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Abstract
By studying the Riemann problem for the Aw–Rascle traffic model with different
pressure laws, which is the coupling of two one-dimensional hyperbolic systems, we
investigate the resonance phenomena. The main difficulty arises from the possible
resonance behavior which may result in multiple solutions. We discover a new and
interesting phenomenon showing that there exist infinitely many solutions for some
certain initial data, which is quite different compared to earlier studies for the
isentropic model of a fluid flow in a nozzle with variable cross-section and the shallow
water equations with discontinuous topography. In order to overcome this difficulty,
we impose the so-called TV-condition to obtain the uniqueness of solution to the
Riemann problem.
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1 Introduction
Resonance phenomenon, occurring in many hyperbolic equations, is an important and
interesting phenomenon in both physical and mathematical sense and has attracted the
attention of many researchers. When one of the nonlinear wave families of the hyperbolic
equations has a zero speed wave, the resonance behavior may result in multiple solutions
to the certain initial value problem [23, 24, 30, 31]. For more related results, see e.g. [14, 17].
It is therefore natural to add some admissibility criteria to single out the physically relevant
solution. However, until now, this is still an open problem.

In the last decades, many efforts have been made to study the resonance behavior for
specific hyperbolic equations such as systems of balance laws in non-conservation laws
and the coupled Euler systems with distinct pressure laws. In particular, when they inves-
tigated the Riemann problems for the non-conservation laws of the isentropic flows in a
nozzle with variable cross-section and the shallow water equations with discontinuous to-
pography, LeFloch and Thanh [27–29] introduced an admissibility criterion, called mono-
tonicity criterion (i.e., along any stationary curve, the bottom level a is monotone as a func-
tion of h and the total variation of the bottom level component of any Riemann solution
must not exceed |aL – aR|), to provide the existence and uniqueness of Riemann solutions
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in the nonresonant regime and multiple solutions in the resonant regime. In [6], Andri-
anov and Warnecke considered the Riemann problem for the compressible duct flow and
applied the so-called evolutionarity criterion to rule out the nonphysical solutions. More-
over, based on the 2D numerical results, they discovered that the physically relevant 1D
solutions satisfy a kind of entropy rate admissibility criterion. Thanh [37] used the mono-
tonicity criterion to discuss the Riemann problem for the above compressible duct flow
again and established the existence for large data and uniqueness in strictly hyperbolic
domains. By means of the monotonicity criterion, he [38] also established the monotonic-
ity of the curves of composite waves for the shallow water equations with discontinuous
topography, which provides an important method to discover the domain of uniqueness
and a deterministic version of the existence of Riemann solutions. In addition, Marchesin
and Pase-Leme [32] defined 1-M and 2-M curves to construct Riemann solutions for the
2 × 2 isothermal gas dynamics in a duct with discontinuous diameter. They found that
there exist multiple solutions for the Riemann problem with some certain initial data due
to the occurrence of the bifurcation phenomena. Following the work in [32], Han, Han-
tkee, and Warnecke [18–20] developed the two curves 1-M and 2-M and analyzed the
Riemann problem for the compressible duct flow and the shallow water equations with
discontinuous topography.

To the best of our knowledge, many criteria have been proposed for investigating the res-
onance behavior to different hyperbolic models, and a unique solution among the possibly
multiple solutions has not been picked out. The main purpose of this paper is designed
to explore this problem through a discussion of the Riemann problem for the well-known
Aw–Rascle traffic model with distinct pressure laws, which can be seen as an attempt to
study the coupling of two one-dimensional barotropic Euler systems at an interface at x = 0
in [1] and [33]. We can see [8–10] about resonance behavior for the corresponding cou-
pling of two different hyperbolic systems. We also refer the reader to [5, 12, 13, 26, 29, 39]
and the references therein for the numerical methods to study the related hyperbolic sys-
tems.

The Aw–Rascle traffic model with distinct pressure laws reads as follows:

⎧
⎨

⎩

ρt + (ρu)x = 0,

(ρ(u + p))t + (ρu(u + p))x = 0,
(1.1)

where

p(ρ, x) =
(
1 – H(x)

)
pL(ρ) + H(x)pR, (1.2)

pα = καργ denote some kind of pressure, α = L, R, and H(x) is the Heaviside function and
κα denotes the road condition. If κL = κR, then system (1.1)–(1.2) becomes the classical
Aw–Rascle traffic model, which was introduced by Aw and Rascle [7] and has been widely
studied by many authors, see [1, 25, 34] among others.

System (1.1)–(1.2) with κL �= κR is a model of coupling. In this case, the system can be
considered as the Aw–Rascle traffic model with the rough road condition. We would like to
emphasize that the coupling systems are not easy to solve, even for the Riemann problems.
The main reason is that the non-uniqueness of solution is related to the resonance that may
take place at the interface x = 0 and the coupling condition must be chosen to achieve two
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well-posed initial boundary value problems in both sides of x = 0 [4, 8, 9]. It is worthwhile
to mention the work by Ambroso et al. [1–4] who used a relaxation method to seek for a
conservative coupling which avoided resonance.

In order to solve the Riemann problem for (1.1)–(1.2), we supplement the system with
the trivial equation

κt = 0. (1.3)

Then the problem is changed into

⎧
⎪⎪⎨

⎪⎪⎩

ρt + (ρu)x = 0,

(ρ(u + p))t + (ρu(u + p))x = 0,

κt = 0,

(1.4)

with the piecewise constant initial data

U0 = (ρ, u,κ)(x, 0) =

⎧
⎨

⎩

(ρL, uL,κL), x < 0,

(ρR, uR,κR), x > 0.
(1.5)

By the Aw–Rascle traffic model, we require that ρ(x, t) ≥ 0 and velocity u(x, t) ≥ 0 of cars
at (x, t). Furthermore, in this paper we assume κα > 1, α = L, R, and 1 < γ < 2.

Comparing with the Riemann problems for the isentropic model of a fluid flow in a
nozzle with variable cross-section and the shallow water equations with discontinuous
topography dealt with by LeFloch and Thanh [27–29], there are two important differences
which are the main problems that we will solve in this paper. The first one is that the
resonance hypersurfaces on both sides of the interface x = 0 are not the same, which makes
the construction of the Riemann solution more difficult. Most importantly, for given UL =
(ρL, uL,κL), there is usually U�0

L �= U0�
L for the above two models, while we here have U�0

L =
U0�

L (see Lemma 4.2), which results in system (1.4)–(1.5) having infinitely many solutions
for certain Riemann data (see subcases (A5) or (B5)).

