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Abstract
In this paper, we establish that every controlled metric space (X ,dα ) induces a
Hausdorff controlled metric (Hα ,CLD(X)) on the class of closed subsets of X which is
also complete if (X ,dα ) is complete. Furthermore, we define multivalued almost
F-contractions on Hausdorff controlled metric spaces and prove some fixed point
results.
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1 Introduction and preliminaries
We denote by P(X), CLB(X), CLD(X) and by K(X) the class of all nonempty subsets of X,
the class of all nonempty closed and bounded subsets of X, the class of all nonempty closed
subsets of X, and the class of all nonempty compact subsets of X. For A,B ∈ CLB(X), let

H(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}

,

where d(a,B) = inf{d(a, b) : b ∈ B}. Then H is a metric on CLB(X), which is called the
Pompeiu–Hausdorff metric induced by d. In 1969, Nadler [1] proved that every multi-
valued contraction on a complete metric space has a fixed point. Since then, many re-
searchers extended it multi-directionally (see, for example [2–14]). Berinde and Berinde
in [15] introduced the idea of multivalued almost contractions (originally called multival-
ued (δ, L)-weak contractions) and proved the following fixed point theorem.

Theorem 1.1 ([15]) Let T : X → CLB(X) be a multivalued almost contraction mapping
on a complete metric space (X, d), that is, there exist two constants 0 < δ < 1 and L ≥ 0 such
that, for all x, y ∈ X, it satisfies

H(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx). (1)

Then T has a fixed point.
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Wardowski [16] extended the Banach contraction principle by introducing F-
contractions and established fixed point theorems in metric spaces as follows.

Definition 1.1 ([16]) Let us consider a function F : (0,∞) →R and the following axioms:
(F1) F is strictly non-decreasing;
(F2) for each sequence {an} ⊂ (0,∞) of positive real numbers, limn→∞ an = 0 if and

only if limn→∞ F(an) = –∞;
(F3) for each sequence {an} ⊂ (0,∞) of positive real numbers, limn→∞ an = 0, there

exists l ∈ (0, 1) such that limn→∞(an)lF(an) = 0;
(F4) F(infA) = inf F(A) for all A⊂ (0,∞) with infA > 0.
We denote by F the family of all functions F satisfying (F1)–(F3), and by F∗ the family

of all functions F satisfying (F1)–(F4).

Example 1.1 ([16]) Let F : (0,∞) →R be defined by
(i) F(α) = lnα;

(ii) F(α) = α + lnα.
Clearly, F in (i) and (ii) satisfies (F1)–(F4).

Definition 1.2 ([16]) A mapping T : X → X on a metric space (X, d) is called F-
contraction, if F ∈F and there exists τ > 0 such that

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
, (2)

for all x, y ∈ X with d(x, y) > 0.

If we take F(α) = lnα in (2), we obtain

d(Tx, Ty) ≤ e–τ d(x, y), for all x, y ∈ X, Tx 	= Ty. (3)

Clearly for x, y ∈ X such that Tx = Ty, the inequality d(Tx, Ty) ≤ e–τ d(x, y) also holds.
Thus, T is an ordinary contraction with contractive constant c = e–τ , but its converse is
not true in general.

By combining the ideas of Wardowski and Nadler, Altun et al. [17] introduced the idea
of multivalued F-contractions and obtained some fixed point results for this type of map-
pings on complete metric spaces.

Definition 1.3 ([17]) Let T : X → CLB(X) be a multivalued mapping on a metric space
(X, d). Then T is called a multivalued F-contraction, if F ∈ F and there exists τ > 0 such
that

τ + F
(
H(Tx, Ty)

) ≤ F
(
d(x, y)

)
, (4)

for all x, y ∈ X with H(x, y) > 0.

By putting F(a) = ln a, then every multivalued contraction in the sense of Nadler is also
a multivalued F-contraction.
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Theorem 1.2 ([17]) Let T : X → K(X) be a multivalued F-contraction on a complete met-
ric space (X, d). Then T has a fixed point in X.

Theorem 1.3 ([17]) Let T : X → CLB(X) be a multivalued F-contraction on a complete
metric space (X, d). If F ∈F∗, then T has a fixed point in X.

Altun et al. [18] established the concept of multivalued almost F-contractions and
proved some fixed point results as follows.

Definition 1.4 ([18]) A multivalued mapping T : X → CLB(X) on a metric space (X, d)
is called a multivalued almost F-contraction, if F ∈ F and there exist two constants τ > 0
and γ ≥ 0 such that

τ + F
(
H(Tx, Ty)

) ≤ F
(
d(x, y)

)
+ γ d(y, Tx), (5)

for all x, y ∈ X with H(x, y) > 0.

By putting F(a) = ln a, then every multivalued almost contraction (1) is a multivalued
almost F-contraction.

