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Abstract
In this work, we investigate the (3 + 1)-dimensional B-type
Kadomtsev–Petviashvili–Boussinesq equation, which can be used to describe the
processes of interaction of exponentially localized structures. The breathers, lumps,
and rogue waves of this equation are studied in detail via the Hirota bilinear method.
More specifically, the general breathers, line breathers, and many kinds of interaction
solutions are constructed by selecting the appropriate parameters. Based on the long
wave limit method, some lumps, rogue waves, and their interaction solutions are
derived. The dynamical characteristics of these solutions are vividly demonstrated
through some graphical analyzes in the different planes.
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1 Introduction
It is well known that some special type of exact solutions [1–7], including soliton (it has
ionic and stability properties), lump (localized in all directions in the space), breather (lo-
calized in one certain direction with periodic structure), and rogue wave (localized in both
time and space) of nonlinear evolution equations (NLEEs) depict many physical scenar-
ios occurring in diverse areas of physics. In the past few decades, these exact solutions of
NLEEs, such as the KP equation [8], the Konopelchenko–Dubrovsky equation [9], the po-
tential Yu–Toda–Sasa–Fukuyama equation [10], and the (3 + 1)-dimensional Hirota bilin-
ear equation, have been studied [11, 12]. Meanwhile, several effective methods have been
established by mathematicians and physicists to obtain the exact solutions of NLEEs, for
instance, Painlevé analysis [13], Hirota bilinear method [14–18], Darboux transformation
(DT) [19, 20], and so on [21]. In particular, it is clear that the long wave limit method is a
powerful technique for deriving rational solutions from the exponential solutions of non-
linear evolution equations, which helps us to obtain new analytical solutions more easily
than some classical methods for finding the exact solutions of NLEEs.
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Recently, interaction phenomena concerning solitons and other types of solutions have
attracted wide attention in the field of mathematical physics. As early as 2003, Fokas
and Pogrebkov investigated the collision of lump and line soliton in the Kadomtsev–
Petviashvili I equation [22]. In addition, various studies show that there are interaction
solutions between solitons and another exact solutions of nonlinear integrable equation
[23, 24]. Thereafter, more and more scholars have been devoting themselves to the study
of interaction solutions of NLEEs because of their strong practical significance in many
fields.

In 2012, a new type of KP equation (called B-type KP equation) was presented as follows
[25]:

uty – uxxxy – 3(uxuy)x + 3uxz = 0. (1.1)

We have noticed that the above equation is nonintegrable equation and can be reduced
to the (2 + 1)-dimensional BKP equation [26, 27] when we take z = y. A lot of meaning-
ful works of the above equation, including the Bäcklund transformation, multiple soliton
solutions, and lump waves, have been published [28, 29]. Until 2017, the Wazwaz and
El-Tantawy derived another KP-type equation by adding a linear term utt to the general-
ized form of the B-type KP Eq. (1.1) [30]. In this paper, we mainly investigate the (3 + 1)-
dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation

uty – uxxxy – 3(uxuy)x + utt + 3uxz = 0, (1.2)

where u is a differential function about x, y, z, and t. This equation has a strong appli-
cation background as it can be used to describe not only the processes of interaction of
exponentially localized structures but also the propagation of long waves in shallow wa-
ter. Therefore, Eq. (1.2) has attracted wide attention in the field of mathematical physics
[31, 32]. In 2017, the soliton solutions of Eq. (1.2) were constructed [27]. Besides, the in-
tegrability, bilinearization, and analytic study of Eq. (1.2) were also investigated by Verma
and Kaur [33]. Despite all that, there are still many interesting properties that need to
be thoroughly explored. The main purpose of the present paper is to derive the localized
waves and interaction solutions based on the complex conjugate approach and the long
wave limit method.