In order to overtake this difficulty, following the line of [15, 16, 21, 22], we propose
the so-called TV-condition which allows us to single out a unique solution among pos-
sibly infinitely many solutions. Denote W0 = W0(UL, UR), W i

0 = W i
0(Ui

L, Ui
R), and the total

variation of the variable ρ along all the stationary contact wave curves W0 =
∑

i W i
0 by

TVW0 (ρ) =
∑

i |ρ i
r – ρ i

l | across the discontinuity x = 0, where W i
0 denotes the ith station-

ary contact wave connecting the left-hand state Ui
L = (ρ i

L, ui
L,κ i

L) and the right-hand state
Ui

R = (ρ i
R, ui

R,κ i
R). Through our analysis, ρ i

l and ρ i
r may not be unique. To obtain the unique

Riemann solution, across the stationary contact wave curve W i
0, we select ρ i

l and ρ i
r such

that

TV
W0

(ρ) =
∑

i

∣
∣ρ i

r – ρ i
l
∣
∣ is minimum, (1.6)

which is called the TV-condition in this paper. We will see that our TV-condition is quite
effective not only for dealing with the resonance phenomenon but also for selecting a
unique admissibility solution among infinitely many solutions.
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In a recent paper [33], Shen studied system (1.4) by introducing two variables (u,ω) =
(u, u+κργ ) and then dividing the construction of the global Riemann solver into two steps.
The last step is to solve a scalar conservation law with discontinuous flux under the min-
imum jump path cross the discontinuity x = 0. The similar minimum jump condition was
first introduced by Gimse and Risebro [16] to study the conservation laws with the discon-
tinuous flux. The key difference with this paper and the paper [33] is whether the station-
ary contact discontinuity and the shock with zero speed occur. In this paper, there occur
the stationary contact discontinuity and the shock with zero speed to some Riemann so-
lutions constructed by the variables (ρ, u,κ).

The main results of this paper can be demonstrated as follows.

Theorem 1.1 Given the left and right states UL = (ρL, uL,κL) and UR = (ρR, uR,κR), sup-
pose that condition (3.10) is satisfied, where ω0 = ωL and m0 = mL. If TV-condition (1.6) is
carried out, then Riemann problem (1.4) and (1.5) has a unique solution.

The paper is organized as follows. In Sect. 2, we give the corresponding preliminaries
for (1.4). In Sect. 3, we investigate the properties of stationary shock wave and stationary
contact wave. In Sect. 4, we introduce the so-called TV-condition and then give two related
lemmas. In Sect. 5, under the TV-condition, we construct the corresponding Riemann
solution case by case. Moreover, we obtain the uniqueness of the Riemann solution, which
is demonstrated in Theorem 1.1. Finally, the conclusions are presented.

2 Preliminaries
Setting the dependent variable U = (ρ, u,κ), the Jacobian matrix of system (1.4) is in the
form

A(U) =

⎛

⎜
⎝

u ρ 0
0 u – κγργ ργ u
0 0 0

⎞

⎟
⎠ , (2.1)

which has three eigenvalues

λ0 = 0, λ1 = u – κγργ , λ2 = u, (2.2)

together with the corresponding right eigenvectors

r0 =

⎛

⎜
⎝

–ργ +1

ργ u
κγργ – u

⎞

⎟
⎠ , r1 =

⎛

⎜
⎝

1
–κγργ –1

0

⎞

⎟
⎠ , r2 =

⎛

⎜
⎝

1
0
0

⎞

⎟
⎠ . (2.3)

The first family and the third family are linearly degenerate, while the second family is
genuinely nonlinear.

Moreover, on the hypersurface, which is called the resonance hypersurface,

Cκ
+ :=

{
(ρ, u,κ) | u = κγργ

}
, (2.4)

the second and the first characteristic speeds coincide, i.e.,

λ1(U) = λ0(U) = 0
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and

λ2(U) = λ0(U) = 0,

on the hypersurface

C– :=
{

(ρ, u,κ) | u = 0
}

. (2.5)

Now, we use curve (2.4) to separate the phase space {ρ ≥ 0, u ≥ 0} into two parts Gκ
1 and

Gκ
2 , where

⎧
⎨

⎩

Gκ
1 := {U | λ1(U) > 0} = {U | u > κγργ },

Gκ
2 := {U | λ1(U) < 0 ≤ λ2(U)} = {U | 0 ≤ u < κγργ }.

(2.6)

In order to analyze the solutions to system (1.4), we need to look at the wave curves.
Since equations (1.4) and the Riemann data are invariant under uniform stretching of co-
ordinates

(x, t) → (αx,αt), α > 0 is constant.

By taking the self-similar transform ξ = x/t, Riemann problem (1.4) and (1.5) is changed
into the boundary value problem of the ordinary differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

–ξρξ + (ρu)ξ = 0,

–ξ (ρ(u + p))ξ + (ρu(u + p))ξ = 0,

–ξκξ = 0,

(2.7)

with (ρ, u,κ)(∞) = (ρR, uR,κR) and (ρ, u,κ)(–∞) = (ρL, uL,κL).
For smooth solutions, equations (2.7) can be rewritten as

⎛

⎜
⎝

u – ξ ρ 0
(u – ξ )pρ u – ξ upκ

0 0 –ξ

⎞

⎟
⎠

⎛

⎜
⎝

ρ

u
κ

⎞

⎟
⎠

ξ

= 0. (2.8)

It follows from (2.8) that besides the constant solution (ρ > 0), it provides a rarefaction
wave which is a continuous solution of (2.8) in the form U(ξ ). Given a left state U0 =
(ρ0, u0,κ0), the rarefaction wave curve is the sets of all right states U = (ρ, u,κ) that can be
connected to the left by a rarefaction wave in the second-family, which are as follows:

R(U0):

⎧
⎪⎪⎨

⎪⎪⎩

ξ = λ1 = u – κγργ , ρ < ρ0,

u + κργ = u0 + κ0ρ
γ
0 ⇐⇒ u + p = u0 + p0

κ = κ0,

(2.9)

where p0 = κ0ρ
γ
0 and p = κργ .
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For a bounded discontinuous solutions, the Rankine–Hugoniot conditions are

⎧
⎪⎪⎨

⎪⎪⎩

–σ [ρ] + [ρu] = 0,

–σ [ρ(u + p)] + [ρu(u + p)] = 0,

–σ [κ] = 0,

(2.10)

where and in what follows we use the notation [h] = h+ – h– with h– = h(x(t) – 0, t) and
h+ = h(x(t) + 0, t), and σ = dx

dt is the velocity of the discontinuity. We obtain from (2.10)
that

σ = 0 or [κ] = 0. (2.11)

When [κ] = 0, by direct calculation and the Lax shock inequalities, the possible states
U = (ρ, u,κ) that can be connected to the left state U0 on a shock wave are given by

S(U0):

⎧
⎪⎪⎨

⎪⎪⎩

σ = u – ρ0(κργ –κ0ρ
γ
0 )

ρ–ρ0
, ρ > ρ0,

u + κργ = u0 + κ0ρ
γ
0 ⇐⇒ u + p = u0 + p0,

κ = κ0.