Theorem 1.4 ([18]) Let T : X → CLB(X) be a multivalued almost F-contraction on a com-
plete metric space (X, d). If F ∈F∗, then T has a fixed point in X.

Remark 1.1 Theorem 1.4 generalized Theorem 1.1 and Theorem 1.3, because
(i) If we take F(a) = ln a, τ = – ln δ and γ = 1

δ
, where δ ∈ (0, 1) in equation (5). Then we

get equation (1).
(ii) If we take γ = 0 in equation (5), we get equation (4).

In recent times, Kamran et al. in [19] established the idea of extended b-metric spaces,
which generalized b-metric spaces (see [20, 21]) simply by replacing a constant s by a
function depending on the left hand side of the triangle inequality.

Definition 1.5 ([19]) Let X be a nonempty set and θ : X × X → [1,∞). Then a mapping
dθ : X × X → [0,∞) is called an extended b-metric, if for all x, y, z ∈ X, it satisfies the
following axioms:

(i) dθ (x, y) = 0 iff x = y,
(ii) dθ (x, y) = dθ (y, x),

(iii) dθ (x, z) ≤ θ (x, z)[dθ (x, y) + dθ (y, z)].
The pair (X, dθ ) is called an extended b-metric space.

Since then, many authors proved several fixed point results in the context of extended b-
metric spaces; see [22–31]. In [32], Mlaiki et al. introduced the concept of controlled type
metric spaces as a generalization of b-metric spaces, which is different from extended b-
metrics space and is very useful to prove existence and uniqueness theorems for different
types of integral and differential equations.

Definition 1.6 ([32]) Let X be a nonempty set and α : X × X → [1,∞). Then a mapping
dα : X × X → [0,∞) is called a controlled metric, if for all x, y, z ∈ X, it satisfies the follow-
ing axioms:
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(i) dα(x, y) = 0 iff x = y,
(ii) dα(x, y) = dα(y, x),
(iii) dα(x, z) ≤ α(x, y)dα(x, y) + α(y, z)dα(y, z).
The pair (X, dα) is called a controlled metric space.

Remark 1.2 Every b-metric space is a controlled metric space, if we take α(x, y) = s ≥ 1 for
all x, y ∈ X. Generally, a controlled metric space is not an extended b-metric space [32], if
we take same functions α = θ as follows.

Example 1.2 ([32]) Let X = {1, 2, . . .}. Define dα : X × X → [0,∞) as:

dα(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x = y;
1
x , if x is even and y is odd;
1
y , if x is odd and y is even;

1, otherwise.

Hence (X, dα) is a controlled metric space, where α : X × X → [1,∞) is defined as:

α(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

x, if x is even and y is odd;

y, if x is odd and y is even;

1, otherwise.

Clearly, dα is not an extended b-metric for the same function α = θ .

In this paper, we define a generalized Hausdorff metric on the class of nonempty
closed subsets of controlled metric spaces. Also we prove that if (X, dα) is complete, then
(Hα , CLD(X)) is complete, too. Moreover, we define multivalued almost F-contractions
on controlled metric spaces and prove some fixed point results, which generalize many
pre-existing results in the literature.

2 Main results
We denote by α(x,A) = infa∈A α(x, a), and dα(x,A) = infa∈A dα(x, a), for A⊂ X.

Lemma 2.1 Let (X, dα) be a controlled metric space. Then

dα(x1,A) ≤ α(x1, x2)dα(x1, x2) + α(x2,A)d(x2,A), (6)

for all x1, x2 ∈ X and a ∈A⊂ X, where α(x2,A) = infa∈A α(x2, a).

Proof From axiom of definition, we have

dα(x1, a) ≤ α(x1, x2)dα(x1, x2) + α(x2, a)dα(x2, a), for all x1, x2, a ∈ X.

By taking infimum of both sides over A, we get

inf
a∈A

dα(x1, a) ≤ α(x1, x2)dα(x1, x2) + inf
a∈A

α(x2, a) inf
a∈A

dα(x2, a).



Alamgir et al. Advances in Difference Equations         (2020) 2020:24 Page 5 of 20

Since α(x2,A) = infa∈A α(x2, a),

dα(x1,A) ≤ α(x1, x2)dα(x1, x2) + α(x2,A)dα(x2,A). �

Now we will introduce the Pompeiu–Hausdorff metric.

Definition 2.1 Let (X, dα) be a controlled metric space. Then the function Hα : CLD(X)×
CLD(X) → [0,∞) is defined by

Hα(A,B) =

⎧
⎨
⎩

max{supa∈A dα(a,B), supb∈B dα(b,A)}, if the maximum exists;

∞, otherwise,

where A,B ∈ CLD(X).

Lemma 2.2 For all A,B,C ⊂ CLD(X), we have

Hα(A,C) ≤ max
{

sup
a∈A

α(a, b),α(b,A)
}

Hα(A,B)

+ max
{
α(b,C), sup

c∈C
α(c, b)

}
Hα(B,C).

Proof Assume that Hα(A,B) and Hα(B,C) are finite. From Lemma 2.1 for a ∈ A, b ∈ B,
we have

dα(a,C) ≤ α(a, b)dα(a, b) + α(b,C)dα(b,C).

As dα(b,C) ≤ Hα(B,C), therefore we have

dα(a,C) ≤ α(a, b)dα(a, b) + α(b,C)Hα(B,C),

dα(a,C) ≤ α(a, b)dα(a,B) + α(b,C)Hα(B,C).

Hence by taking supremum over a ∈A, we get

sup
a∈A

dα(a,C) ≤ sup
a∈A

α(a, b)Hα(A,B) + α(b,C)Hα(B,C).

Analogously,

sup
c∈C

dα(c,A) ≤ α(b,A)Hα(A,B) + sup
c∈C

α(c, b)Hα(B,C).

So

max
{

sup
a∈A

dα(a,C), sup
c∈C

dα(c,A)
}

≤ max
{

sup
a∈A

α(a, b),α(b,A)
}

Hα(A,B)

+ max
{
α(b,C), sup

c∈C
α(c, b)

}
Hα(B,C).
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Therefore, by Definition 2.1, we get

Hα(A,C) ≤ max
{

sup
a∈A

α(a, b),α(b,A)
}

Hα(A,B)

+ max
{
α(b,C), sup

c∈C
α(c, b)

}
Hα(B,C).

Moreover, if Hα(A,B) or Hα(B,C) is infinite, the condition is obvious. �

Theorem 2.1 Let (X, dα) be a controlled metric space, then the function Hα : CLD(X) ×
CLD(X) → [0,∞] is a generalized controlled metric space in CLD(X).

Proof Let Hα(A,B) = 0, for A,B ∈ CLD(X). This implies

max
{

sup
a∈A

dα(a,B), sup
b∈B

dα(b,A)
}

= 0.

Then dα(a,B) = 0 for all a ∈A, hence a ∈ B, i.e.,A⊂ B. In the same way, we see thatB ⊂A
and consequently A = B. Conversely, if A = B, then Hα(A,B) = 0. Of course Hα(A,B) =
Hα(B,A) for all A,B ∈ CLD(X). Finally, in view of Lemma 2.2, the proof is complete. �

Definition 2.2 a ∈ Ā, where Ā is the closure of a set A ⊂ X, if and only if there exists a
sequence {an} in A such that a = limn→∞ an, for n = 0, 1, 2, . . . .

Denote for ε > 0 and A⊂ X,

Aε =
{

x ∈ X : dα(x,A) ≤ ε
}

.

Lemma 2.3 If x ∈Aε , then dα(x,A) ≤ limn→∞ α(xn,A)ε, where

α(xn,A) = inf
a∈A

α(xn, a).

Proof Let x ∈ Aε , then there exists a sequence {xn} in Aε such that limn→∞ xn = x, for
n = 0, 1, 2, . . . . From Lemma 2.1, we have

dα(x,A) ≤ α(x, xn)dα(x, xn) + α(xn,A)dα(xn,A).

By letting n → ∞ in the above inequality, we get

dα(x,A) ≤ lim
n→∞α(xn,A)ε.

It proves the lemma. �

Definition 2.3 The upper topological limit of a sequence {Al}, for l = 1, 2, . . . in controlled
metric space X is denoted by LtAl determined by

a ∈ LtAl, if and only if lim
l→∞

inf dα(a,Al) = 0.
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Theorem 2.2 A point a ∈ LtAl , if and only if there exists a subsequence {anl } ⊂ A such
that liml→∞ anl = a and anl ∈Anl , for l = 1, 2, 3, . . . .

Proof First, let us suppose that a ∈ LtAl , then there exists a subsequence {Anl } of Al such
that liml→∞ dα(a,Anl ) = 0. Hence for every l there exists a strictly increasing sequence of
positive integers {pl} with

dα(a,Anl ) <
1
l

, for all n ≥ pl.

Therefore, we can find a sequence {anl } of points such that anl ∈Anl and dα(a, anl ) < 1
l , for

pl ≤ n < pl+1. Hence liml→∞ anl = a.
Conversely, let us assume that anl → a and anl ∈Anl , l = 1, 2, 3, . . . . Hence

dα(a,Anl ) ≤ dα(a, anl ) → 0

and liml→∞ inf dα(a,Al) = 0. This implies that a ∈ LtAl . �

Theorem 2.3 L = LtAl is closed.

Proof Suppose that x is a limit point of L. Then there exists a sequence xm ∈ L – {x} that
converges to x. By Theorem 2.2 for xm ∈ L, there exists a subsequence {xml } ⊂A such that
liml→∞ xml = xl and xml ∈Aml , for l = 1, 2, 3, . . . . Now by the triangular inequality, we have

dα(xml , x) ≤ α(xml , xl)dα(xml , xl) + α(xl, x)dα(xl, x).

Clearly liml→∞ xml = x. It follows that {xml} converges to x and xml ∈Aml , for l = 1, 2, 3, . . . .
Therefore, by Theorem 2.2, x ∈ L. Hence L is closed. �

Corollary 2.1

LtAl =
∞⋂
l=1

∞⋃
n=0

Al+n.

Proof First, let us assume that x ∈ LtAl , then there exists {xnl } ⊂A such that liml→∞ xnl =
x and xnl ∈Anl , for l = 1, 2, 3, . . . . Hence for every p

xnl ∈
∞⋃

n=0

Ap+n, for all l ≥ 1.

This implies that

x ∈
∞⋂
l=1

∞⋃
n=0

Al+n.

Conversely let us assume that, for every p, x ∈ ⋃∞
n=0 Ap+n. Then there is a sequence {xp

nl } ⊂⋃∞
n=0 Ap+n such that xnp

l
→ x as l → ∞ for every natural. Let there exists x1 = x1

n1 such that
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x1
n1 ∈ Ap1 and dα(x1

n1 , x) < 1. Similarly, let x2 = xl1+1
n2 such that p2 > p1 and dα(xl1+1

n2 , x) < 1
2 ,

xl1+1
n2 ∈Ap2 . By continuing this process, we have xl+1 = xll+1

nl+1 such that dα(xll+1
nl+1 , x) < 1

l+1 and
xll+1

nl+1 ∈Apl+1 , pl < pl+1. Thus, we have xl → x as l → ∞ and xl ∈Al for l = 1, 2, 3, . . . . Hence
by Theorem 2.2, x ∈ LtAl . It completes the proof. �

Corollary 2.2

lim
l→∞

Al = LtAl = LtAl.

Proof Let us assume that a ∈ LtAl , then there is a sequence an ∈ LtAl for n = 1, 2, 3, . . .
such that an → a as n → ∞. Consequently, there exists an integer pl1 such that al1 ∈
Al1 and dα(al1 , a1) < 1. Similarly, there exists an integer pl2 > pl1 such that dα(al2 , a2) < 1

2 .
Continuing this process, we can find an increasing sequence {pln} of integers with aln ∈Aln

for n = 1, 2, 3, . . . such that

dα(aln , an) <
1
n

, for all n.

Thus, by the triangle inequality, we get

dα(aln , a) ≤ α(aln , an)dα(aln , an) + α(an, a)dα(an, a).

Note that, as we take n to infinity, the distance between {aln} and a converges to zero, so
it follows that {aln} converges to a. Hence, by Theorem 2.2, a ∈ LtAl . It follows that

LtAl ⊂ LtAl. (7)

Conversely, let us assume that a ∈ LtAl , then, in a similar way,

LtAl ⊂ LtAl. (8)

From Eqs. (7) and (8), we have

LtAl = LtAl.

The remaining part of the theorem can be verified by the similar way. �

Theorem 2.4 If (X, dα) be a complete controlled metric space with limn,m→∞ α(xn, xm)κ <
1, for all xn, xm ∈ X, where κ ≥ 1. Then (CLD(X), Hα) is complete.

Proof Let {An}, n = 1, 2, . . . be a Cauchy sequence in CLD(X). Then, by the definition, for
each ε > 0, there exists a positive integer N ∈ N such that

Hα(An,Am) < ε, for all n, m ≥ N . (9)

Let A = ltAn. We will prove that A ∈ CLD(X) and An → A. From Theorem 2.3, A ∈
CLD(X). Next, we will show that {An} converges to A, i.e. there exists a positive integer
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N such that Hα(An,A) < ε for all n ≥ N . By the triangle inequality for all n, m ≥ N ,

Hα(An,A) ≤ max
{

sup
an∈An

α(an, am),α(am,An)
}

Hα(An,Am)

+ max
{

sup
am∈Am

α(am, a),α(a,Am)
}

Hα(Am,A).

For n, m ≥ N , we have from (9)

Hα(An,A) ≤ max
{

sup
an∈An

α(an, am),α(am,An)
}
ε

+ max
{

sup
am∈Am

α(am, a),α(a,Am)
}

Hα(Am,A). (10)

Now, we will prove that

Hα(Am,A) ≤ max
{

sup
am∈Am

α(am, anr ),α(anr ,Am)
}
ε.

For this purpose, we will show the following inequalities:

dα

(
am, a∗) ≤ α(am, anr )ε, for all am ∈Am, (11)

dα

(
a∗,Am

) ≤ α(anr ,Am)ε. (12)

From (9), we get

An ⊂Amε , for all n > m ≥ N .

Next from Corollary 2.1, we have

A⊂An ∪An+1 ∪ · · · ⊂Amε ,

hence from Lemma 2.3, we get, for a∗ ∈A,

dα

(
a∗,Am

) ≤ α(anr ,Am)ε.

Thus, condition (12) is fulfilled.
Now, we have to prove (11). Since {An} is a Cauchy sequence in CLD(X), we can find a

strictly increasing sequence of positive integers {nr} = {εl–r} for r = 1, 2, 3, . . . such that nr >
N , where N ∈ N and Hα(An,Am) < εl–r , for all n, m ≥ nr . Take arbitrary am ∈ Am, where
am = an0 . Since Hα(An,An0 ) < ε, for n > n0, there exists an1 ∈An1 such that dα(an0 , an1 ) < ε,
for n = n1 > n0. Similarly, Hα(An,An1 ) < ε

l , so there exists an2 ∈An2 such that dα(an1 , an2 ) <
ε
l , for n = n2 > n1. By continuing this process, we can form a sequence {anr } with anr ∈Anr ,
for r = 0, 1, 2, . . . and

dα(anr , anr+1 ) <
ε

lr , an0 = a. (13)
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Next, we will verify that {anr } is a Cauchy sequence, from the triangle inequality, we have

dα(anr , anr+l )

≤ α(anr , anr+1 )dα(anr , anr+1 ) + α(anr+1 , anr+l )dα(anr+1 , anr+l )

≤ α(anr , anr+1 )dα(anr , anr+1 ) + α(anr+1 , anr+k )α(anr+1 , anr+2 )dα(anr+1 , anr+2 )

+ α(anr+1 , anr+l )α(anr+2 , anr+l )dα(anr+2 , anr+l )

≤ α(anr , anr+1 )dα(anr , anr+1 )

+ α(anr+1 , anr+l )α(anr+2 , anr+l )α(anr+2 , anr+3 )dα(anr+2 , anr+3 )

+ α(anr+1 , anr+l )α(anr+2 , anr+l )α(anr+3 , anr+l )dα(anr+3 , anr+l )

≤ · · ·

≤ α(anr , anr+1 )dα(anr , anr+1 ) +
r+l–2∑
i=r+1

( i∏
j=r+1

α(anj , anr+l )

)
α(ani , ani+1 )dα(ani , ani+1 )

+
r+l–1∏
j=r+1

α(anj , anr+l )α(anr+l–1 , anr+l )dα(anr+l–1 , anr+l )

≤ α(anr , anr+1 )dα(anr , anr+1 ) +
r+l–1∑
i=r+1

( i∏
j=r+1

α(anj , anr+l )

)
α(ani , ani+1 )dα(ani , ani+1 )

≤ α(anr , anr+1 )dα(anr , anr+1 ) +
r+l–1∑
i=r+1

( i∏
j=r+1

α(anj , anr+l )

)
α(ani , ani+1 )dα(ani , ani+1 ).

From Eq. (13), we have

dα(anr , anr+l ) ≤ α(anr , anr+1 )
ε

lr +
r+l–1∑
i=r+1

( i∏
j=r+1

α(anj , anr+l )

)
α(ani , ani+1 )

ε

li . (14)

As limn,m→∞ α(xn, xm)κ < 1, for all xn, xm ∈ X. Thus the series

r+l–1∑
i=r+1

( i∏
j=r+1

α(anj , anr+l )

)
α(ani , ani+1 )

ε

li

converges by the ratio test. By taking the limit r → ∞ in Eq. (14), we get

lim
r→∞ dα(anr , anr+l ) = 0.

Hence, we conclude that {anr } is a Cauchy sequence. Since (X, dα) is complete, there exists
a∗ ∈ X such that anr → a∗ ∈ X, and clearly a∗ ∈ A. Again, by the triangle inequality, we
have

dα(an0 , anr ) ≤ α(an0 , an1 )dα(an0 , an1 ) + α(an1 , anr )dα(an1 , anr )

≤ α(an0 , an1 )dα(an0 , an1 ) + α(an1 , anr )α(an1 , an2 )dα(an1 , an2 )
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+ α(an1 , anr )α(an2 , anr )dα(an2 , anr )

≤ · · ·

≤ α(an0 , an1 )dα(an0 , an1 ) +
r–2∑
i=1

( i∏
j=1

α(anj , anr )

)
α(ani , ani+1 )dα(ani , ani+1 )

+
r–1∏
j=1

α(anj , anr )α(anr–1 , anr )dα(anr–1 , anr )

≤ α(an0 , an1 )dα(an0 , an1 ) +
r–1∑
i=1

( i∏
j=1

α(anj , anr )

)
α(ani , ani+1 )dα(ani , ani+1 )

≤ α(an0 , an1 )dα(an0 , an1 ) +
r–1∑
i=1

( i∏
j=1

α(anj , anr )

)
α(ani , ani+1 )dα(ani , ani+1 ).

From Eq. (13), we have

dα(an0 , anr ) ≤ α(an0 , an1 )ε +
r–1∑
i=1

( i∏
j=1

α(anj , anr )

)
α(ani , ani+1 )

ε

li . (15)

As limn,m→∞ α(xn, xm)κ < 1, for all xn, xm ∈ X. Thus, the series

r–1∑
i=1

( i∏
j=m+1

α(anj , anr )

)
α(ani , ani+1 )

ε

li

converges by the ratio test. By taking the limit r → ∞ in Eq. (15), we get

lim
r→∞ dα(an0 , anr ) <

1
κ

ε < ε.

Next, from the triangle inequality, we have

dα(a∗, am) ≤ α(a∗, anr )dα(a∗, anr ) + α(anr , am)dα(anr , am).

Hence, dα(a∗, am) ≤ α(anr , am)ε, when r → ∞. So the condition (11) is fulfilled.
Hence, from (10), we obtain

Hα(An,A) ≤ max
{

sup
an∈An

α(an, am),α(am,An)
}
ε + max

{
sup

am∈Am
α(am, a),α(a,Am)

}

+ max
{

sup
am∈Am

α(am, anr ),α(anr ,Am)
}
ε.

Since limn,m→∞ α(xn, xm)κ < 1, for all xn, xm ∈ X, by taking the limit n, m → ∞ in the above
inequality, we get a positive real number on right side. Hence An approaches A, which
completes the proof. �

Next, we will prove some fixed point results over controlled Hausdorff metric spaces.
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Lemma 2.4 Let A,B ∈ CLD(X), then for all ε > 0 and b ∈ B there exists a ∈A such that

dα(a, b) ≤ Hα(A,B) + ε. (16)

Proof From Definition 2.1, for A,B ∈ CLD(X) and for any b ∈ B, we have

dα(A, b) ≤ Hα(A,B).

By definition of infimum, we may assume a sequence an in A such that

dα(b, an) < dα(b,A) + ε, where ε > 0. (17)

Since A is closed, there exists a ∈A such that an → a. Therefore, by (17), we have

dα(a, b) < dα(A, b) + ε ≤ Hα(A,B) + ε. �

Theorem 2.5 Let T : X → CLD(X) be a mapping on a complete controlled metric space
(X, dα). If T satisfies the inequality

Hα(Tx, Ty) ≤ κdα(x, y), for all x, y ∈ X, (18)

where κ ∈ [0, 1) is a real constant such that limn,m→∞ α(xn, xm)κ < 1, for all xn, xm ∈ X. Then
T has a fixed point.

Proof Let us consider κ > 0, x0 ∈ X and choose x1 ∈ Tx0. As Tx0, Tx1 ∈ CLD(X) and x1 ∈
Tx0, then, by Lemma 2.4, there exists x2 ∈ Tx1 such that

dα(x1, x2) ≤ Hα(Tx0, Tx1) + ε.

Now since Tx1, Tx2 ∈ CLDX) and x2 ∈ Tx1, there exists x3 ∈ Tx2 such that

dα(x2, x3) ≤ Hα(Tx1, Tx2) + ε2.

Continuing in this fashion, we obtain a sequence {xn} of elements of X such that xn+1 ∈
Txn, for n = 0, 1, 2, . . . and

dα(xn, xn+1) ≤ Hα(Txn–1, Txn) + εn, for all n ≥ 1.

From Eq. (18), we have

dα(xn, xn+1) ≤ εdα(xn–1, xn) + εn

≤ ε
(
κdα(xn–2, xn–1) + εn–1) + κn

≤ κ2dα(xn–2, xn–1) + 2κn.

Continuing in this way, we have

dα(xn, xn+1) ≤ κndα(x0, x1) + nκn, for all n ≥ 1. (19)
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From the triangle inequality and Eq. (19) for m > n, we have

dα(xn, xm) ≤ α(xn, xn+1)dα(xn, xn+1) + α(xn+1, xm)dα(xn+1, xm)

≤ α(xn, xn+1)dα(xn, xn+1) + α(xn, xm)α(xn+1, xn+2)dα(xn+1, xn+2)

+ α(xn, xm)α(xn+2, xm)dα(xn+2, xm)

≤ · · ·

≤ α(xn, xn+1)dα(xn, xn+1) +
m–2∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)dα(xi, xi+1)

+
m–1∏
j=1

α(xj, xm)α(xm–1, xm)dα(xm–1, xm)

≤ α(xn, xn+1)dα(xn, xn+1) +
m–1∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)dα(xi, xi+1)

≤ α(xn, xn+1)dα(xn, xn+1) +
m–1∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)dα(xi, xi+1)

≤ α(xn, xn+1)
[
κndα(x0, x1) + nκn]

+
m–1∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)

[
κ idα(x0, x1) + iκ i].

This implies that

dα(xn, xm) ≤ dα(x0, x1)
[
α(xn, xn+1)κn + α(xn, xm)nκn]

+ dα(x0, x1)
m–1∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)κ i

+
m–1∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)iκ i.

Since limn,m→∞ α(xn, xm)κ < 1 for all xn, xm ∈ X, α(xn, xm) is finite and the series∑∞
n=1 κn ∏n

i=1 α(xi, xm)α(xi, xi+1) converges by the ratio test for each m ∈ N. If we take
Sn = κn ∏n

i=1 α(xi, xm)α(xi, xi+1) and Sn+1 = κn+1 ∏n+1
i=1 α(xi, xm)α(xi, xi+1), then Sn+1

Sn
< 1,

when n → ∞. By the same procedure
∑∞

n=1 nκn ∏n
i=1 α(xi, xm)α(xi, xi+1) is convergent. Let

S =
∞∑

n=1

κn
n∏

i=1

α(xi, xm)α(xi, xi+1), Sn =
n∑

j=1

κ j
j∏

i=1

α(xi, xm)α(xi, xi+1),

and

S′ =
∞∑

n=1

nκn
n∏

i=1

α(xi, xm)α(xi, xi+1), S′
n =

n∑
j=1

jκ j
j∏

i=1

α(xi, xm)α(xi, xi+1).
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Thus, for m > n, we have

dα(xn, xm) ≤ dα(x0, x1)
[
α(xn, xn+1)κn + α(xn, xm)nκn]dα(x0, x1)[Sm–1 – Sn]

+
[
S′

m–1 – S′
n
]
.

By letting n → ∞, we conclude that {xn}, for n = 0, 1, 2, . . . is a Cauchy sequence. Since X
is complete, there exists x∗ ∈ X such that limn→∞ xn = x∗. Now by the triangle inequality

dα(Tx∗, x∗) ≤ α(Tx∗, xn)dα(Tx∗, xn) + α(xn, x∗)dα(xn, x∗)

≤ α(Tx∗, xn)
[
κdα(x∗, xn–1)

]
+ α(xn, x∗)dα(xn, x∗)

≤ α(Tx∗, xn)
[
κ2dα(x∗, xn–2)

]
+ α(xn, x∗)dα(xn, x∗)

...

≤ α(Tx∗, xn)
[
κndα(x∗, x0)

]
+ α(xn, x∗)dα(xn, x∗).

Since limn,m→∞ α(xn, xm)κ < 1 for all xn, xm ∈ X, α(xn, xm) is finite. Thus, by taking the limit
n → ∞ in the above inequality, we get

dα(Tx∗, x∗) = 0.

T is closed, therefore x∗ ∈ Tx∗. Hence x∗ is a fixed point of T . �

Definition 2.4 ([18]) A multivalued mapping T : X → CLD(X) on a controlled metric
space (X, dα) is said to be a multivalued almost F-contraction, if F ∈F and there exist two
constants τ > 0 and γ ≥ 0 such that

τ + F
(
Hα(Tx, Ty)

) ≤ F
(
dα(x, y)

)
+ γ dα(y, Tx), (20)

for all x, y ∈ X with Hα(Tx, Ty) > 0.

By putting F(α) = lnα, then every multivalued almost contraction (1) is also a multival-
ued almost F-contraction.

Theorem 2.6 Let T : X → CLD(X) be a multivalued almost F-contraction on a complete
controlled metric space (X, dα) with limn,m→∞ α(xn, xm)κ < 1, for all xn, xm ∈ X, where κ ≥
1. If F ∈F∗, then T has a fixed point in X.

Proof Let x0 ∈ X. Since Tx is nonempty for all x ∈ X, we may choose x1 ∈ Tx0. If x1 ∈ Tx1,
then x1 is a fixed point of T . Therefore let us suppose that x1 /∈ Tx1. Since Tx1 is closed,
dα(x1, Tx1) > 0, and also dα(x1, Tx1) ≤ Hα(Tx0, Tx1). From axiom (F1) of Definition 1.1,
we have

F
(
dα(x1, Tx1)

) ≤ F
(
Hα(Tx0, Tx1)

)
.
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From Eq. (20), we obtain

F
(
dα(x1, Tx1)

) ≤ F
(
Hα(Tx0, Tx1)

)

≤ F
(
dα(x0, x1)

)
+ γ dα(x1, Tx0) – τ .

As dα(x1, Tx0) = dα(x1, x1) = 0, from above inequality, we have

F
(
dα(x1, Tx1)

) ≤ F
(
dα(x0, x1)

)
– τ . (21)

From condition (F4), we can write

F
(
dα(x1, Tx1)

)
= inf

y∈Tx1
F
(
dα(x1, y)

)
.

Thus, from Eq. (21), we have

inf
y∈Tx1

F
(
dα(x1, y)

) ≤ F
(
dα(x0, x1)

)
– τ . (22)

From Eq. (22), there exists x2 ∈ Tx1 such that

F
(
dα(x1, x2)

) ≤ F
(
dα(x0, x1)

)
– τ .

If x2 ∈ Tx2, then the proof is complete, otherwise in the same way there exists x3 ∈ Tx2

such that

F
(
dα(x2, x3)

) ≤ F
(
dα(x1, x2)

)
– τ .

By continuing the same procedure recursively, we get a sequence {xn} in X, for n = 0, 1, 2, . . .
such that xn+1 ∈ Txn and

F
(
dα(xn, xn+1)

) ≤ F
(
dα(xn–1, xn)

)
– τ . (23)

If xn ∈ Txn, then xn is a fixed point of T . Therefore, suppose that for every n ∈ N xn /∈ Txn.
Denote by An = dα(xn, xn+1), for n = 0, 1, 2, . . . . Thus, for all n = 0, 1, 2, . . . , dα(xn, xn+1) > 0.
From Eq. (23), we get

F(An) ≤ F(An–1) – τ ≤ F(An–2) – 2τ ≤ · · · ≤ F(A0) – nτ . (24)

By taking the limit n → ∞ in Eq. (24), we get limn→∞ F(An) = –∞. Thus, from condition
(F2) of Definition 1.1, we have

lim
n→∞An = 0.

Also from condition (F3), there exists l ∈ (0, 1) such that

lim
n→∞Al

nF(An) = 0.
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From Eq. (24), for all n ∈N, the following holds:

lim
n→∞Al

nF(An) – lim
n→∞Al

nF(A0) ≤ lim
n→∞ –Al

nnτ ≤ 0. (25)

By letting n → ∞ in (25), we obtain

lim
n→∞ nAl

n = 0. (26)

From Eq. (26), there exists n1 ∈N such that nAl
n ≤ 1 for all n ≥ n1. Thus, for all n ≥ n1, we

have

An ≤ 1

n
1
l

. (27)

From the triangle inequality and Eq. (27) for m > n ≥ n1, we have

dα(xn, xm) ≤ α(xn, xn+1)dα(xn, xn+1) + α(xn+1, xm)dα(xn+1, xm)

≤ α(xn, xn+1)dα(xn, xn+1) + α(xn, xm)α(xn+1, xn+2)dα(xn+1, xn+2)

+ α(xn, xm)α(xn+2, xm)dα(xn+2, xm)

≤ · · ·

≤ α(xn, xn+1)dα(xn, xn+1) +
m–2∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)dα(xi, xi+1)

+
m–1∏
j=1

α(xj, xm)α(xm–1, xm)dα(xm–1, xm)

≤ α(An,An+1)dα(An,An+1) +
m–1∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)dα(xi, xi+1)

≤ α(xn, xn+1)dα(xn, xn+1) +
m–1∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)dα(xi, xi+1)

= α(xn, xn+1)An +
m–1∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)Ai

= α(xn, xn+1)
1

n
1
l

+
m–1∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)

1

i
1
l

≤ α(xn, xn+1)
1

n
1
l

+
∞∑
i=1

( i∏
j=1

α(xj, xm)

)
α(xi, xi+1)

1

i
1
l

.

Since limn,m→∞ α(xn+1, xm)κ < 1 for all xn, xm ∈ X, the series
∑∞

i=1(
∏i

j=1 α(xj, xm))α(xi, xi+1) 1

i
1
l

converges by the ratio test for each m ∈ N. Therefore, by taking the limit n → ∞ in the
above inequality, we get dα(xn, xm) → 0. Since X is complete, there exists x∗ ∈ X such that
limn→∞ xn = x∗. Now, we prove that x∗ is a fixed point of T . From the construction of {xn}
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for n = 0, 1, 2, . . . , there is a subsequence {xp} such that

xp ∈ Txp–1. (28)

Since limp→∞ xp = x∗, we have

lim
p→∞ dα(x∗, Txp–1) = 0. (29)

From Lemma 2.1 and (20), we have

dα(x∗, Tx∗) ≤ α(x∗, xp)dα(x∗, xp) + α(xp, Tx∗)dα(xp, Tx∗)

≤ α(x∗, xp)dα(x∗, xp) + α(xp, Tx∗)Hα(Txp–1, Tx∗)

≤ α(x∗, xp)dα(x∗, xp) + α(xp, Tx∗)
[
dα(xp–1, x∗) + γ dα(x∗, Txp–1)

]
.

Since limn,m→∞ α(xn, xm)κ < 1 for all xn, xm ∈ X, α(xn, xm) is finite. Thus by taking the limit
p → ∞ in the above inequality and from (29), we get dα(x∗, Tx∗) = 0. Hence x∗ ∈ Tx∗, and
x∗ is a fixed point of T . �

Remark 2.1 Theorem 2.6 is a generalization of Theorem 1.1 and Theorem 1.3.

Example 2.1 Let X = [0,∞). Define dα : X × X → [0,∞) as

dα(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x = y;
1
x , if x ≥ 1 and y ∈ [0, 1);
1
y , if y ≥ 1 and x ