.7), the residual function is expressed as

Re s(ϑ , ζ ) = Dλγ

ζ w(ϑ , ζ ) + E[ϑ]w(ϑ , ζ ) + F[ϑ]w(ϑ , ζ ) – H(ϑ , ζ ), (3.8)

and the 
th residual function, Re sw,
 is expressed in the following form:

Re sw,
(ϑ , ζ ) = Dλγ

ζ w
(ϑ , ζ ) + U[ϑ]w
(ϑ , ζ ) + V [ϑ]w
(ϑ , ζ ) – G(ϑ , ζ ), 
 = 1,∞. (3.9)

Clearly,

Re s(ϑ , ζ ) = 0 and lim

→∞

Re s
(ϑ , ζ ) = Re s(ϑ , ζ ) for each ϑ ∈ I, 0 ≤ ζ .

In fact, this leads to D(
–1)γ
ζ Re s
(ϑ , ζ0) = 0,
 = 1,∞ as the CFD of a constant is zero.

Now the fractional derivatives D(
–1)γ
ζ of Re s(ϑ , ζ ) and Re s
(ϑ , ζ ) coincide at ζ = 0 for

each 
 = 1,∞.
To determine the coefficients hλ(ϑ),λ = 1, 2, 3, . . .
, the 
th truncated series of w(ϑ , ζ ),

i.e. w
(ϑ , ζ ) is putted into the 
th residual function Re sw,
(ϑ , ζ ) and in sequence the frac-
tional derivative D(
–1)γ

ζ is operated on Re s
(ϑ , ζ ), 
 = 1,∞ at ζ = 0. Now the acquired
algebraic equation can be solved to compute the required coefficients, i.e. there is a re-
quirement to solve the ensuing algebraic equation provided as

D(
–1)γ
ζ Re s
(ϑ , 0) = 0, 0 < γ ≤ 1,ϑ ∈ I, 0 ≤ ζ < �,
 = 1,∞. (3.10)

Thus all the desired coefficients of multiple FPS of equations (3.1) and (3.2) can be easily
calculated by endorsing the above-mentioned procedure.

4 Application of RPSM for Problem 1
The given nonhomogeneous system of nonlinear FPDEs is

Dα
ζ u + vuϑ + u = 1, Dα

ζ v – uvϑ – v = 1, (1.1)

subject to the conditions:

u(ϑ , 0) = eϑ , v(ϑ , 0) = e–ϑ , 0 < α ≤ 1.

The RPS algorithm assumes the solutions for the above system of equations (1.1) as an
FPS expansion about ζ = 0 as

u(ϑ , ζ ) =
∞∑

n=0

ϕn(ϑ)
ζ nα

Γ (1 + nα)
, (4.1)
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v(ϑ , ζ ) =
∞∑

n=0

φn(ϑ)
ζ nα

Γ (1 + nα)
, 0 < α ≤ 1,ϑ ∈ I, 0 ≤ ζ < R. (4.2)

Obviously, u(ϑ , ζ ) and v(ϑ , ζ ) satisfy the initial conditions and thus the initial conditions
can be expressed as

u(ϑ , 0) = ϕ(ϑ) = eϑ , (4.3)

v(ϑ , 0) = φ(ϑ) = e–ϑ . (4.4)

Hence the initial guess approximations of u(ϑ , ζ ) and v(ϑ , ζ ) are obtained as

u0(ϑ , ζ ) = u(ϑ , 0) = ϕ0(ϑ) = ϕ(ϑ) = eϑ , (4.5)

v0(ϑ , ζ ) = v(ϑ , 0) = φ0(ϑ) = φ(ϑ) = e–ϑ . (4.6)

Thus equations (4.1) and (4.2) can be written as

u(ϑ , ζ ) = ϕ(ϑ) +
∞∑

n=1

ϕn(ϑ)
ζ nα

Γ (1 + nα)
, (4.7)

v(ϑ , ζ ) = φ(ϑ) +
∞∑

n=1

φn(ϑ)
ζ nα

Γ (1 + nα)
. (4.8)

Let the kth truncated series of u(ϑ , ζ ) and v(ϑ , ζ ) expressed in equations (4.7) and (4.8)
be

uk(ϑ , ζ ) = ϕ(ϑ) +
k∑

n=1

ϕn(ϑ)
ζ nα

Γ (1 + nα)
, (4.9)

vk(ϑ , ζ ) = φ(ϑ) +
k∑

n=1

φn(ϑ)
ζ nα

Γ (1 + nα)
for k = 1, 2, 3, . . . . (4.10)

Now the residual functions Re su(ϑ , ζ ) and Re sv(ϑ , ζ ) for system (1.1) are defined as

Re su(ϑ , ζ ) = Dα
ζ u + vuϑ + u – 1, (4.11)

Re sv(ϑ , ζ ) = Dα
ζ v – uvϑ – v – 1. (4.12)

Therefore the kth residual functions are given as

Re su,k(ϑ , ζ ) = Dα
ζ uk + vk(uk)ϑ + uk – 1, (4.13)

Re sv,k(ϑ , ζ ) = Dα
ζ vk – uk(vk)ϑ – vk – 1. (4.14)

To find the first unknown coefficients ϕ1(ϑ) and φ1(ϑ), putting k = 1 in equations (4.13)
and (4.14) yields

Re su,1(ϑ , ζ ) = Dα
ζ u1 + v1(u1)ϑ + u1 – 1, (4.15)

Re sv,1(ϑ , ζ ) = Dα
ζ v1 – u1(v1)ϑ – v1 – 1, (4.16)
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where

u1(ϑ , ζ ) = ϕ(ϑ) + ϕ1(ϑ)
ζ α

Γ (1 + α)
, v1(ϑ , ζ ) = φ(ϑ) + φ1(ϑ)

ζ α

Γ (1 + α)
.