(2.12)

If κ = constant, then system (1.4) belongs to the Temple class, for which the rarefaction
wave curves coincide with the shock curves in the phase plane [35, 36].

The third characteristic family is linearly degenerate, that is, [κ] = 0 and σ = u. The
corresponding curve is called contact discontinuity, denoted J . The curve, which is the set
of states U = (ρ, u,κ) that can be connected to U0 by the contact discontinuity, is

J(U0):

⎧
⎨

⎩

u = u0,

κ = κ0.
(2.13)

Remark 1 For a special shock, i.e., the velocity of shock σ = 0, we call it stationary shock
wave, denoted by S0.

To facilitate our construction, for a given state U0 = (ρ0, u0,κ0), we define the wave curves
Wi (i = 1, 2) as follows:

W1(U0): u = ω1(U0,ρ) =

⎧
⎨

⎩

u0 + κ0(ργ – ρ
γ
0 ), ρ ≤ ρ0,

u0 + κ0(ργ – ρ
γ
0 ), ρ > ρ0,

(2.14)

W2(U0): u = ω2(U0,ρ) = u0. (2.15)

When σ = 0 and [κ] �= 0, we call the curve stationary contact wave, denoted by W0. For
a given left state U0 and some κ , the sets, which can be connected to U0 by W0, are

W0(U0,κ):

⎧
⎨

⎩

ρu = ρ0u0,

u + p = u0 + p0,
(2.16)

where p = κργ and p0 = κ0ρ
γ
0 .
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3 The properties of wave curves
To solve (1.4)–(1.5), we project all the wave curves on the (ρ, u)-plane. Now, let us inves-
tigate properties of the stationary shock wave and stationary contact wave along the lines
of [27–29] with some novel information. First, we give the following lemma.

Lemma 3.1 For any UL(ρL, uL,κ) ∈ Gκ
1 , we have:

(1) The speed of shock wave σ (UL, U) is decreasing with respect to ρ , where
U = (ρ, u,κ) ∈ S(UL). Moreover, there exists a unique state US ∈ S(UL) ∩ Gκ

2 such
that σ (UL, US) = 0, where the state US satisfies

⎧
⎨

⎩

uS = uL + κ(ργ

L – ρ
γ

S ),

uS = ρLuL
ρS

.
(3.1)

(2) ρS is a decreasing function with respect to ρL along the shock.

Proof For statement (1), we use (2.12) to get du
dρ

= –κγργ –1 and

σ (UL, U) = u –
κρL(ργ – ρ

γ

L )
ρ – ρL

. (3.2)

Differentiating both sides of (3.2) with respect to ρ gives

dσ

dρ
=

du
dρ

–
κρL

(ρ – ρL)2

(
(γ – 1)ργ – γρLρ

γ –1 + ρ
γ

L
)

= –
κ

(ρ – ρL)2

(
γργ +1 – (γ + 1)ρLρ

γ + ρ
γ +1
L

)
. (3.3)

Setting f (ρ) = γργ +1 – (γ + 1)ρLρ
γ + ρ

γ +1
L , we have f ′(ρ) = γ (γ + 1)ργ –1(ρ – ρL) > 0 for

ρ > ρL. Together with the fact that f (ρL) = 0, one can obtain

f (ρ) > 0 for ρ > ρL. (3.4)

Combining (3.3) and (3.4) gives that the speed of shock σ (UL, U) is decreasing with respect
to ρ .

From (3.2) and UL ∈ Gκ
1 , we have

lim
ρ→ρL

σ (UL, U) = lim
ρ→ρL

(

u –
ρL(p(ρ,γ ) – p(ρL,γ ))

ρ – ρL

)

= uL – κγρ
γ

L > 0.

It is easy to see that σ (UL, U) < 0 for U = (ρ, 0,κ) ∈ S(UL). Based on these properties of
the function σ (UL, U), there exists a unique state US ∈ S(UL) ∩ Gκ

2 such that the speed of
shock wave σ (UL, US) = 0, which yields statement (1).

We now show statement (2). Denote ωL = uL + pL. By statement (1), we have UL ∈ Gκ
1

and US ∈ Gκ
2 , which imply that uL > κγρ

γ

L and uS < κγρ
γ

S . We obtain from (3.1) that ωS =
ωL = uS + pS and

ρL
(
ωL – κρ

γ

L
)

= ρS
(
ωL – κρ

γ

S
)
.
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Differentiating both sides of the above equality with respect to ρL gives

uL – κγρ
γ

L =
(
uS – κγρ

γ

S
)dρS

dρL
,

which indicates dρS
dρL

< 0. We achieve statement (2), and the lemma is completely proved. �

Next, we discuss the properties of the stationary contact wave.
Given a state U0 = (ρ0, u0,κ0), assume U = (ρ, u,κ) to be the corresponding right-hand

state of the stationary contact wave issuing from the left state U0. We obtain from (2.16)
that

⎧
⎨

⎩

ρu = ρ0u0,

u + κργ = u0 + κ0ρ
γ
0 ,

(3.5)

which gives

ϕ(ρ) := κργ +1 – ω0ρ + m0 = 0, (3.6)

where ω0 = u0 +κ0ρ
γ
0 ≥ 0 and m0 = ρ0u0 ≥ 0. It follows from (3.6) that ϕ′(ρ) = κ(γ + 1)ργ –

ω0. So ϕ′(ρ) = 0 implies κ(γ + 1)ργ = ω0, which gives

ρ∗ := ρ∗(U0,κ) =
(

ω0

κ(γ + 1)

) 1
γ

> 0. (3.7)

Then ϕ′(ρ) < 0 for 0 < ρ < ρ∗ and ϕ′(ρ) > 0 for ρ > ρ∗. Therefore

min
ρ>0

ϕ(ρ) = ϕ(ρ∗) = ρ∗
(
κργ

∗ – ω0
)

+ m0

= –κγργ +1
∗ + m0. (3.8)

It is easy to see that ϕ(ρ∗) < 0 is equivalent to

ρ∗ ≥
(

m0

κγ

) 1
γ +1

=: ρmin(U0,κ) = ρmin, (3.9)

which implies

κ ≤ ω0

γ + 1

(
ω0γ

m0(γ + 1)

)γ

=: κmax(U0) = κmax. (3.10)

Obviously, we have ϕ(0) = m0 > 0. In addition, we can take ρ > ( ω0
κ

)
1
γ such that ϕ(ρ) > 0.

Based on these observations, we arrive at the following lemma.

Lemma 3.2 Given a state U0 = (ρ0, u0,κ0) and some κ , then a stationary contact wave
W0(UL,κ) issuing from U0 to some U = (ρ, u,κ) exists if and only if equation (3.6) admits a
root, which is equivalent to that condition (3.10) holds. Moreover, when κ < κmax, equation
(3.6) has two roots ρ1(κ) and ρ2(κ) such that ρ1(κ) < ρ∗ < ρ2(κ).

We continue to consider the properties of the stationary contact wave.
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Lemma 3.3 Let U0 and U be described as in Lemma 3.2. We have the following results:
(1) κmax ≥ κ0, κmax = κ0 if and only if U0 ∈ Cκ0

+ .
(2) If κ ≤ κmax and u0 > 0, then ρ1(κ) ≤ ρ∗ ≤ ρ2(κ), where ρ1(κ) and ρ2(κ) are two roots

of (3.6).
(3) Let κ ≤ κmax, u0 > 0 and Ui(κ) = (ρi(κ), ui(κ),κ), where ui(κ) = ρ0u0/ρi(κ), i = 1, 2,

ρ1(κ) and ρ2(κ) are described as the statement in (2), then

U1(κ) ∈ Gκ
1 and U2(κ) ∈ Gκ

2 . (3.11)

Proof To prove (1), we assume u0 = ακ0γρ
γ
0 , α > 0, then ω0 = u0 + κ0ρ

γ
0 = (αγ + 1)κ0ρ

γ
0

and m0 = ρ0u0 = αγ κ0ρ
γ +1
0 . Substituting these into (3.10) gives

κmax = κ0
1
αγ

(
1 + αγ

γ + 1

)γ +1

. (3.12)

When α = 1, that is, U0 ∈ Cκ0
+ , then κmax = κ0. When α �= 1, we introduce the function

f (α) =
1
αγ

(
1 + αγ

γ + 1

)γ +1

> 0

and achieve

(
ln f (α)

)′ =
f ′(α)
f (α)

=
(α – 1)γ

a(1 + αγ )
.

Obviously, if α > 1, f ′(α) > 0, which shows f (α) > f (1) = 1. If 0 < α < 1, f ′(α) < 0, which
implies f (α) > f (1) = 1. So f (α) > f (1) = 1 for α �= 1, which shows κmax > κ0. Therefore, we
demonstrate statement (1).

Assertion (2) can be easily deduced from the above argument.
Now, we check assertion (3). Let us define the function

ψ(ρ) = u – κγργ . (3.13)

Together with (3.9), we obtain from (3.13) that ψ(ρmin) = 0, which implies (ρmin, umin,κ) ∈
Cκ

+, where umin = m0/ρmin. Moreover, we have ψ ′(ρ) = – m0
ρ2 – κγ 2ργ –1 < 0. So, in order to

demonstrate U1(κ) ∈ Gκ
1 and U2(κ) ∈ Gκ

2 , it is sufficient to prove

ψ
(
ρ1(κ)

)
> 0 and ψ

(
ρ2(κ)

)
< 0, (3.14)

which is equivalent to

ρ1(κ) < ρmin < ρ2(κ). (3.15)

From (3.6), we have

ϕ(ρmin) =
(γ + 1)m0

γ
– ω0ρmin.

Then, a straightforward computation shows that the condition κ < κmax(U0) is equiva-
lent to ϕ(ρmin) < 0. This together with the fact that ϕ(ρ) > 0 for ρ < ρ1(κ) or ρ > ρ2(κ),
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and ϕ(ρ) < 0 for ρ1(κ) < ρ < ρ2(κ), establishes (3.15). This completes the proof of the
lemma. �

We next establish a lemma that plays a key role in construction of the Riemann solution.

Lemma 3.4 Let U0 and U be described as in Lemma 3.2, ρ1(κ) and ρ2(κ) be two roots of
(3.6).

(1) If κ < κ0 and u0 > 0, then ρ1(κ) < ρ0 < ρ2(κ). Moreover, when U0 ∈ Gκ0
2 , we have

U2 = (ρ2(κ), u2(κ),κ) ∈ Gκ
2 , where u2(κ) = m0/ρ2(κ).

(2) If κ0 < κ < κmax and u0 > 0, then

ρ0 < ρ1(κ) for U0 ∈ Gκ
1 ; ρ0 > ρ2(κ) for U0 ∈ Gκ

2 .

Proof If κ < κ0, then κ < κ0 ≤ κmax(U0) and ϕ(ρ0) = (κ – κ0)ργ +1
0 < 0, which implies ρ1(κ) <

ρ0 < ρ2(κ).
It follows from (3.9) and (3.13) that

ψ(ρmin) =
1

ρmin

(
m0 – κγρ

γ +1
min

)
= 0. (3.16)

Since ϕ(ρ2) = 0, that is, κργ +1
2 – ω0ρ2 + m0 = 0, we obtain

κρ
γ
2 = –

m0

ρ2
+ ω0. (3.17)

Recalling the definition of the function ψ(ρ) and u2 = m0/ρ2 < u0 for ρ2 > ρ0, we observe

ψ(ρ2) = u2 – κ0γρ
γ
0 + γ

(
m0

ρ2
– u0

)

< u0 – κ0γρ
γ
0 < 0 (3.18)

for U0 ∈ Gκ0
2 . Furthermore, a simple calculation shows

dψ

dρ
=

du
dρ

– κγ 2ργ –1 < 0. (3.19)

Combining (3.16) with (3.18)–(3.19) shows ρ2 > ρmin, which implies U2 ∈ Gκ
2 .

Next, we prove assertion (2). It is derived from (3.9) and (3.13) that

ψ(ρ0) = u0 – κγρ
γ
0 > 0 (3.20)

for U0 ∈ Gκ
1 and

ψ(ρmin) = u – κγρ
γ

min = 0, (3.21)

where u = m0/ρmin. In addition, we have

ψ ′(ρ) = –
m0

ρ2 – κγ 2ργ –1 < 0.

This together with (3.20) and (3.21) shows ρ0 < ρmin.
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By the argument of Lemma 3.3, we know that ϕ(ρmin) < 0 is equivalent to κ < κmax.
Moreover, since ϕ(ρ0) = (κ – κ0)ργ +1

0 > 0, which together with the above observation gives
ρ0 < ρ1(κ) for U0 ∈ Gκ

1 .
If U0 ∈ Gκ

2 , then

ψ(ρ0) = u0 – κγρ
γ
0 < 0, ψ(ρmin) = 0, ψ ′(ρ) < 0,

which implies

ρ0 > ρmin. (3.22)

Furthermore, we easily obtain ϕ(ρ0) = (κ – κ0)ργ +1
0 > 0 and ϕ(ρmin) < 0. Combining this

and (3.22) achieves ρ0 > ρ2(κ). So the second assertion of the lemma is true. �

Remark 2 Lemma 3.4 answers the first problem as mentioned in Sect. 1.

4 The TV-condition
Based on the assertions in Lemmas 3.2 and 3.3, there are two possible stationary contact
waves issuing from a given state U0 to a state with another entropy value κ . Thus, we need
to impose an admissibility condition to select a unique solution.

In order to use TV-condition (1.6), we need the following two lemmas.

Lemma 4.1 For UL ∈ CκL
+ and κL > κR, denote HL : ρu = ρLuL, CL : u = ωL – κLρ

γ , and
CR : u = ωL – κRργ , and suppose that the curve HL intersects the curve CR at two states Uα ,
Uβ and ρα < ρβ (see Fig. 1), then

(1) the curve HL is tangent to the curve CL at UL,
(2) ρL – ρα < ρβ – ρL.

Proof Since UL ∈ CκL
+ , we have uL = κLγρ

γ

L , and so mL = ρLuL = κLγρ
γ +1
L and ωL = uL +pL =

κL(γ + 1)ργ

L .
Statement (1) is trivial. We need only to prove statement (2).
If κL > κR, then ξ = κL/κR > 1. Setting ρ = θρL, we obtain from (3.6) that

ϕ(ρ) = κRρ
γ +1
L

(
θγ +1 – ξ (γ + 1)θ + ξγ

)
= 0.

Figure 1 UL ∈ C
κL
+ and κL > κR
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Figure 2 The graphs of f1(θ ), f2(θ ), and f3(θ )

Let

f (θ ) = θγ +1 – ξ (γ + 1)θ + ξγ = 0, (4.1)

and rearrange (4.1) to get

θγ +1 = ξ (γ + 1)
(

θ –
γ

γ + 1

)

. (4.2)

We easily see that equation (4.2) has two roots, denoted by α and β . They satisfy 0 < α < 1
and β > ξ

1
γ > 1. So statement (2) is equivalent to 1 – α < β – 1, that is, α + β > 2.

Denote f1(θ ) = θγ +1 and f2(θ ) = ξ (γ + 1)(θ – γ

γ +1 ). The graphs of y = f1(θ ) and y = f2(θ ) are
shown in Fig. 2. The y = f2(θ ) intersects the y = f1(θ ) at points B and C, where θB = α and
θC = β . The straight line AH is y = f3(θ ) = ξ (γ + 1)(θ – ξ 1/γ ) + ξ (γ +1)/γ , which is a tangent
line of y = f1(θ ) at point A = A(ξ 1/γ , ξ (γ +1)/γ ). Assume that y = f2(θ ) and y = f3(θ ) intersect
the θ -axis at points H and K respectively. Obviously, at two points H and K , we have
θH = γ

γ +1ξ 1/γ and θK = γ

γ +1 , see Fig. 2.
In Fig. 2, both the straight lines BF and CG are perpendicular to the θ -axis and FG is

parallel to the θ -axis, which intersects the BC at point D. The AE is perpendicular to the
FG at point E. By the property of the function y = f1(θ ) and the fact that AH is parallel to
BC, we have that the length of the line segment CD is greater than that of the line segment
BD, which implies

θG – θD > θD – θF . (4.3)

From Fig. 2, we obtain

⎧
⎪⎪⎨

⎪⎪⎩

β = θC = θG = θA + (θG – θD) – (θE – θD),

α = θB = θF = θA – (θD – θF ) – (θE – θD),

θH – θK > θE – θD.

(4.4)

Combining (4.3) and (4.4) gives

α + β > 2ξ
1
γ – 2(θH – θK ) = 2 + 2

(
ξ

1
γ – 1

)
– 2

γ

γ + 1
(
ξ

1
γ – 1

)
> 2

for ξ > 1 and 1 < γ < 2. Then the lemma is verified. �
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Figure 3 U�0
L = U0�

L for UL = (ρL ,uL ,κL) ∈ G
κL
1 and

κL > κR

Before we get interesting results by using the following lemma, we first introduce some
notations as follows.

Notations
(i) Wk(Ui, Uj) denotes the kth-wave connecting the left-hand state Ui to the

right-hand state Uj, k = 0, 1, 2.
(ii) U� denotes the state resulted by a zero-speed shock wave from U .

(iii) U0 denotes the state resulted by a stationary contact wave from U .

Setting ωL = uL + pL = uL + κLρ
γ

L , from the point A = (ρL, uL,κL) in (ρ, u)-plane, we draw
a curve HL : ρu = ρLuL and another curve CL : u = ωL – κLρ

γ which intersects the u-axis at
point I = I(UI) = I(0,ωL). From the point I , we draw a curve CR : u = ωL –κRργ . We assume
that the curve HL intersects with the curves CR and CL at points B, C, and D respectively,
see Fig. 3.

We obtain from Lemma 3.1 and (2.16) that the points B and C are determined by

⎧
⎨

⎩

ρLuL = ρu,

uL + pL = u + p,
(4.5)

which implies B = B(ρ0
L , u0

L,κr) and C = C(ρ0�
L , u0�

L ,κR), where p = κRργ .
In addition, the point D also satisfies (4.5), where p = κLρ

γ . From Lemma 3.1, we obtain
D = D(ρ�

L, u�
L,κL). Thus, U�0

L = (ρ�0
L , u�0

L ,κR) satisfies

⎧
⎨

⎩

ρ
�
Lu�

L = ρu,

u�
L + p�

L = u + p,
(4.6)

where p = κRργ . So, we obtain (ρ�0
L , u�o

L ,κR) = (ρ0�
L , u0�

L ,κR).
Based on the above argument and Lemma 4.1, we present an important lemma as fol-

lows.

Lemma 4.2 For a given state UL = (ρL, uL,κl) ∈ GκL
1 , U0

L , U�
L, U�0

L , and U�0
L described as

above, we denote A = A(UL), B = B(U0
L), D = D(U�

L), as shown in Fig. 3. Then, we have:
(1) U�0

L = U0�
L .

(2) |ρL – ρ0
L| ≤ |ρ0�

L – ρ
�
L|.
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Remark 3 Statement (1) of Lemma 4.2 is different from the case that in general U�0
L �= U0�

L
in [28, 29] and results in possibly infinitely many solutions for certain initial data, see the
following two subcases (A5) and (B5).

5 The Riemann solution to (1.4) and (1.5) with (1.2)
In this section, we use our TV-condition (1.6) to construct the corresponding Riemann
solution. Moreover, the TV-condition helps us select a unique one among the possibly
infinitely many solutions for certain Riemann data.

Next, we consider the corresponding Riemann for cases κL > κR and κL < κR and con-
struct the solutions case by case.

5.1 The Riemann solution for the case κL > κR

We divide this case into three subcases: (I): UL ∈ GκL
1 , (II): UL ∈ GκL

2 , and (III): UL ∈ CκL
+ .

(I) UL ∈ GκL
1

There is a stationary contact wave from the state UL(κL) to some state U0
L(κR) using

ρ1(UL,κR). Based on Lemma 3.1, there exists a state U0�
L ∈ W1(U0

L) such that σ (U0
L , U0�

L ) =
0, σ (U0

L , U) > 0 for u0�
L < u < u0

L and σ (U0
L , U) < 0 for 0 ≤ u < u0�

L , where U = (ρ, u,κR) ∈
W1(U0

L), see Fig. 4. In addition, we assume that the curve W1(U0
L) intersects the u-axis

at point I = I(UI), where UI = (0, uI) and uI = ωL = uL + pL. For a given right state UR =
(ρR, uR,κR), we can divide construction of the Riemann solution into five subcases (A1)–
(A5), where

(A1): uR > uI , (A2): u0
L ≤ uR ≤ uI , (A3): u0�

L < uR < u0
L,

(A4): 0 ≤ uR < u0�
L , (A5): uR = u0�

L .

(A1) uR > uI . For this case, the Riemann solution can be described as

UL + W0
(
UL, U0

L
)

+ U0
L + R

(
U0

L , UI
)

+ UV + W2(UV , UR) + UR, (5.1)

where the state UV denotes the Vacuum state, i.e.,

UV (ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

UI , ξ ≤ uI ,

(0, u(ξ )), uI < ξ < uR,

(0, uR), uR ≤ ξ ,

(5.2)

where ξ = x
t . The Riemann solution at (x, t) space is shown in Fig. 5.

Figure 4 The Riemann solution at (ρ ,u) space for
UL = (ρL ,uL ,κL) ∈ G

κL
1 and κL > κR
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Figure 5 The Riemann solution at (x, t) space for subcases (A1) (left) and (A2) (right), respectively

Figure 6 The Riemann solution at (x, t) space for subcases (A3) (left) and (A4) (right), respectively

(A2) u0
L ≤ uR ≤ uI . The Riemann solution can be expressed as

UL + W0
(
UL, U0

L
)

+ U0
L + R

(
U0

L , UM
)

+ UM + W2(UM, UR) + UR, (5.3)

where the state UM = (ρM, uM,κR) satisfies

⎧
⎨

⎩

u + κRργ = u0
L + κR(ρ0

L)γ ,

u = uR,
(5.4)

which is shown in Fig. 5.
(A3) u0�

L < uR < u0
L. For this case, the Riemann solution can be described as

UL + W0
(
UL, U0

L
)

+ U0
L + S

(
U0

L , UM
)

+ UM + W2(UM, UR) + UR, (5.5)

where the state UM = (ρM, uM,κR) satisfies (5.4), which is demonstrated in Fig. 6.
(A4) 0 ≤ uR < u0�

L . In this subcase, by the following procedure, we construct the corre-
sponding Riemann solution.

We draw a straight line u = uR from the right state UR, which intersects the curve CR :
u = ωL – κRργ at point E = E(UE), where ωL = uL + pL and UE = (ρ0

–, u0
–,κR) is given by

⎧
⎨

⎩

u + κRργ = uL + κLρ
γ

L ,

u = uR.
(5.6)
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And then, we draw a curve HR : ρu = ρ0
–u0

– through the point E, which intersects the
curve CL : u = ωL – κLρ

γ at point F = F(UF ), where UF = (ρ–, u–,κL) is determined by

⎧
⎪⎪⎨

⎪⎪⎩

ρu = ρ0
–u0

–,

u + κLρ
γ = u0

– + κR(ρ0
–)γ ,

u < u�
L.

(5.7)

By Lemma 3.1, we have σ (UL, UF ) < 0. So, the Riemann solution can be described as

UL + S(UL, UF ) + UF + W0(UF , UE) + UE + W2(UE , UR) + UR, (5.8)

see Fig. 6.

Remark 4 If we apply the monotonicity criterion introduced by LeFloch and Thanh in
[27–29] to construct the Riemann solution for subcases (A1)–(A4), the corresponding
results are consistent with the above results obtained by the TV-condition.

(A5) uR = u0�
L .

To begin with, from the point I = I(UI), we draw a curve Cκ : u = ωL – κργ , which
intersects the curve HL : ρu = ρLuL at points M = M(UM(κ)) and N = N(UN (κ)), where
κR < κ < κL.

First, we use the monotonicity criterion to construct the Riemann solution. Then, the
Riemann solution begins with a stationary contact wave from the state UL(κL) to some
state UM(κ) using ρ1(UL,κ). By Lemma 4.2, we have UN = U�

M ; that is to say, there is a
zero speed shock S0(UM, UN ) from UM to UN . And then, the S0 is followed by a stationary
contact wave W0(UN , U0�

L ) from UN to U0�
L . Here, the state U0�

L coincides in the following
subcases (a), (b), and (c). Both UM and UN are not constant states and can be seen as the
functions of the variable κ . Thereby, the corresponding Riemann solution, shown in Fig. 7,
can be described as

(a): UL + W0(UL, UM) + UM + S0(UM, UN ) + UN + W0
(
UN , U0�

L
)

︸ ︷︷ ︸
x=0

+ U0�
L + W2

(
U0�

L , UR
)

+ UR.

Figure 7 The Riemann solution at (x, t) space for
subcases (A5)-(a)
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Figure 8 The Riemann solution at (x, t) space for subcases (A5)-(b) (left) and (A5)-(c) (right), respectively

If κ = κL, together with Lemma 4.2, we can see from Fig. 8 that the Riemann solution
can be expressed as

(b): UL + S0
(
UL, U�

L
)

+ U�
L + W0

(
U�

L, U0�
L

)

︸ ︷︷ ︸
x=0

+U0�
L + W2

(
U0�

L , UR
)

+ UR.

If κ = κR, it is apparent from the previous discussion that the Riemann solution is

(c): UL + W0
(
UL, U0

L
)

+ U0
L + S0

(
U0

L , U0�
L

)

︸ ︷︷ ︸
x=0

+U0�
L + W2

(
U0�

L , UR
)

+ UR. (5.9)

So, we see that the monotonicity criterion cannot select a unique one among infinitely
many solutions.

Now, we use TV-condition (1.6) to consider subcase (A5). From Lemma 4.2, the mini-
mum of TVW0 (ρ) is |ρL – ρ0

L|, which indicates that the Riemann solution is described as
(5.9). Thus, under TV-condition (1.6), we obtain the uniqueness of the Riemann solution
for this subcase.

(II) UL ∈ GκL
2

We continue to construct the corresponding solution with the TV-condition. To begin
with, draw a curve CL : u = ωL – κLρ

γ from the point A = A(UL), which intersects the
curve CκL

+ at point B = B(U+). Through the point B, we draw a curve H+ : ρu = ρ+u+, which
intersects CR : u = ωL – κRργ at points C and D, respectively. By Lemma 4.1, H+ is tangent
to CR at point B. In addition, both points C and D satisfy

⎧
⎨

⎩

ρu = ρ+u+,

u + κRργ = u+ + κLρ
γ
+ .

(5.10)

Combining (5.10) and Lemma 4.2 gives C = C(U0
+) and D = D(U0�

+ ), see Fig. 9.
Similar to the above subcase (I), we may divide the construction into five subcases (B1)–

(B5), where

(B1): uR > uI , (B2): u0
+ ≤ uR ≤ uI , (B3): u0�

+ < uR < u0
+,

(B4): 0 ≤ uR < u0�
+ , (B5): uR = u0�

+ .
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Figure 9 The Riemann solution at (ρ ,u) space for
UL = (ρL ,uL ,κL) ∈ G

κL
2 and κL > κR

Figure 10 The Riemann solution at (x, t) space for subcases (B1) (left) and (B2) (right), respectively

(B1) uR > uI .
The Riemann solution begins with a rarefaction wave R(UL, U+) from the state UL to the

state U+ = (ρ+, u+,κL), which satisfies

⎧
⎨

⎩

uL + κLρ
γ

L = u + κLρ
γ ,

u = κLγργ .
(5.11)

Hence there exists a stationary contact wave connecting the state U+ to state U0
+ using

the ρ1(UL,κR). The solution is continued with a rarefaction wave R(U0
+, UI), followed by the

Vacuum UV , where UV is expressed by (5.2). At last, the solution ends up with a contact
discontinuity connecting the state UV to UR. So, we can construct the Riemann solution
as follows:

UL + R(UL, U+) + U+ + W0
(
U+, U0

+
)

+ U0
+ + R

(
U0

+, UI
)

+ UV + W2(UV , UR) + UR,

see Fig. 10.
(B2) u0

+ ≤ uR ≤ uI .
Based on the above construction, as shown in Fig. 10, we can obtain the Riemann solu-

tion

UL + R(UL, U+) + U+ + W0
(
U+, U0

+
)

+ U0
+ + R

(
U0

+, UM
)

+ UM + W2(UM, UR) + UR,
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where the state UM is determined by

⎧
⎨

⎩

u0
+ + κR(ρ0

+)γ = u + κRργ ,

u = uR.
(5.12)

(B3) u0�
+ < uR < u0

+.
Different from subcase (B2), the rarefaction wave R(U0

+, UM) is presented by a shock
wave S(U0

+, UM), where the state UM satisfies (5.12). We can obtain from Fig. 10 the Rie-
mann solution at (x, t) space.

(B4) 0 ≤ uR < u0�
+ .

Similar to subcase (A4), we draw a straight line u = uR from the right state UR, which
intersects the curve CR : u = ωL – κRργ at some state U0

–, where ωL = uL + pL and U0
– =

(ρ0
–, u0

–,κR) satisfies

⎧
⎨

⎩

u + κRργ = uL + κLρ
γ

L ,

u = uR.

To continue to construct the solution, we draw a curve HR : ρu = ρ0
–u0

– through the state
U0

– and it intersects the curve CL : u = ωL – κLρ
γ at a state U– = (ρ–, u–,κL) using ρ2(κ),

which is determined by

⎧
⎨

⎩

ρu = ρ0
–u0

–,

u + κLρ
γ = u0

– + κR(ρ0
–)γ .

(5.13)

If u– ≥ uL, there exists a rarefaction wave R(UL, U–) from UL to U–. Otherwise, there is a
shock wave S(UL, U–) connecting UL to U–, see Fig. 9. Thus, the Riemann solution can be
described as follows:

UL + W1(UL, U–) + U– + W0
(
U–, U0

–
)

+ U0
– + W2

(
U0

–, UR
)

+ UR.

We also see Fig. 10.
(B5) uR = u0�

+ .
As in subcase (A5), we use the monotonicity criterion to consider this subcase and can

achieve infinitely many solutions. In fact, from the point I = I(UI) we draw a curve Cκ :
u = ωL – κργ , which intersects the curve H+ at points F and G. By Lemma 4.2, we have
F = F(Uκ

+ ) and G = G(Uκ�
+ ) (see the dashed curve through the point I in Fig. 9). So, there

is a stationary contact wave W0(U+, Uκ
+ ) connecting U+ to Uκ

+ = (ρκ
+ , uκ

+,κ), followed by a
zero-speed shock S0(Uκ

+ , Uκ�
+ ), where κR < κ < κL. Moreover, we also obtain a stationary

contact wave W0(Uκ�
+ , U0�

+ ) connecting Uκ�
+ to U0�

+ .
(a) If κR < κ < κL, as shown in Fig. 11, the Riemann solution can expressed by

UL + R(UL, U+) + U+ + W0
(
U+, Uκ

+
)