The outline of the paper is organized as follows. In Sect. 2, we give the bilinear form of
the (3 + 1)-dimensional B-type KP-Boussinesq equation and the expression of N-soliton
solutions (N = 1, 2, 3, 4), respectively. Then, based on the complex conjugate approach, the
breather solutions, lump solutions, rogue waves, and their interaction solutions of Eq. (1.2)
are resolved. Moreover, we provide some graphical analyzes to discuss the properties for
the dynamic behaviors of these solutions in different planes. Section 3 is devoted to con-
clusion and discussion.

2 Localized wave and interaction solutions
With the aid of early work of Eq. (1.2) [30], its bilinear form has been given as

(
DtDy – D3

xDy + D2
t + 3DxDz

)
f · f = 0, (2.1)
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under the following transformation:

u = 2(ln f )x, (2.2)

where Ds (s = x, y, z, t) denotes some Hirota’s bilinear operators [34].
Based on transformation (2.2), the N-order soliton solutions of the B-type KP-

Boussinesq equation can be obtained through assuming that f of Eq. (1.2) has the form

f =
∑

μ=0,1

exp

( N∑

i=1

μiηi +
N∑

1≤i<j

μiμj ln(Aij)

)

. (2.3)

Combining Eq. (2.2) and Eq. (2.3), the one soliton, two solitons, three solitons, and four
solitons can be read in the following expression by taking N = 1, 2, 3, 4 in Eq. (2.3), respec-
tively:

(N = 1) f1 = 1 + expη1 ,

(N = 2) f2 = 1 + expη1 + expη2 + A12expη1+η2 ,

(N = 3) f3 = 1 + expη1 + expη2 + expη3 + A12expη1+η2 + A13expη1+η3

+ A23expη2+η3 + A12A13A23expη1+η2+η3 ,

(N = 4) f4 = 1 + expη1 + expη2 + expη3 + expη4 + A12expη1+η2 + A13expη1+η3

+ A14expη1+η4 + A23expη2+η3 + A24expη2+η4 + A34expη3+η4

+ A12A13A23expη1+η2+η3 + A12A14A24expη1+η2+η4 + A13A14A34expη1+η3+η4

+ A23A24A34expη2+η3+η4 + A12A13A14A23A24A34expη1+η2+η3+η4 ,

(2.4)

where

ηi = ki(x + piy + qiz + ωit) + ηi0, ωi = –
1
2

pi +
1
2
(
4k2

i pi + p2
i – 12qi

) 1
2 (i, j = 1, 2, 3, 4),

Aij =
–6k2

i pi – 2k2
i pj + 6kipikj + 6kikjpj – 2k2

j pi – 6k2
j pj + (2ωi + pi)(2ωj + pj) – pipj + 6qi + 6qj

–6k2
i pi – 2k2

i pj – 6kipikj – 6kikjpj – 2k2
j pi – 6k2

j pj + (2ωi + pi)(2ωj + pj) – pipj + 6qi + 6qj
.
(2.5)

Here ki, pi, qi, and ηi0 are arbitrary constants. In 2017, Wazwaz constructed the multiple
solitons of Eq. (1.2) by using the above expression [30], so we will not repeat it here. This
section is devoted to investigating some localized waves and their interaction phenom-
ena.

2.1 The breather solutions
By resorting to Eq. (2.4), one can obtain the analytical expressions of breather solutions
for Eq. (1.2) based on the complex conjugate approach. For example, in this case of N = 2
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of Eq. (2.4), the f2 can be written as follows:

f2 = 1 + exp

(
ix + iy – z + i

(
–

1
2

+
1
2
√

–3 – 12i
)

t
)

+ exp

(
–ix – iy – z – i

(
–

1
2

+
1
2
√

–3 + 12i
)

t
)

+
(

27 + 3
√

17
3 + 3

√
17

)
exp

(
–2z + i

(
–

1
2

+
1
2
√

–3 – 12i
)

t – i
(

–
1
2

+
1
2
√

–3 + 12i
)

t
)

(2.6)

with the following parameters:

k1 = i, k2 = –i, p1 = 1, p2 = 1, q1 = i, q2 = –i,

η10 = η20 = 0.
(2.7)

Therefore, the breather solutions for Eq. (1.2) read

u = 2(ln f2)x. (2.8)

The general breathers (2.8) can be described in the (x, z), (y, z), (z, t) planes, respectively,
whose three-dimensional graphics are illustrated in Fig. 1. It is not hard to see that these
breathers have the same period in the (x, z) and (y, z) planes from Fig. 1a and 1b. They
are localized in space directions and have different propagation path in the (z, t) plane.
In addition, it is also worth pointing out that we observed different dynamic character-
istics (called line breathers) with the same parameters of Fig. 1 in the (x, y) plane, which
are visually shown in Fig. 2. As shown in Fig. 2a, the line breathers are produced in a con-
stant background and reach their maximum peak when t = 0. Over time, the line breather
disappears in the constant background.

For N = 3 in Eq. (2.4), the interaction solutions between one soliton and breather of
Eq. (1.2) can be displayed in three different planes by selecting the following suitable pa-

Figure 1 Breathers of Eq. (1.2) in different planes with parameters constrained by k1 = k∗2 = i, p1 = p2 = 1,
q1 = q∗

2 = i, η10 = η20 = 0
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Figure 2 Line breathers of Eq. (1.2) in the (x, y) plane with parameters constrained by k1 = k∗2 = i, p1 = p2 = 1,
q1 = q∗

2 = i, η10 = η20 = 0

rameters:

k1 = i, k2 = 1, k3 = –i, p1 = 2 + i, p2 = 2, p3 = 2 – i,

q1 = 2i, q2 = 1, q3 = –2i, η10 = η20 = η30 = 0.
(2.9)

Based on the parameters selected above, one has

f3 = 1 + exp

(
(–3 + 2i)y – 2z + ix + i

(
–1 –

3
2

i +
1
2
√

–13 – 24i
)

t
)

+ exp(x + 2y + z – t) + exp

(
(–3 – 2i)y – 2z – ix – i

(
–1 +

3
2

i +
1
2
√

–13 + 24i
)

t
)

+
(

–
143
109

+
186
109

i
)

exp

(
(i + 1)x + (–1 + 2i)y – z + i

(
–1 –

1
2

i +
1
2
√

–13 – 24i
)

t
)

+
(

–
143
109

–
186
109

i
)

exp

(
(–i + 1)x + (–1 – 2i)y – z + i

(
–1 +

1
2

i +
1
2
√

–13 + 24i
)

t
)

+
(

43 +
√

745
–5 +

√
745

)
exp

(
–6y – 4z +

(
3 +

1
2

i
√

–13 – 24i –
1
2

i
√

–13 + 24i
)

t
)

+
(

21715 + 505
√

745
–545 + 109

√
745

)
exp

(
x – 4y – 3z +

(
2 +

1
2

i
√

–13 – 24i –
1
2

i
√

–13 + 24i
)

t
)

.

(2.10)

Hence the interaction solutions between soliton and general breather of Eq. (1.2) can be
expressed as follows:

u = 2(ln f3)x, (2.11)

whose dynamical phenomena are exhibited in Fig. 3. Figures 3a, 3b, and 3c show different
interaction phenomena between one soliton and breather, respectively. But the propaga-
tion path of the breather does not change after interaction with the solitons (see Figs. 3d,
3e, and 3f ).
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Figure 3 The interaction solutions between soliton and general breather of Eq. (1.2) in different planes with
parameters constrained by k1 = k∗3 = i, p1 = p∗

3 = 2 + i, q1 = q∗
3 = 2i, k2 = 1, p2 = 2, q2 = 1, η10 = η20 = η30

Figure 4 The interaction solutions between two general breathers of Eq. (1.2) in the (x, y) plane with
parameters constrained by Eq. (2.12)

In the case of N = 4, we can get the interaction solutions of two groups of breathers. The
collision process is shown in Figs. 4 and 5 with the following parameters:

k1 = i, k2 = –i, k3 = 2i, k4 = –2i,

p1 = 1 + i, p2 = 1 – i, p3 = 2 + i, p4 = 2 – i,

q1 = 1, q2 = 1, q3 = 2, q4 = 2, η10 = η20 = η30 = η40 = 0.

(2.12)

When t � 0, the two-line breathers appear from a constant plane and the latter catches up
with the former in the course of propagation. The interaction of two-line breathers reaches
the maximum peak at t = 0. Subsequently, the latter line breather surpasses the former
and keeps the original characteristic propagating forward (see Fig. 4c). Furthermore, the
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Figure 5 The interaction solutions between two general breathers of Eq. (1.2) in the (y, z) plane with
parameters constrained by Eq. (2.12)

Figure 6 The interaction solution between two general breathers of Eq. (1.2) in the (x, z) plane with
parameters constrained by Eq. (2.12)

two-line breathers can be constructed in the (x, z) plane, whose collision processes are
illustrated in Figs. 6 and 7.

2.2 The lump solutions
The lump wave, as one kind of rational solutions, draws much attention in the field of
mathematical physics [35, 36]. In 1979, Ablowitz and Satsuma proposed a method called
’long wave limit method’ to help us derive lump waves on multi-soliton solutions [37].
That means we can obtain the lump waves by choosing suitable parameters in the soliton
solutions (2.4). In order to obtain the single lump, put

k1 = l1ε, k2 = l2ε, η10 = η20 = iπ (2.13)
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Figure 7 The interaction solution between two general breathers of Eq. (1.2) in the (x, z) plane with
parameters constrained by Eq. (2.12)

in the case of N = 2 for Eq. (2.4) and take the limit as ε → 0. Then the f2 can be simplified
and the single lump solution can be constructed as follows:

u =
2(θ1 + θ2)
θ1θ2 + θ0

, (2.14)

where

θi =
1
2

(
pit –

√
p2

i – 12qit – 2piy – 2qiz – 2x
)

(i = 1, 2),

θ0 =
12(p1 + p2)

√
(p2

1 – 12q1)(p2
2 – 12q2) – p1p2 + 6q1 + 6q2

.
(2.15)

From what has been discussed above, we can recognize that the solution u is nonsingular
if we set p1 = p∗

2 and q1 = q∗
2. Next, assuming that p1 = a1 + ib1 and q1 = a2 + ib2 without

loss of generality, the characteristics of solution (2.14) can be illustrated. But before that,
if we consider that a1 �= 0, the trajectory of solution (2.14) can be defined along the path
[x(t), y(t)] as follows:

1
2

a1t – a1y – a2z – x

–
1
4

(
2
√(

a2
1 – b2

1 – 12a2
)2 + (2a1b1 – 12b2)2 + 2a2

1 – 2b2
1 – 24a2

) 1
2 t = 0,

1
2

b1t – b1y – b2z (2.16)

+
1
4
Γ

(
2
√(

a2
1 – b2

1 – 12a2
)2 + (2a1b1 – 12b2)2 – 2a2

1 + 2b2
1 + 24a2

) 1
2 t = 0,
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Figure 8 The lump solutions for Eq. (1.2) in different planes with parameters a1 = 2, b1 = 0, a2 = b2 = 1

Γ = csgn
(
a2

1i – b2
1i – 12a2i – 2a1b1 + 12b2

)
,

which tell us that solution (2.14) keeps the permanent lump condition in motion on six
different planes. As shown in Fig. 8, the single lump waves are plotted in six different
planes, and they are all clearly localized in all directions.