Therefore, equations (4.15) and (4.16) reduce to

Re su,1(ϑ , ζ ) = ϕ1(ϑ) +
{
φ(ϑ) + φ1(ϑ)

ζ α

Γ (1 + α)

}{
ϕ′(ϑ) + ϕ′

1(ϑ)
ζ α

Γ (1 + α)

}

+
{
ϕ(ϑ) + ϕ1(ϑ)

ζ α

Γ (1 + α)

}
– 1,

Re sv,1(ϑ , ζ ) = φ1(ϑ) –
{
ϕ(ϑ) + ϕ1(ϑ)

ζ α

Γ (1 + α)

}{
φ′(ϑ) + φ′

1(ϑ)
ζ α

Γ (1 + α)

}

–
{
φ(ϑ) + φ1(ϑ)

ζ α

Γ (1 + α)

}
– 1.

Now the above-mentioned residual functions at point ζ = 0 are given by

Re su,1(ϑ , 0) = ϕ1(ϑ) + φ(ϑ)ϕ′(ϑ) + ϕ(ϑ) – 1, (4.17)

Re sv,1(ϑ , 0) = φ1(ϑ) – ϕ(ϑ)φ′(ϑ) – φ(ϑ) – 1. (4.18)

Now equation (3.10) suggests that

Re su,1(ϑ , 0) = 0, Re sv,1(ϑ , 0) = 0. (4.19)

Using the system of equations (4.19), equations (4.17) and (4.18) reduce to the following
expressions:

ϕ1(ϑ) + φ(ϑ)ϕ′(ϑ) + ϕ(ϑ) – 1 = 0,

φ1(ϑ) – ϕ(ϑ)φ′(ϑ) – φ(ϑ) – 1 = 0.
(4.20)

Solving the system of equations (4.20), we get

ϕ1(ϑ) = –eϑ , φ1(ϑ) = e–ϑ . (4.21)

Therefore, the first RPS approximate solutions are

u1 = eϑ – eϑ ζ α

Γ (1 + α)
, v1 = e–ϑ + e–ϑ ζ α

Γ (1 + α)
. (4.22)

To compute the second unknown coefficients ϕ2(ϑ) and φ2(ϑ), putting k = 2 in equations
(4.13) and (4.14), we get

Re su,2(ϑ , ζ ) = Dα
ζ u2 + v2(u2)ϑ + u2 – 1, (4.23)

Re sv,2(ϑ , ζ ) = Dα
ζ v2 – u2(v2)ϑ – v2 – 1, (4.24)
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where

u2(ϑ , ζ ) = ϕ(ϑ) + ϕ1(ϑ)
ζ α

Γ (1 + α)
+ ϕ2(ϑ)

ζ 2α

Γ (1 + 2α)
,

v2(ϑ , ζ ) = φ(ϑ) + φ1(ϑ)
ζ α

Γ (1 + α)
+ φ2(ϑ)

ζ 2α

Γ (1 + 2α)
.

Therefore

Re su,2(ϑ , ζ ) = ϕ1(ϑ) + ϕ2(ϑ)
ζ α

Γ (1 + α)
+

{
φ(ϑ) + φ1(ϑ)

ζ α

Γ (1 + α)
+ φ2(ϑ)

ζ 2α

Γ (1 + 2α)

}

×
{
ϕ′(ϑ) + ϕ′

1(ϑ)
ζ α

Γ (1 + α)
+ ϕ′

2(ϑ)
ζ 2α

Γ (1 + 2α)

}

+
{
ϕ(ϑ) + ϕ1(ϑ)

ζ α

Γ (1 + α)
+ ϕ2(ϑ)

ζ 2α

Γ (1 + 2α)

}
– 1,

Re sv,2(ϑ , ζ ) = φ1(ϑ) + φ2(ϑ)
ζ α

Γ (1 + α)
–

{
ϕ(ϑ) + ϕ1(ϑ)

ζ α

Γ (1 + α)
+ ϕ2(ϑ)

ζ 2α

Γ (1 + 2α)

}

×
{
φ′(ϑ) + φ′

1(ϑ)
ζ α

Γ (1 + α)
+ φ′

2(ϑ)
ζ 2α

Γ (1 + 2α)

}

–
{
φ(ϑ) + φ1(ϑ)

ζ α

Γ (1 + α)
+ φ2(ϑ)

ζ 2α

Γ (1 + 2α)

}
– 1.

Now

Dα
ζ Re su,2(ϑ , ζ )

= ϕ2(ϑ) + φ1(ϑ)ϕ′(ϑ) + φ2(ϑ)ϕ′(ϑ)
ζ α

Γ (1 + α)
+ ϕ′

1(ϑ)φ(ϑ)

+ ϕ′
1(ϑ)φ1(ϑ)

Γ (2α + 1)
(Γ (1 + α))2

ζ α

Γ (1 + α)
+ ϕ′

1(ϑ)φ2(ϑ)
Γ (1 + 3α)

Γ (1 + α)Γ (1 + 2α)
ζ 2α

Γ (1 + 2α)

+ φ(ϑ)ϕ′
2(ϑ)

ζ α

Γ (1 + α)
+ φ1(ϑ)ϕ′

2(ϑ)
Γ (1 + 3α)

Γ (1 + α)Γ (1 + 2α)
ζ 2α

Γ (1 + 2α)

+ φ2(ϑ)ϕ′
2(ϑ)

Γ (1 + 4α)
(Γ (1 + 2α))2

ζ 3α

Γ (1 + 3α)
+ ϕ1(ϑ) + ϕ2(ϑ)

ζ α

Γ (1 + α)
,

Dα
ζ Re sv,2(ϑ , ζ )

= φ2(ϑ) – ϕ1(ϑ)φ′(ϑ) – ϕ2(ϑ)φ′(ϑ)
ζ α

Γ (1 + α)
– φ′

1(ϑ)ϕ(ϑ)

