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Abstract
The spread of an epidemic diseases is stochastic in nature. It is more realistic to
include this stochasticity when modelling the dynamics of a communicable disease.
In this paper, a stochastic model for foot and mouth disease dynamics in animals is
constructed from its corresponding deterministic model. Like the deterministic
model, the dynamics of the stochastic model is also governed by a threshold
parameter A∗, called FMD generation number. If we are able to make A∗ < 1, then the
disease will completely die out from the animal population. If A∗ > 1, the disease will
become endemic in animals. A competitive structure preserving numerical analysis of
the stochastic model in comparison with its deterministic part is presented. The
proposed numerical analysis is also compared with already existing numerical
techniques which may not be reliable in certain situations. Numerical experiments are
performed and their results are plotted to show the strength of the proposed
technique.

Keywords: Foot and mouth disease (FMD); Stochastic numerical techniques;
Stability

1 Literature survey
It was in Venice in 1514 that an Italian monk Hieronymus Fracastorius first explained
the possible foot-and-mouth disease among cattle. The victims of this disease could not
eat, and their mouths, feet had vesicles. These five hundred years-old descriptions of the
FMD disease have close similarity with the present state of the same disease. This disease is
deemed to be the most common one among split hoof animals, as it affects seventy species
of split hoof animals such as goats and sheep. The disease was ubiquitous in areas where
livestock used to be kept. The disease still exists in more than one hundred countries, and
its spread reflects economic progress. Although most of the countries have eradicated
this disease, its spread in new countries, which were previously disease-free, could result
in huge financial losses. A single stood positive-sense RNA virus is responsible for this
disease known as foot and mouth disease virus. The FMD virus known as aphthous virus
from the family of picornaviridae. The present article is about the description of the virus
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and the classification of FMD outbreaks. This information would help explain the present
existence of the disease all over the world. How could the FMD progressive control path-
way help in checking the spread of disease in affected countries? European region is given
central attention in the study of FMD virus [3, 4, 8].

In 2000, the O-Pan Asia virus was detected in Uzbekistan, Mongolia, Armenia, Georgia,
Russia, Kyrgyzstan, and Tajikistan. The virus spread to the province of KwaZulu-Natal in
South Africa. It was the first reported eruption in that country because of serotype O in
1957. The eruption was connected with the fact that the pigs were fed on swill that came
from Asia. On the other hand, eruptions caused by SAT1 were recorded once again in
2013. In 2001, the eruption of FMD disease occurred in England. However, it was attached
by a powerful eruption of FMD disease in 1967, and approximately four million cattle were
culled in order to eliminate the disease [5].

The eruption of disease in 2001 was checked by resorting to a stamping out strategy in
which approximately six million affected cattle were destroyed. The rough estimate of the
total economic loss was approximately twelve or thirteen billion US dollar. At present, the
Pan Asia-II strain has caused an eruption of disease at a large scale in the whole Middle
East and south Asian regions. In 2009, this strain was also blamed for FMD in Pakistan
that extended to the west and became the cause of disease in Turkey, Israel, Libya, and
Bulgaria. The latter suffered through an eruption of disease of FMD at the end of 2010
and the first case of the disease was discovered in a wild boar. The FMD virus, serotype
O virus, and strain of Pan Asia-II were identified to be the cause of eruption of disease
in eleven different places. Buffalo, sheep, and goats can be directly affected by the FMD
virus. A stamping out policy was resorted to, and approximately one thousand cattle were
culled. Seropositive wildlife was identified in neighbouring areas where the eruption of
disease happened. Most counties were labelled as free of FMD in July 2011. But the FMD
virus still persists and affects the economy of countries [6]. By the utilization of numerous
mathematical structures, we are able to have a sound perception of widespread diseases.
We can analyze susceptibility and contact of conjuncture model by model formulation and
appropriate imitation. The results from a considerable effect on the health of animals by
estimating the mediator, host, and environmental conditions and scientifically authentic
outcomes can be drawn by the persons assigned to the task of policymaking on health and
can finally be converted into reality in health services [7]. On the transmission of FMD,
various methods have been employed. Different models of the transmission of FMD have
been studied. There is a lack of any persistent analytical solution for the nonlinear initial
value problems (IVPs) [9–12]. These methods are less attractive and less reliable because
the causes mentioned above connected with other schemes are numerically unstable.

The Euler–Maruyama, stochastic Runge–Kutta, and stochastic Euler fail to protect these
dynamical characteristics of the initial system. Thus, the question arises: Does there exist
a numerical technique that protects all dynamical properties [15]? Thus, this writing is an
attempt to construct a reliable technique, known as stochastic nonstandard finite differ-
ence technique, for the FMD model under rules defined by Mickens in the stochastic case
[16–19].

There are further sub-divisions of this paper as follows:
The deterministic FMD model and its equilibria are discussed in Sect. 2. The construc-

tion of a stochastic FMD model is discussed in Sect. 3. The comparison is drawn between
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Figure 1 Illustration of the FMD model

the stochastic solutions and deterministic solutions in Sect. 4. Finally, the conclusion and
some future directions are given in Sect. 5.

2 Deterministic FMD model
The deterministic FMD model, which is presented in [1], will be discussed in this section.
Let at any arbitrary time t the variables be stated as follows: S(t) represents the susceptible
group, V (t) represents the vaccinated group, L(t) represents the latently infected group,
and I(t) represents the infectious group, whereas N(t) represents the population in Fig. 1.
The flow of the FMD model is as follows.

Here, μ denotes the birth and death rate of susceptible animals, β denotes the bilinear
mass action, ω denotes the rate of vaccine wanes, ∅ denotes the vaccinated susceptible
animals, δ denotes the infected animals, γ denotes the rate of progression from the la-
tent stage to the infection stage, α denotes the culled infectious animals, d denotes the
additional disease-related mortality.

The deterministic equations of the FMD model are as follows:

dS
dt = μN – βIS – (μ + ω)S + ∅V
dV
dt = ωS – (μ + ∅)V
dL
dt = βIS – (μ + δ + γ )L
dI
dt = γ L – (μ + α + d)I

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (2.1)

where

S ≥ 0, V ≥ 0, L ≥ 0, I ≥ 0, S + V + L + I ≤ N . (2.2)

2.1 Equilibria of FMD model
Model (2.1) has two equilibria as follows:

Disease-free equilibrium (DFE) D0 = (S0, V 0, L0, I0) = ( N(μ+∅)
(μ+∅+ω) , Nω

(μ+∅+ω) , 0, 0).
Endemic equilibrium (EE) E1 = (S1, V 1, L1, I1).

S1 =
N(μ + ∅)

(μ + ∅ + ω)A∗ , V 1 =
Nω

(μ + ∅ + ω)A∗ ,



Abodayeh et al. Advances in Difference Equations         (2020) 2020:34 Page 4 of 14

Table 1 Transition of the FMD model

(�A)i = Transitions Pi = Probabilities

(�A)1 = [1 0 0 0]T P1 =μN�t

(�A)2 =
[
–1 0 1 0

]T
P2 = β IS�t

(�A)3 =
[
–1 –1 0 0

]T
P3 = (ωS + ∅V)�t

(�A)4 = [–1 0 0 0]T P4 =μS�t
(�A)5 = [0 –1 0 0]T P5 =μV�t

(�A)6 =
[
0 0 –1 1

]T
P6 = γ L�t

(�A)7 =
[
0 0 –1 0

]T
P7 = (μ + δ)L�t

(�A)8 = [0 0 0 –1]T P8 = (μ + α + d)I�t

L1 =
N(μ + α + d)(A∗ – 1)

(μ + α + γ + d)
, I1 =

Nγ (A∗ – 1)
(μ + α + γ + d)A∗ ,

where A∗ = Nβγ (μ+∅)
(α+d+μ)(γ +δ+μ)(∅+ω+μ) .

Note that A∗ is the FMD generation number, and it measures an average number of sec-
ondary infections occurring due to a primary infection. This number plays a decisive role
in epidemiology and predicts the future of an infectious disease. If measures are taken to
make this number less than 1, model (2.1) will eventually attain the disease-free equilib-
rium, and disease will ultimately be eradicated in an animal’s population. If A∗ > 1, it is an
alarming situation, which leads to the disease becoming endemic in an animal’s popula-
tion.

3 Stochastic FMD model
Let A = [S, V , L, I]T and calculate the transition probabilities of model (2.1) as follows (see
Table 1):

Expectation =
8∑

i=1

Pi(�A)i,

Expectation =

⎡

⎢
⎢
⎢
⎣

μN – βIS – ωS – ∅V – μS
–(ωS + ∅V ) – μV

βIS – γ L – (μ + δ)L
γ L – (μ + α + d)I

⎤

⎥
⎥
⎥
⎦

�t,

Var =
8∑

i=1

Pi(�A)i
[
(�A)i)

]t ,

Variance

=

⎡

⎢
⎢
⎣

μN + βIS + (ωS + ∅V ) + μS (ωS + ∅V ) –βIS 0
(ωS + ∅V ) (ωS + ∅V ) + μV 0 0

–βIS 0 βIS + γ L + (μ + δ)L –γ L
0 0 –γ L γ L + (μ + α + d)I

⎤

⎥
⎥
⎦�t,

dA
dt

= f (A, t) + L(A, t)
dB
dt

.

If drift = f (A, t) = E∗[�A]
�t and diffusion = L(A, t) =

√
E∗[�A�AT ]

�t , then the differential equa-
tion of model (2.1) is

dA = f (A, t)dt + L(A, t)dB (3.1)
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Table 2 Parameter values

Parameters Values (Days)

DFE EE

μ 200 200
γ 0.26 0.26
ω 0.16 0.16
∅ 0.001 0.001
d 0.001 0.001
δ 0.2 0.2
α 0.25 0.25
β 150 200
N 1000 1000
σ1 0.9 0.9
σ2 0.8 0.8
σ3 0.7 0.7
σ4 0.6 0.6

with initial conditions A(0) = Ao = [800, 100, 50, 50]T , 0 ≤ t ≤ T , and B is the Brownian
motion.

3.1 Euler–Maruyama technique
Euler–Maruyama schemes [14, 19, 20] are widely used to solve stochastic differential equa-
tions. We can write the Euler–Maruyama technique of SDEs (3.1) as

An+1 = An + f (An, t)�t + L(An, t)�Bn, (3.2)

where ‘�t’ represents time step size and �Bn is normally distributed in between mean
and variance, i.e., �Bn ∼ N(0, 1000). Numerical experiments of Euler–Maruyama are per-
formed using MATLAB taking values of parameters presented in [1], and see Table 2.

The solution of the ODEs for both equilibria is as follows: D0 = (999.2, 0.7994, 0, 0), and
the FMD generation number A∗ = 0.9708 < 1 helps us to control this disease in the animal’s
population. The endemic equilibrium E1 = (772, 0.6176, 226.9, 0.2946) and the FMD gen-
eration number A∗ = 1.2944 > 1 show that disease is endemic in the animal’s population.
The graphical illustration of the aforementioned technique is shown in Fig. 2.

4 Nonparametric perturbation in FMD model
The idea here is to assume that each compartment has uncertainty. Thus we add the diffu-
sion coefficient in each ODE. However, the resulting SDEs are multidimensional additive,
hence there are many ways to simulate them. This idea was presented in [21, 22, 24, 28–
32]. So, we introduce the randomness in each equation of FMD model (2.1) as follows
[2, 13, 24]:

dS
dt =

(
μN – βIS – (μ + ω)S – ∅V

)
dt + σ1SdB1

dV
dt =

(
ωS – (μ + ∅)V

)
dt + σ2VdB2

dL
dt =

(
βIS – (μ + δ + γ )L

)
dt + σ3LdB3

dI
dt =

(
γ L – (μ + α + d)I

)
+ σ4IdB4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (4.1)

where σ1,σ2,σ3, andσ4 are stochasticity of each compartment of the FMD model and
Bj, (j = 1, 2, 3, 4, ) are the independent Brownian motions [23, 24]. The stochastic FMD
model (4.1) involves non-differentiability terms of Brownian motion and cannot be solved
with usual numerical integrators.
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Figure 2 (a) Susceptible animals converge to disease free equilibria at h = 0.0001. (b) Susceptible animals
diverge to disease free equilibria at h = 0.001. (c) Infectious animals converge to endemic equilibria at
h = 0.0001. (d) Infectious animals diverge to endemic equilibria at h = 0.001

4.1 Stochastic Euler technique
The given technique discussed in [2, 13] could be extended to FMD model (4.1) as follows:

Sn+1 = Sn + h
(
μN – βInSn – (μ + ω)Sn – ∅V n) + σ1Sn�B1

V n+1 = V n + h
(
ωSn – (μ + ∅)V n) + σ2V n�B2

Ln+1 = Ln + h
(
βInSn – (μ + δ + γ )Ln) + σ3Ln�B3

In+1 = In + h
(
γ Ln – (μ + α + d)In) + σ4In�B4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (4.2)

Here, h represents time step size and �Bn : n = 1, 2, 3, 4. We use MATLAB software to
simulate system (4.2) and use parameters given in [1] as presented in Fig. 3.

4.2 Stochastic Runge–Kutta technique
The given technique discussed in [2, 13] could be extended to model (4.1) as follows:

First stage

A1 = h
(
μN – βInSn – (μ + ω)Sn – ∅V n) + σ1Sn�B1,

B1 = h
(
ωSn – (μ + ∅)V n) + σ2V n�B2,

C1 = h
(
βInSn – (μ + δ + γ )Ln) + σ3Ln�B3,

D1 = h
(
γ Ln – (μ + α + d)In) + σ4In�B4.
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Figure 3 (a) Susceptible animals converge to disease free equilibria at h = 0.0001. (b) Susceptible animals
diverge to disease free equilibria at h = 0.001. (c) Infectious animals converge to endemic equilibria at
h = 0.0001. (d) Infectious animals diverge to endemic equilibria at h = 0.001

Second stage

A2 = h
(

μN – β

(

In +
D1

2

)(

Sn +
A1

2

)

– (μ + ω)
(

Sn +
A1

2

)

– ∅
(

V n B1

2

))

+ σ1

(

Sn +
A1

2

)

�B1,

B2 = h(ω
(

Sn +
A1

2

)

– (μ + ∅)
(

V n +
B1

2

)

+ σ2

(

V n +
B1

2

)

�B2,

C2 = h
(

β

(

In +
D1

2

)(

Sn +
A1

2

)

– (μ + δ + γ )
(

Ln +
C1

2

))

+ σ3

(

Ln +
C1

2

)

�B3,

D2 = h
(

γ

(

Ln +
C1

2

)

– (μ + α + d)
(

In +
D1

2

))

+ σ4

(

In +
D1

2

)

�B4.

Third stage

A3 = h
(

μN – β

(

In +
D2

2

)(

Sn +
A2

2

)

– (μ + ω)
(

Sn +
A2

2

)

– ∅
(

V n B2

2

))

+ σ1

(

Sn +
A2

2

)

�B1,
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B3 = h(ω
(

Sn +
A2

2

)

– (μ + ∅)
(

V n +
B2

2

)

+ σ2

(

V n +
B2

2

)

�B2,

C3 = h
(

β

(

In +
D2

2

)(

Sn +
A2

2

)

– (μ + δ + γ )
(

Ln +
C2

2

))

+ σ3

(

Ln +
C2

2

)

�B3,

D3 = h
(

γ

(

Ln +
C2

2

)

– (μ + α + d)
(

In +
D2

2

))

+ σ4

(

In +
D2

2

)

�B4.

Fourth stage

A4 = h
(

μN – β

(

In +
D3

2

)(

Sn +
A3

2

)

– (μ + ω)
(

Sn +
A3

2

)

– ∅
(

V n B3

2

))

+ σ1

(

Sn +
A3

2

)

�B1,

B4 = h(ω
(

Sn +
A3

2

)

– (μ + ∅)
(

V n +
B3

2

)

+ σ2

(

V n +
B3

2

)

�B2,

C4 = h
(

β

(

In +
D3

2

)(

Sn +
A3

2

)

– (μ + δ + γ )
(

Ln +
C3

2

))

+ σ3

(

Ln +
C3

2

)

�B3,

D4 = h
(

γ

(

Ln +
C3

2

)

– (μ + α + d)
(

In +
D3

2

))

+ σ4

(

In +
D3

2

)

�B4.

Final stage

Sn+1 = Sn + 1
6 [A1 + 2A2 + 2A3 + A4]

V n+1 = V n + 1
6 [B1 + 2B2 + 2B3 + B4]

Ln+1 = Ln + 1
6 [C1 + 2C2 + 2C3 + C4]

In+1 = In + 1
6 [D1 + 2D2 + 2D3 + D4]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (4.3)

Here, h represents time step size and �Bn : n = 1, 2, 3, 4. System (4.3) is simulated by using
MATLAB, taking parameters from [1].

4.3 Stochastic NSFD technique
The stochastic nonstandard finite difference technique (SNSFD) is constructed with the
aim that it preserves all the dynamical properties defined by Mickens in a stochastic con-
text. Now, we extend our proposed SNSFD technique [2, 13] to model (4.1) as follows:

Sn+1 = Sn+hμN+hσ1Sn�B1
1+hβ1In+h(μ+ω)

V n+1 = hωSn+σ2V n�B2
1+h(μ+∅)

Ln+1 = Ln+hβInSn+hσ3Ln�B3
1+h(μ+δ+γ )

In+1 = In+hγ Ln+hσ4In�B4
1+h(μ+α+d)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (4.4)

Here, h represents time step size and �Bn : n = 1, 2, 3, 4. System (4.4) is simulated by
using MATLAB taking parameters from [1].

4.3.1 Stability analysis
The following theorems are presented in support of the given analysis.

Theorem 4.1 The disease-free point with A∗ < 1 and endemic point with A∗ > 1 are stable,
then the absolute eigenvalues of the discrete model on both equilibria lie in a unit circle [16].
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Proof We consider the newly constructed SNSFD method as follows:

F =
S + hμN + h∅V + hσ1S�B1

1 + hβI + h(μ + ω)
,

G =
V + hωS + hσ2V�B2

1 + h(μ + ∅)
,

H =
L + hβIS + hσ3L�B3

1 + h(μ + δ + γ )
,

R =
I + hγ L + hσ4I�B4

1 + h(μ + α + d)
,

∂F
∂S

=
1 + hσ1�B1

1 + hβI + h(μ + ω)
,

∂F
∂L

= 0,
∂F
∂V

=
h∅

1 + hβI + h(μ + ω)
,

∂F
∂I

=
–(S + hμN + h∅V + hσ1S�B1)(hβ)

(1 + hβI + h(μ + ω))2 ,

∂G
∂S

=
hω

1 + h(μ + ∅)
,

∂G
∂L

= 0,
∂G
∂V

=
1 + hσ2�B2

1 + h(μ + ∅)
,

∂G
∂I

= 0,

∂H
∂S

=
hβI

1 + h(μ + δ + γ )
,

∂H
∂L

=
1 + hσ3�B3

1 + h(μ + δ + γ )
,

∂H
∂V

= 0,
∂H
∂I

=
hβS

1 + h(μ + δ + γ )
,

∂K
∂S

= 0,
∂K
∂V

= 0,
∂K
∂L

=
hγ

1 + h(μ + α + d)
,

∂K
∂I

=
1 + hσ4�B4

1 + h(μ + α + d)
.

The Jacobean matrix as follows:

J =

⎡

⎢
⎢
⎢
⎣

∂F
∂S

∂F
∂V

∂F
∂L

∂F
∂I

∂G
∂S

∂G
∂V

∂G
∂L

∂G
∂I

∂H
∂S

∂H
∂V

∂H
∂L

∂H
∂I

∂K
∂S

∂K
∂V

∂K
∂L

∂K
∂I

⎤

⎥
⎥
⎥
⎦

,

J =

⎡

⎢
⎢
⎢
⎢
⎣

1+hσ1�B1
1+hβI+h(μ+ω)

h∅
1+hβI+h(μ+ω) 0 –(S+hμN+h∅V +hσ1S�B1)(hβ)

(1+hβI+h(μ+ω))2
hω

1+h(μ+∅)
1+h�B2

1+h(μ+∅) 0 0
hβI

1+h(μ+δ+γ ) 0 1+hσ3�B3
1+h(μ+δ+γ )

hβS
1+h(μ+δ+γ )

0 0 hγ

1+h(μ+α+d)
1+hσ4�B4

1+h(μ+α+d)

⎤

⎥
⎥
⎥
⎥
⎦

.

So, by using MATLAB software, we have plotted the dominant eigenvalue of the given
Jacobean matrix J as shown in Fig. 6. �

Remarks For both equilibria, the largest eigenvalue is less than one. Ultimately, the other
three eigenvalues for both of these cases are also less than one. So, the given tech-
nique stochastic nonstandard finite difference for the discrete dynamical system is locally
asymptotical stable (LAS) for both equilibria.

4.4 Contrast section
In this section, we shall make a comparison among stochastic explicit numerical methods
and stochastic NSFD as follows.
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Figure 4 (a) Susceptible animals converge to disease free equilibria at h = 0.0001. (b) Susceptible animals
diverge to disease free equilibria at h = 0.01. (c) Infectious animals converge to endemic equilibria at
h = 0.0001. (d) Infectious animals diverge to endemic equilibria at h = 0.01

5 Consequences and discussion
The Euler–Maruyama scheme meets the actual equilibria of the FMD model and illus-
trates that a deterministic outcome is the mean of the Euler–Maruyama outcome in
Fig. 2(a) and Fig. 2(c). However, the given technique is divergent at the increase in time step
size, as shown in Fig. 2(b) and Fig. 2(d). The stochastic Euler technique meets the factual
equilibria, and the deterministic outcome is its mean as shown in Fig. 3(a) and Fig. 3(c).
This technique is also a time-dependent technique as shown in Fig. 3(b) and Fig. 3(d). The
stochastic RK technique approaches to true equilibria of the model as shown in Fig. 4(a)
and (c). The stochastic RK technique is also time-dependent, as shown in Fig. 4(b) and
(d). The stochastic nonstandard finite difference technique approaches to true equilibria
of the model at any value of parameter as shown in Fig. 5. The proposed technique is a
time-independent technique. The largest eigenvalue has been plotted for both equilibria
as shown in Fig. 6(a) and Fig. 6(b).

We have also presented a comparison of these methods in Fig. 7. The comparison of
Euler–Maruyama and stochastic NSFD for DFE and EE is shown in Fig. 7(a) and Fig. 7(b).
The comparison of stochastic Euler and stochastic NSFD for both DFE and EE is shown in
Fig. 7(c) and Fig. 7(d). The comparison of stochastic Runge–Kutta and stochastic NSFD for
both DFE and EE is shown in Fig. 7(e) and Fig. 7(f ). Thus we concluded that the stochastic
explicit numerical techniques do not preserve the dynamical properties presented in [16–
18] as shown in Fig. 7(b), Fig. 7(d) and Fig. 7(f ).
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Figure 5 (a) Susceptible animals converge to disease free equilibria at h = 0.0001. (b) Susceptible animals
converges to disease free equilibria at h = 100. (c) Infectious animals converges to endemic equilibria at
h = 0.0001. (d) Infectious animals converges to endemic equilibria at h = 100. It means that stochastic
nonstandard finite difference scheme (SNSFD) is always convergent to equilibria of model at any time step
size parameter. This is the beauty of SNSFD because independent of time step size

Figure 6 (a) Spectral Radius for DFE. (b) Spectral Radius for EE

6 Conclusion and directions
The deterministic epidemic model is a less reliable technique as compared to the stochas-
tic model in terms of numerical analysis for comprehending FMD model dynamics. The
numerical techniques which are discussed above approach to equilibria of the model for
very small step size. In the stochastic framework our proposed technique of SNSFD for the
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Figure 7 Comparison in solutions of explicit methods, stochastic NSFD and deterministic

FMD model performs for any time step size [17, 18]. In disease dynamics the stochastic
modelling plays a significant role. We have observed that the SNSFD is the most appropri-
ate technique to tackle all complex stochastic models. It is also noted that deterministic
epidemic models are less pragmatic as compared to stochastic epidemic models. The com-
plicated stochastic diffusion and delay models can be studied by applying the stochastic
nonstandard finite difference technique for future work. We can extend this analysis to
the fractional-order dynamical system [25–27].
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