For N = 4, we also introduce the parameters similar to Eq. (2.13) as follows:

k1 = l1ε, k2 = l2ε, k3 = l3ε, k4 = l4ε,

η10 = η20 = η30 = η40 = iπ .
(2.17)

Under the above parameter constraints, we take ε → 0 and we have

f = (θ1θ2θ3θ4 + a12θ3θ4 + a13θ2θ4 + a14θ2θ3 + a23θ1θ4 + a24θ1θ3 + a34θ1θ2

+ a12a34 + a13a24 + a14a23)l1l2l3l4ε
4 + O

(
ε5), (2.18)

where

θi =
1
2

(
pit –

√
p2

i – 12qit – 2piy – 2qiz – 2x
)

,

aij =
12(pi + pj)√

(p2
i – 12qi)(p2

j – 12qj) – pipj + 6qi + 6qj

(i, j = 1, 2, 3, 4).
(2.19)

Finally, the collision process of two lumps can be demonstrated in Fig. 9 with the following
appropriate parameters:

p1 = p∗
2 = 1 + i, p3 = p∗

4 = 1 + 2i, q1 = q∗
2 = 2 + i, q3 = q∗

4 = 2 + 3i. (2.20)
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Figure 9 Two-lump solutions for Eq. (1.2) in the (x, y) plane with the parameters defined in Eq. (2.19)

Figure 10 Two-line rogue waves for Eq. (1.2) in the (x, z) plane with the parameters defined in Eq. (2.21)

Obviously, we can draw a conclusion that the two-lump waves propagate in a constant
state by looking at Fig. 9.

2.3 The rogue wave solutions
In this part, another kind of dynamical phenomenon localized in both time and space
will be mentioned with the long wave limit method. For N = 2 and N = 3 of Eq. (2.4), it
is easy to find that the corresponding dynamic behavior under the same parameters is
shown as one-order line rogue wave and the interaction between soliton and line rogue
wave, respectively. In the following, we only consider the rogue waves and interaction
solutions for Eq. (2.4) in the case of N = 4. The rogue waves also have different dynamic
characteristics in different planes. For instance, in Fig. 10, the two-line rogue waves are
described in the (x, z) plane with the following suitable parameters:

p1 = p∗
2 = 1 + i, p3 = p∗

4 = 3 + 2i, q1 = q2 = 1, q3 = q4 = 2. (2.21)

Obviously, the above dynamic process presents a periodicity. The two-line rogue waves
will reach a large peak over time (see Fig. 10b) and eventually return to their original state.
Besides that, the interaction between line rogue wave and lump can be constructed in the
(y, z) plane if we choose the following parameters:

p1 = p∗
2 = 1 + i, p3 = p∗

4 = 3 + 2i, q1 = q2 = 2 + i, q3 = q4 = 1. (2.22)
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Figure 11 The interaction between line rogue wave and lump for Eq. (1.2) in the (y, z) plane with the
parameters defined in Eq. (2.22): (a) three-dimensional plot at t = 0, (b) the density plot, (c) the corresponding
contour plot

3 Conclusion and discussion
To conclude, based on the Hirota bilinear forms (2.1) of the (3 + 1)-dimensional B-type
Kadomtsev–Petviashvili–Boussinesq equation, the breather waves and interaction solu-
tions are discussed by the complex conjugate method on soliton solutions (2.4). It seems
clear that the breathers have different dynamic characteristics in different planes (see
Figs. 1 and 2). In addition, in case of N = 3 (or N = 4), we obtained the interaction be-
tween breather and single soliton (or interaction between two breathers) by selecting some
special parameters (as shown in Figs. 3 and 4, respectively). Through a long wave limit
method, we further investigated the lump waves and rogue waves of Eq. (1.2) by Taylor
expansion of breathers. According to our understanding, the same research on soliton
solutions with periodic properties has been published in [33] and the same expressions
of solitons have been given in [30]. However, no previous research has explored results
similar to our interaction between solitons and breathers, lumps, and rogue waves. We
have obtained some completely new types of solutions based on all the published work
on the solution of Eq. (1.2). The lumps, single lump solutions, and two-lump solutions
of Eq. (1.2) are displayed in Figs. 8 and 9, respectively. Furthermore, another kind of dy-
namical phenomenon (Rogue waves) is mentioned, and its dynamic characteristics vary
greatly in different planes (see Figs. 10 and 11). Our results of some nonlinear wave inter-
actions are closely related to some interesting dynamical phenomena in physical systems.
It is worth further exploring in the future.
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