– φ′
1(ϑ)ϕ1(ϑ)

Γ (2α + 1)
(Γ (1 + α))2

ζ α

Γ (1 + α)
– φ′

1(ϑ)ϕ2(ϑ)
Γ (1 + 3α)

Γ (1 + α)Γ (1 + 2α)
ζ 2α

Γ (1 + 2α)

– ϕ(ϑ)φ′
2(ϑ)

ζ α

Γ (1 + α)
– ϕ1(ϑ)φ′

2(ϑ)
Γ (1 + 3α)

Γ (1 + α)Γ (1 + 2α)
ζ 2α

Γ (1 + 2α)

– ϕ2(ϑ)φ′
2(ϑ)

Γ (1 + 4α)
(Γ (1 + 2α))2

ζ 3α

Γ (1 + 3α)
– φ1(ϑ) – φ2(ϑ)

ζ α

Γ (1 + α)
.



Dubey et al. Advances in Difference Equations         (2020) 2020:46 Page 12 of 27

Now the above-mentioned residual functions at point ζ = 0 are given by

Dα
ζ Re su,2(ϑ , 0) = ϕ2(ϑ) + φ1(ϑ)ϕ′(ϑ) + φ(ϑ)ϕ′

1(ϑ) + ϕ1(ϑ), (4.25)

Dα
ζ Re sv,2(ϑ , 0) = φ2(ϑ) – ϕ1(ϑ)φ′(ϑ) – ϕ(ϑ)φ′

1(ϑ) – φ1(ϑ). (4.26)

Now equation (3.10) suggests that

Dα
ζ Re su,2(ϑ , 0) = 0, Dα

ζ Re sv,2(ϑ , 0) = 0. (4.27)

Using the system of equations (4.27), equations (4.25) and (4.26) reduce to the following
expressions:

ϕ2(ϑ) + φ1(ϑ)ϕ′(ϑ) + φ(ϑ)ϕ′
1(ϑ) + ϕ1(ϑ) = 0,

φ2(ϑ) – ϕ1(ϑ)φ′(ϑ) – ϕ(ϑ)φ′
1(ϑ) – φ1(ϑ) = 0.

(4.28)

Solving the system of equations (4.28), we get

ϕ2(ϑ) = eϑ , φ2(ϑ) = e–ϑ .

Therefore, the second RPS approximate solutions are

u2 = eϑ – eϑ ζ α

Γ (1 + α)
+ eϑ ζ 2α

Γ (1 + 2α)
,

v2 = e–ϑ + e–ϑ ζ α

Γ (1 + α)
+ e–ϑ ζ 2α

Γ (1 + 2α)
.

(4.29)

To compute the third unknown coefficients ϕ3(ϑ) and φ3(ϑ), putting k = 3 in equations
(4.13) and (4.14), we get

Re su,3(ϑ , ζ ) = Dα
ζ u3 + v3(u3)ϑ + u3 – 1, (4.30)

Re sv,3(ϑ , ζ ) = Dα
ζ v3 – u3(v3)ϑ – v3 – 1, (4.31)

where

u3(ϑ , ζ ) = ϕ(ϑ) + ϕ1(ϑ)
ζ α

Γ (1 + α)
+ ϕ2(ϑ)

ζ 2α

Γ (1 + 2α)
+ ϕ3(ϑ)

ζ 3α

Γ (1 + 3α)
,

v3(ϑ , ζ ) = φ(ϑ) + φ1(ϑ)
ζ α

Γ (1 + α)
+ φ2(ϑ)

ζ 2α

Γ (1 + 2α)
+ φ3(ϑ)

ζ 3α

Γ (1 + 3α)
.

Now

D2α
ζ Re su,3(ϑ , ζ )

= ϕ3(ϑ) + φ2(ϑ)ϕ′(ϑ) + φ3(ϑ)ϕ′(ϑ)
ζ α

Γ (1 + α)
+ ϕ′

1(ϑ)φ1(ϑ)
Γ (2α + 1)

(Γ (1 + α))2

+ ϕ′
1(ϑ)φ2(ϑ)

Γ (1 + 3α)
Γ (1 + α)Γ (1 + 2α)

ζ α

Γ (1 + α)
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+ ϕ′
1(ϑ)φ3(ϑ)

Γ (1 + 4α)
Γ (1 + α)Γ (1 + 3α)

ζ 2α

Γ (1 + 2α)

+ φ(ϑ)ϕ′
2(ϑ) + φ1(ϑ)ϕ′

2(ϑ)
Γ (1 + 3α)

Γ (1 + α)Γ (1 + 2α)
ζ α

Γ (1 + α)

+ φ2(ϑ)ϕ′
2(ϑ)

Γ (1 + 4α)
(Γ (1 + 2α))2

ζ 2α

Γ (1 + 2α)

+ φ3(ϑ)ϕ′
2(ϑ)

Γ (1 + 5α)
Γ (1 + 2α)Γ (1 + 3α)

ζ 3α

Γ (1 + 3α)

+ φ(ϑ)ϕ′
3(ϑ)

ζ α

Γ (1 + α)
+ φ1(ϑ)ϕ′

3(ϑ)
Γ (1 + 4α)

Γ (1 + α)Γ (1 + 3α)
ζ 2α

Γ (1 + 2α)

+ φ2(ϑ)ϕ′
3(ϑ)

Γ (1 + 5α)
Γ (1 + 2α)Γ (1 + 3α)

ζ 3α

Γ (1 + 3α)

+ φ3(ϑ)ϕ′
3(ϑ)

Γ (1 + 6α)
(Γ (1 + 3α))2

ζ 4α

Γ (1 + 4α)

+ ϕ2(ϑ) + ϕ3(ϑ)
ζ α

Γ (1 + α)
,

D2α
ζ Re sv,3(ϑ , ζ )

= φ3(ϑ) – ϕ2(ϑ)φ′(ϑ) – ϕ3(ϑ)φ′(ϑ)
ζ α

Γ (1 + α)

– φ′
1(ϑ)ϕ1(ϑ)

Γ (2α + 1)
(Γ (1 + α))2

– φ′
1(ϑ)ϕ2(ϑ)

Γ (1 + 3α)
Γ (1 + α)Γ (1 + 2α)

ζ α

Γ (1 + α)

– φ′
1(ϑ)ϕ3(ϑ)

Γ (1 + 4α)
Γ (1 + α)Γ (1 + 3α)

ζ 2α

Γ (1 + 2α)

– ϕ(ϑ)φ′
2(ϑ) – ϕ1(ϑ)φ′

2(ϑ)
Γ (1 + 3α)

Γ (1 + α)Γ (1 + 2α)
ζ α

Γ (1 + α)

– ϕ2(ϑ)φ′
2(ϑ)

Γ (1 + 4α)
(Γ (1 + 2α))2

ζ 2α

Γ (1 + 2α)

– ϕ3(ϑ)φ′
2(ϑ)

Γ (1 + 5α)
Γ (1 + 2α)Γ (1 + 3α)

ζ 3α

Γ (1 + 3α)

– ϕ(ϑ)φ′
3(ϑ)

ζ α

Γ (1 + α)
– ϕ1(ϑ)φ′

3(ϑ)
Γ (1 + 4α)

Γ (1 + α)Γ (1 + 3α)
ζ 2α

Γ (1 + 2α)

– ϕ2(ϑ)φ′
3(ϑ)

Γ (1 + 5α)
Γ (1 + 2α)Γ (1 + 3α)

ζ 3α

Γ (1 + 3α)

– ϕ3(ϑ)φ′
3(ϑ)

Γ (1 + 6α)
(Γ (1 + 3α))2

ζ 4α

Γ (1 + 4α)

– φ2(ϑ) – φ3(ϑ)
ζ α

Γ (1 + α)
.

Now the above-mentioned residual functions at point ζ = 0 are given by

D2α
ζ Re su,3(ϑ , 0) = ϕ3(ϑ) + φ2(ϑ)ϕ′(ϑ) + ϕ′

1(ϑ)φ1(ϑ)
Γ (2α + 1)

(Γ (1 + α))2



Dubey et al. Advances in Difference Equations         (2020) 2020:46 Page 14 of 27

+ φ(ϑ)ϕ′
2(ϑ) + ϕ2(ϑ), (4.32)

D2α
ζ Re sv,3(x, 0) = φ3(ϑ) – ϕ2(ϑ)φ′(ϑ) – φ′

1(ϑ)ϕ1(ϑ)
Γ (2α + 1)

(Γ (1 + α))2

– ϕ(ϑ)φ′
2(ϑ) – φ2(ϑ). (4.33)

Now equation (3.10) suggests that

D2α
ζ Re su,3(ϑ , 0) = 0, D2α

ζ Re sv,3(ϑ , 0) = 0. (4.34)

Using the system of equations (4.34), equations (4.32) and (4.33) reduce to

ϕ3(ϑ) + φ2(ϑ)ϕ′(ϑ) + ϕ′
1(ϑ)φ1(ϑ)

Γ (2α + 1)
(Γ (1 + α))2 + φ(ϑ)ϕ′

2(ϑ) + ϕ2(ϑ) = 0,

φ3(ϑ) – ϕ2(ϑ)φ′(ϑ) – φ′
1(ϑ)ϕ1(ϑ)

Γ (2α + 1)
(Γ (1 + α))2 – ϕ(ϑ)φ′

2(ϑ) – φ2(ϑ) = 0.

After solving and simplifying the above-mentioned pair of equations, the values of ϕ3(ϑ)
and φ3(ϑ) can be written as

ϕ3(ϑ) =
Γ (1 + 2α)

(Γ (1 + α))2 – 2 – eϑ , φ3(ϑ) =
Γ (1 + 2α)

(Γ (1 + α))2 – 2 + e–ϑ .

Therefore, the third RPS approximate solutions are

u3(ϑ , ζ ) = eϑ – eϑ ζ α

Γ (1 + α)
+ eϑ ζ 2α

Γ (1 + 2α)

+
{

Γ (1 + 2α)
(Γ (1 + α))2 – 2 – eϑ

}
ζ 3α

Γ (1 + 3α)
,

v3(ϑ , ζ ) = e–ϑ + e–ϑ ζ α

Γ (1 + α)
+ e–ϑ ζ 2α

Γ (1 + 2α)

+
{

Γ (1 + 2α)
(Γ (1 + α))2 – 2 + e–ϑ

}
ζ 3α

Γ (1 + 3α)
.

(4.35)

The remaining coefficients of un(ϑ) and vn(ϑ), for n ≥ 4 can be computed in the same
fashion and therefore the series solutions are fully determined. Finally, the solutions of
time-fractional system (1.1) are presented in the series form as

u(ϑ , ζ ) = eϑ – eϑ ζ α

Γ (1 + α)
+ eϑ ζ 2α

Γ (1 + 2α)
+

{
Γ (1 + 2α)

(Γ (1 + α))2 – 2 – eϑ

}
ζ 3α

Γ (1 + 3α)
+ · · · ,

v(ϑ , ζ ) = e–ϑ + e–ϑ ζ α

Γ (1 + α)
+ e–ϑ ζ 2α

Γ (1 + 2α)

+
{

Γ (1 + 2α)
(Γ (1 + α))2 – 2 + e–ϑ

}
ζ 3α

Γ (1 + 3α)
+ · · · .

5 Application of RPSM for Problem 2
The given homogeneous nonlinear system of FPDEs is

Dα
ζ u + vϑwη – vηwϑ = –u,
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Dα
ζ v + uϑwη + uηwϑ = v,

Dα
ζ w + uϑvη + uηvϑ = w,

subject to the conditions:

u(ϑ ,η, 0) = eϑ+η, v(ϑ ,η, 0) = eϑ–η, w(ϑ ,η, 0) = e–ϑ+η. (1.2)

The RPS algorithm assumes the following set of solutions for the above system of equa-
tions (1.2) as an FPS expansion about ζ = 0 as

u(ϑ ,η, ζ ) =
∞∑

n=0

ϕn(ϑ ,η)
ζ nα

Γ (1 + nα)
,

v(ϑ ,η, ζ ) =
∞∑

n=0

φn(ϑ ,η)
ζ nα

Γ (1 + nα)
,

w(ϑ ,η, ζ ) =
∞∑

n=0

ψn(ϑ ,η)
ζ nα

Γ (1 + nα)
, 0 < α ≤ 1, (ϑ ,η) ∈ I × I, 0 ≤ ζ < R.

(5.1)

Clearly, u(ϑ ,η, ζ ), v(ϑ ,η, ζ ) and w(ϑ ,η, ζ ) satisfy the initial conditions which can be writ-
ten as

u(ϑ ,η, 0) = ϕ(ϑ ,η) = eϑ+η,

v(ϑ ,η, 0) = φ(ϑ ,η) = eϑ–η,

w(ϑ ,η, 0) = ψ(ϑ ,η) = e–ϑ+η.

(5.2)

Hence the initial guess approximations of u(ϑ ,η, ζ ), v(ϑ ,η, ζ ) and w(ϑ ,η, ζ ) are obtained
as

u0(ϑ ,η, ζ ) = u(ϑ ,η, 0) = ϕ0(ϑ ,η) = ϕ(ϑ ,η) = eϑ+η,

v0(ϑ ,η, ζ ) = v(ϑ ,η, 0) = φ0(ϑ ,η) = φ(ϑ ,η) = eϑ–η,

w0(ϑ ,η, ζ ) = w(ϑ ,η, 0) = ψ0(ϑ ,η) = ψ(ϑ ,η) = e–ϑ+η,

(5.3)

Hence

u(ϑ ,η, ζ ) = ϕ(ϑ ,η) +
∞∑

n=1

ϕn(ϑ ,η)
ζ nα

Γ (1 + nα)
,

v(ϑ ,η, ζ ) = φ(ϑ ,η) +
∞∑

n=1

φn(ϑ ,η)
ζ nα

Γ (1 + nα)
,

w(ϑ ,η, ζ ) = ψ(ϑ ,η) +
∞∑

n=1

ψn(ϑ ,η)
ζ nα

Γ (1 + nα)
.

(5.4)
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Let the kth truncated series of u(ϑ ,η, ζ ), v(ϑ ,η, ζ ) and w(ϑ ,η, ζ ) be

uk(ϑ ,η, ζ ) = ϕ(ϑ ,η) +
k∑

n=1

ϕn(ϑ ,η)
ζ nα

Γ (1 + nα)
,

vk(ϑ ,η, ζ ) = φ(ϑ ,η) +
k∑

n=1

φn(ϑ ,η)
ζ nα

Γ (1 + nα)
,

wk(ϑ ,η, ζ ) = ψ(ϑ ,η) +
k∑

n=1

ψn(ϑ ,η)
ζ nα

Γ (1 + nα)
, k = 1, 2, 3, . . . .

(5.5)

Now the residual functions Re su(ϑ ,η, ζ ), Re sv(ϑ ,η, ζ ) and Re sw(ϑ ,η, ζ ) for the equa-
tions of system (5.5) are defined as

Re su(ϑ ,η, ζ ) = Dα
ζ u + vϑwη – vηwϑ + u,

Re sv(ϑ ,η, ζ ) = Dα
ζ v + uϑwη + uηwϑ – v,

Re sw(ϑ ,η, ζ ) = Dα
ζ w + uϑvη + uηvϑ – w.

(5.6)

Therefore the kth residual functions are defined as

Re su,k(ϑ ,η, ζ ) = Dα
ζ uk + (vk)ϑ (wk)η – (vk)η(wk)ϑ + uk ,

Re sv,k(ϑ , y, ζ ) = Dα
ζ vk + (uk)ϑ (wk)η + (uk)η(wk)ϑ – vk ,

Re sw,k(ϑ ,η, ζ ) = Dα
ζ wk + (uk)ϑ (vk)η + (uk)η(vk)ϑ – wk .

(5.7)

Now the first unknown coefficients ϕ1(ϑ ,η),φ1(ϑ ,η) and ψ1(ϑ ,η) can be determined by
putting k = 1 in the system of equations (5.7):

Re su,1(ϑ ,η, ζ ) = Dα
ζ u1 + (v1)ϑ (w1)η – (v1)η(w1)ϑ + u1,

Re sv,1(ϑ ,η, ζ ) = Dα
ζ v1 + (u1)ϑ (w1)η + (u1)η(w1)ϑ – v1,

Re sw,1(ϑ ,η, ζ ) = Dα
ζ w1 + (u1)ϑ (v1)η + (u1)η(v1)ϑ – w1,

(5.8)

where

u1(ϑ ,η, ζ ) = ϕ(ϑ ,η) + ϕ1(ϑ ,η)
ζ α

Γ (1 + α)
,

v1(ϑ ,η, ζ ) = φ(ϑ ,η) + φ1(ϑ ,η)
ζ α

Γ (1 + α)
,

w1(ϑ ,η, ζ ) = ψ(ϑ ,η) + ψ1(ϑ ,η)
ζ α

Γ (1 + α)
.

Thus

Re su,1(ϑ ,η, ζ ) = ϕ1(ϑ ,η) +
{
φϑ + (φ1)ϑ

ζ α

Γ (1 + α)

}{
ψη + (ψ1)η

ζ α

Γ (1 + α)

}

–
{
φη + (φ1)η

ζ α

Γ (1 + α)

}{
ψϑ + (ψ1)ϑ

ζ α

Γ (1 + α)

}



Dubey et al. Advances in Difference Equations         (2020) 2020:46 Page 17 of 27

+
{
ϕ(ϑ ,η) + ϕ1(ϑ ,η)

ζ α

Γ (1 + α)

}
,

Re sv,1(ϑ ,η, ζ ) = φ1(ϑ ,η) +
{
ϕϑ + (ϕ1)ϑ

ζ α

Γ (1 + α)

}{
ψη + (ψ1)η

ζ α

Γ (1 + α)

}

+
{
ϕη + (ϕ1)η

ζ α

Γ (1 + α)

}{
ψϑ + (ψ1)ϑ

ζ α

Γ (1 + α)

}

–
{
φ(ϑ ,η) + φ1(ϑ ,η)

ζ α

Γ (1 + α)

}
,

Re sw,1(ϑ ,η, ζ ) = ψ1(ϑ ,η) +
{
ϕϑ + (ϕ1)ϑ

ζ α

Γ (1 + α)

}{
φη + (φ1)η

ζ α

Γ (1 + α)

}

+
{
ϕη + (ϕ1)η

ζ α

Γ (1 + α)

}{
φϑ + (φ1)ϑ

ζ α

Γ (1 + α)

}

–
{
ψ(ϑ ,η) + ψ1(ϑ ,η)

ζ α

Γ (1 + α)

}
.

Now the above-mentioned residual functions at the point ζ = 0 are

Re su,1(ϑ ,η, 0) = ϕ1(ϑ ,η) + φϑψη – φηψϑ + ϕ(ϑ ,η),

Re sv,1(ϑ ,η, 0) = φ1(ϑ ,η) + ϕϑψη + ϕηψϑ – φ(ϑ ,η),

Re sw,1(ϑ ,η, 0) = ψ1(ϑ ,η) + ϕϑφη + ϕηφϑ – ψ(ϑ ,η).

(5.9)

From equation (3.10), it is deduced that

Re su,1(ϑ ,η, 0) = 0, Re sv,1(ϑ ,η, 0) = 0, Re sw,1(ϑ ,η, 0) = 0.

Therefore, system (5.9) reduces to

ϕ1(ϑ ,η) + φϑψη – φηψϑ + ϕ(ϑ ,η) = 0,

φ1(ϑ ,η) + ϕϑψη + ϕηψϑ – φ(ϑ ,η) = 0,

ψ1(ϑ ,η) + ϕϑφη + ϕηφϑ – ψ(ϑ ,η) = 0,

(5.10)

Solving the system of equations (5.10), we obtain

ϕ1(ϑ ,η) = –eϑ+η, φ1(ϑ ,η) = eϑ–η, ψ1(ϑ ,η) = e–ϑ+η.

Therefore, the first RPS approximate solutions are

u1(ϑ ,η, ζ ) = eϑ+η – eϑ+η ζ α

Γ (1 + α)
,

v1(ϑ ,η, ζ ) = eϑ–η + eϑ–η ζ α

Γ (1 + α)
,

w1(ϑ ,η, ζ ) = e–ϑ+η + e–ϑ+η ζ α

Γ (1 + α)
.

(5.11)
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To find the second unknown coefficients ϕ2(ϑ ,η),φ2(ϑ ,η) and ψ2(ϑ ,η), putting k = 2 in
system of equations (5.7) yields

Re su,2(ϑ ,η, ζ ) = Dα
ζ u2 + (v2)ϑ (w2)η – (v2)η(w2)ϑ + u2,

Re sv,2(ϑ ,η, ζ ) = Dα
ζ v2 + (u2)ϑ (w2)η + (u2)η(w2)ϑ – v2,

Re sw,2(ϑ ,η, ζ ) = Dα
ζ w2 + (u2)ϑ (v2)η + (u2)η(v2)ϑ – w2,

(5.12)

where

u2(ϑ ,η, ζ ) = ϕ(ϑ ,η) + ϕ1(ϑ ,η)
ζ α

Γ (1 + α)
+ ϕ2(ϑ ,η)

ζ 2α

Γ (1 + 2α)
,

v2(ϑ ,η, ζ ) = φ(ϑ ,η) + φ1(ϑ ,η)
ζ α

Γ (1 + α)
+ φ2(ϑ ,η)

ζ 2α

Γ (1 + 2α)
,

w2(ϑ ,η, ζ ) = ψ(ϑ ,η) + ψ1(ϑ ,η)
ζ α

Γ (1 + α)
+ ψ2(ϑ ,η)

ζ 2α

Γ (1 + 2α)
.

From equation (3.10), it is deduced that

Dα
ζ Re su,2(ϑ ,η, 0) = 0, Dα

ζ Re sv,2(ϑ ,η, 0) = 0, Dα
ζ Re sw,2(ϑ ,η, 0) = 0. (5.13)

Simplifying the system of equations (5.13), we get

ϕ2(ϑ ,η) + ψη(φ1)ϑ + φϑ (ψ1)η – ψϑ (φ1)η – φη(ψ1)ϑ + ϕ1(ϑ ,η) = 0,

φ2(ϑ ,η) + ψη(ϕ1)ϑ + ϕϑ (ψ1)η + ψϑ (ϕ1)η + ϕη(ψ1)ϑ – φ1(ϑ ,η) = 0,

ψ2(ϑ ,η) + φη(ϕ1)ϑ + ϕϑ (φ1)η + φϑ (ϕ1)η + ϕη(φ1)ϑ – ψ1(ϑ ,η) = 0.

(5.14)

Solving the system of equations (5.14) provides

ϕ2(ϑ ,η) = eϑ+η, φ2(ϑ ,η) = eϑ–η, ψ2(ϑ ,η) = e–ϑ+η.

Therefore, the second RPS approximate solutions are

u2(ϑ ,η, ζ ) = eϑ+η – eϑ+η ζ α

Γ (1 + α)
+ eϑ+η ζ 2α

Γ (1 + 2α)
,

v2(ϑ ,η, ζ ) = eϑ–η + eϑ–η ζ α

Γ (1 + α)
+ eϑ–η ζ 2α

Γ (1 + 2α)
,

w2(ϑ ,η, ζ ) = e–ϑ+η + e–ϑ+η ζ α

Γ (1 + α)
+ e–ϑ+η ζ 2α

Γ (1 + 2α)
.

(5.15)

To find the third unknown coefficients ϕ3(ϑ ,η),φ3(ϑ ,η) and ψ3(ϑ ,η), putting k = 3 in
the system of equations (5.7), we get

Re su,3(ϑ ,η, ζ ) = Dα
ζ u3 + (v3)ϑ (w3)η – (v3)η(w3)ϑ + u3,

Re sv,3(ϑ ,η, ζ ) = Dα
ζ v3 + (u3)ϑ (w3)η + (u3)η(w3)ϑ – v3,

Re sw,3(ϑ ,η, ζ ) = Dα
ζ w3 + (u3)ϑ (v3)η + (u3)η(v3)ϑ – w3,

(5.16)
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where

u3(ϑ ,η, ζ ) = ϕ(ϑ ,η) + ϕ1(ϑ ,η)
ζ α

Γ (1 + α)
+ ϕ2(ϑ ,η)

ζ 2α

Γ (1 + 2α)
+ ϕ3(ϑ ,η)

ζ 3α

Γ (1 + 3α)
,

v3(ϑ ,η, ζ ) = φ(ϑ ,η) + φ1(ϑ ,η)
ζ α

Γ (1 + α)
+ φ2(ϑ ,η)

ζ 2α

Γ (1 + 2α)
+ φ3(ϑ ,η)

ζ 3α

Γ (1 + 3α)
,

w3(ϑ ,η, ζ ) = ψ(ϑ ,η) + ψ1(ϑ ,η)
ζ α

Γ (1 + α)
+ ψ2(ϑ ,η)

ζ 2α

Γ (1 + 2α)
+ ψ3(ϑ ,η)

ζ 3α

Γ (1 + 3α)
.

Now Eq. (3.10) suggests that

D2α
ζ Re su,3(ϑ ,η, 0) = 0, D2α

ζ Re sv,3(ϑ ,η, 0) = 0, D2α
ζ Re sw,3(ϑ ,η, 0) = 0. (5.17)

Simplifying and solving system (5.17), we get

ϕ3(ϑ ,η) = –eϑ+η, φ3(ϑ ,η) = eϑ–η, ψ3(ϑ ,η) = e–ϑ+η.

Therefore, the third RPS approximate solutions are

u3(ϑ ,η, ζ ) = eϑ+η – eϑ+η ζ α

Γ (1 + α)
+ eϑ+η ζ 2α

Γ (1 + 2α)
– eϑ+η ζ 3α

Γ (1 + 3α)
,

v3(ϑ ,η, ζ ) = eϑ–η + eϑ–η ζ α

Γ (1 + α)
+ eϑ–η ζ 2α

Γ (1 + 2α)
+ eϑ–η ζ 3α

Γ (1 + 3α)
,

w3(ϑ ,η, ζ ) = e–ϑ+η + e–ϑ+η ζ α

Γ (1 + α)
+ e–ϑ+η ζ 2α

Γ (1 + 2α)
+ e–ϑ+η ζ 3α

Γ (1 + 3α)
.

(5.18)

Continuing in a similar manner, the remaining coefficients of un(ϑ ,η, ζ ), vn(ϑ ,η, ζ ) and
wn(ϑ ,η, ζ ), n ≥ 4 can be computed, and consequently the solutions in series form are fully
acquired.

Now the final solutions of time-fractional homogeneous system (1.2) can be expressed
as

u(ϑ ,η, ζ ) = eϑ+η

[
1 –

ζ α

Γ (1 + α)
+

ζ 2α

Γ (1 + 2α)
–

ζ 3α

Γ (1 + 3α)
+ · · ·

]
= eϑ+ηEα

(
–ζ α

)
,

v(ϑ ,η, ζ ) = eϑ–η

[
1 +

ζ α

Γ (1 + α)
+

ζ 2α

Γ (1 + 2α)
+

ζ 3α

Γ (1 + 3α)
+ · · ·

]
= eϑ–ηEα

(
ζ α

)
,

w(ϑ ,η, ζ ) = e–ϑ+η

[
1 +

ζ α

Γ (1 + α)
+

ζ 2α

Γ (1 + 2α)
+

ζ 3α

Γ (1 + 3α)
+ · · ·

]
= e–ϑ+ηEα

(
ζ α

)
,

where Eα(·) signifies the Mittag-Leffler function of the first kind.

6 Numerical results and discussion
In this section, the numerical values of the functions u(ϑ , ζ ), v(ϑ , ζ ), u(ϑ ,η, ζ ), v(ϑ ,η, ζ ),
and w(ϑ ,η, ζ ) are computed for various values of fractional parameter α = 1

3 , 2
3 and clas-

sical motion α = 1. Figures 1–8 illustrate Problem 1, and Figs. 9–20 represent Problem 2.
Figures 1 and 2 graphically show the two-dimensional variations of u(ϑ , ζ ), v(ϑ , ζ ) with
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Figure 1 Two-dimensional behaviour of u(ϑ ,ζ ) vs.
time ζ for various values of α at ϑ = 1

Figure 2 Two-dimensional behaviour of v(ϑ ,ζ ) vs.
time ζ for various values of α at ϑ = 1

Figure 3 Variation of u(ϑ ,ζ ) w.r.t. ϑ and ζ at
α = 1/3

Figure 4 Variation of v(ϑ ,ζ ) w.r.t. ϑ and ζ at
α = 1/3

respect to ϑ and time ζ for ϑ = 1. Figures 3, 5 and 7 graphically describe the three-
dimensional variations of u(ϑ , ζ ) in respect of ϑ and ζ . Clearly, u(ϑ , ζ ) decreases with in-
creasing time ζ and decreasing α, whereas Figs. 4, 6 and 8 show that v(ϑ , ζ ) increases with
increasing time ζ and decreasing α. Figure 9 depicts that u(ϑ ,η, ζ ) decreases with increas-
ing time ζ and decreasing α for ϑ = 1. It is also observed from Figs. 10 and 11 that v(ϑ ,η, ζ )
and w(ϑ ,η, ζ ) increase with increasing ζ and decreasing α for ϑ = 1. Figures 12–20 graphi-
cally portray the three-dimensional representation of variations of u(ϑ ,η, ζ ), v(ϑ ,η, ζ ) and
w(ϑ ,η, ζ ) with respect to ϑ and ζ for the value η = 0.4. This study undoubtedly deduces
that the achieved approximate analytical solutions continuously depend on the fractional
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Figure 5 Variation of u(ϑ ,ζ ) w.r.t. ϑ and ζ at
α = 2/3

Figure 6 Variation of v(ϑ ,ζ ) w.r.t. ϑ and ζ at
α = 2/3

Figure 7 Variation of u(ϑ ,ζ ) w.r.t. ϑ and ζ at α = 1

Figure 8 Variation of v(ϑ ,ζ ) w.r.t. ϑ and ζ at α = 1

parameter α. Two- and three-dimensional graphical demonstrations ensure the high ac-
curacy of the generated results using RPSM by involving four iterations only. Nevertheless,
the numerical results can be generated more precisely by computing additional iterative
terms.
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Figure 9 Two-dimensional behaviour of u(ϑ ,η,ζ )
vs. ζ for various values of α at ϑ = 1

Figure 10 Variation of v(ϑ ,η,ζ ) vs. time ζ for
various values of α at ϑ = 1

Figure 11 Variation of w(ϑ ,η,ζ ) vs. time ζ for
various values of α at ϑ = 1

Figure 12 Three-dimensional behaviour of
u(ϑ ,η,ζ ) w.r.t. ϑ and ζ for η = 0.4 at α = 1/3

The approximate analytical solutions and numerical results of the given sets of PDEs
obtained via RPSM are in good correspondence with the results obtained via HAM [63],
VIM [64], Laplace transform new homotopy perturbation method (LTNHPM) [65], and
three-dimensional transform method [72]. The other methods and RPSM yield accurate
solutions, but RPSM is simpler compared to other methods. The most significant feature
of the RPS algorithm is that it solves a chain of single variable linear equations to compute
the required coefficients of a power series solution which makes the solution procedure
very easy and straightforward in comparison to other semi-analytical techniques.
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Figure 13 Three-dimensional behaviour of
v(ϑ ,η,ζ ) w.r.t. ϑ and ζ for η = 0.4 at α = 1/3

Figure 14 Three-dimensional behaviour of
w(ϑ ,η,ζ ) w.r.t. ϑ and ζ for η = 0.4 at α = 1/3

Figure 15 Variation of u(ϑ ,η,ζ ) w.r.t. ϑ and ζ for
η = 0.4 at α = 2/3

Figure 16 Three-dimensional behaviour of
v(ϑ ,η,ζ ) w.r.t. ϑ and ζ for η = 0.4 at α = 2/3

7 Concluding remarks
This article extends the implementation of an iterative scheme based on the RPS algo-
rithm to acquire approximate solutions for a nonlinear time-fractional nonhomogeneous
and homogeneous systems of PDEs. The repercussions of the fractional order of Caputo
time derivatives on the numerical solutions are well depicted through graphical represen-
tations for various specific cases. The study authenticates that RPSM supplies accurate nu-
merical solutions without any restrictive assumptions on nonlinear PDEs. This technique
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Figure 17 Three-dimensional behaviour of
w(ϑ ,η,ζ ) w.r.t. ϑ and ζ for η = 0.4 at α = 2/3

Figure 18 Three-dimensional behaviour of
u(ϑ ,η,ζ ) w.r.t. ϑ and ζ for η = 0.4 at α = 1

Figure 19 Variation of v(ϑ ,η,ζ ) w.r.t. ϑ and ζ for
η = 0.4 at α = 1

Figure 20 Variation of w(ϑ ,η,ζ ) w.r.t. ϑ and ζ for
η = 0.4 at α = 1

has a clear advantage over other techniques in the sense that it yields approximate solu-
tions of the problems by utilizing the contextual choice of an initial guess approximation.
This technique delivers rapidly convergent series and also minimizes the complications
that arise in the evaluation procedure of certain intricate terms. This paper beautifully
checks the applicability strength and potency of RPSM to generate numerical solutions of
a system of FPDEs. The stated systems of nonlinear FPDEs in this manuscript can also be
investigated by the accurate discretization method which was earlier applied by Hajipour
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et al. [73] to one-, two-, and three-dimensional highly nonlinear Bratu-type problems.
In this discretization method, nonlinear equations are discretized via a fourth-order non-
standard computational finite difference formula, and finally the given problem is reduced
to the solution of a highly nonlinear algebraic system. In addition, the semi-implicit finite
difference weighted essentially non-oscillatory (WENO) scheme of the sixth order utilized
by Hajipour et al. [74] to solve the nonlinear heat equation can also be tried to investigate
the described systems of FPDEs in this manuscript. These numerical schemes probably
can provide new insights regarding application to FPDEs and further new conclusions in
the future.
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