+ Uκ
+ + S0

(
Uκ

+ , Uκ�
+

)
+ Uκ�

+ + W0
(
Uκ�

+ , U0�
+

)

︸ ︷︷ ︸
x=0

+ U0�
+ + W2

(
U0�

+ , UR
)

+ UR.
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Figure 11 The Riemann solution at (x, t) space for subcases (B5)-(a) (left) and (B5)-(b) (right), respectively

(b) If κ = κR, the Riemann solution can be denoted by

UL + R(UL, U+) + U+ + W0
(
U+, U0

+
)

+ U0
+ + S0

(
U0

+, U0�
+

)

︸ ︷︷ ︸
x=0

+ U0�
+ + W2

(
U0�

+ , UR
)

+ UR, (5.14)

which is given in Fig. 11.
Since κR ≤ κ < κL, we easily see the no-uniqueness for the Riemann solution in this sub-

case.
Under TV-condition (1.6), it follows from Lemma 4.1 that the minimum of TVW0 (ρ) is

|ρ+ – ρ0
+|, which indicates that the Riemann solution is expressed by (5.14). So, we also

obtain a unique solution.

(III) UL ∈ CκL
+

From the point A = A(UL), we draw two curves HL : ρu = ρLuL and CL : u = ωL – κLρ
γ

which intersect the u-axis at point I = I(UI). We again draw a curve CR : u = ωR – κRργ

which intersects the HL at two points B and C. By Lemmas 4.1 and 4.2, we have B = B(U0
L)

and C = C(U0�
L ), see Fig. 1, where Uα = U0

L and Uβ = U0�
L . As for the Riemann solution in

this subcase, we can refer to subcase (II): UL ∈ GκL
2 .

5.2 The Riemann solution for the case κL < κR

From the point A = A(UL), we draw two curves HL : ρu = ρLuL = mL and CL : u = ωL –
κLρ

γ which intersect the u-axis at point I = I(UI), and again draw a curve CR : u = ωL –
κRργ , where ωL = uL + pL. Suppose that CR intersects CκR

+ at state U+. And then, we draw
a curve H+ : ρu = ρ+u+ = m+ which intersects CL at two states Uα and Uβ , see Fig. 12. By
Lemma 4.1, the H+ is tangent to CR at state U+, and Uα = U0

+ and Uβ = U0�
+ . We use the

curve H+ to divide the phase plane {ρ ≥ 0, u ≥ 0} into two parts GL
H and GR

H , where

GL
H =

{

(ρ, u)
∣
∣
∣ 0 ≤ ρ ≤ m+

u

}

and GR
H =

{

(ρ, u)
∣
∣
∣ ρ >

m+

u

}

. (5.15)

We divide this case into three subcases: (I) UL ∈ GκR
1 ∩ GL

H , (II) UL ∈ GκR
2 ∪ GR

H , and (III)
UL = Uα . In the following, we omit the construction of the Riemann solution at (x, t) space
and can obtain the corresponding results as stated above.

(I) UL ∈ GκR
1 ∩ GL

H
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Figure 12 The Riemann solution at (ρ ,u) space for
UL ∈ G

κR
1 ∩ GLH and κL < κR

Figure 13 The Riemann solution at (ρ ,u) space for
UL ∈ G

κR
2 ∩ GRH and κL < κR

Figure 12 shows that the Riemann solution in this subcase is similar to that in subcase
(I) of Sect. 5.2, and here omit the details.

(II) UL ∈ GκR
2 ∪ GR

H

By the location of the right state UR, we divide this into (C1) uR ≥ u+ and (C2) 0 ≤ uR <
u+, see Fig. 13.

(C1) uR ≥ u+.
The Riemann solution begins with W1(UL, Uβ ) from UL to Uβ . If uβ < uL < uα , then one

has σ (UL, Uα) < 0 by Lemma 3.1 and W1(UL, Uβ ) is a shock wave S(UL, Uβ ). Otherwise,
there exists a rarefaction wave R(UL, Uβ ) connecting UL and Uβ . The W1(UL, Uβ ) is fol-
lowed by a stationary contact wave W0(Uβ , U+) connecting Uβ and U+. And then, we refer
to subcases (A1) and (A2) and construct the corresponding Riemann solution.

(C2) 0 ≤ uR < u+.
As for this subcase, we see subcase (B4).

(III) UL = Uα

We can divide this into two subcases (D1) uR ≥ u+ and (D2) 0 ≤ uR < u+.
If we apply the monotonicity criterion to the two subcases, then similar to two subcases

(A5) and (B5), through the point I = I(UI) we draw a curve Cκ : u = ωL – κργ , which inter-
sects the curve H+ at points F and G, where κL < κ < κL. By Lemma 4.2, we have F = F(Uκ

L )
and G = G(Uκ�

L ) (see the dashed curve through the point I in Fig. 13).
As for subcases (D1), we need only to consider the case from UL to U+.
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To begin with, there is a stationary contact wave W0(UL, Uκ
L ) from UL = Uα to Uκ

L =
(ρκ

L , uκ
L,κ), followed by a zero-speed shock S0(Uκ

L , Uκ�
L ), where κR < κ < κL. The solution is

continued with a stationary contact wave W0(Uκ�
L , U+), see Fig. 13.

If κ = κL, then there is a zero-speed shock S0(UL, Uβ ) connecting UL and Uβ , where
Uβ = U0�

+ . The S0(UL, Uβ ) is followed by a stationary contact wave W0(U0�
+ , U+) from U0�

+

to U+.
If κ = κR, there is only one stationary contact wave W0(UL, U+) from UL to U+.
Obviously, there are infinitely many solutions for this subcase. When we impose the TV-

condition, it is easy to see that only the stationary contact wave W0(UL, U+) is allowed.
In addition, we can refer to subcase (A4) and obtain the corresponding solution for the

subcase (D2): 0 ≤ uR < u+.
Thus, we use the TV-condition to consider the Riemann problem case by case and

achieve the uniqueness of Riemann solution for each subcase. So, we complete the proof
of Theorem 1.1.

6 Conclusions
Through discussions in this paper, we see that there may exist infinitely many solutions
to the Aw–Rascle model for certain Riemann data. So, we propose the so-called TV-
condition, which allows us to single out a unique solution among possibly infinitely many
solutions. It is a meaningful and valuable exploration to study the resonance behavior of
hyperbolic systems, even though until now we cannot confirm that the unique solution
thus selected is a physically relevant one. We plan to address this problem and generalize
a similar condition to study other systems in [1, 11, 27, 28] in future work.
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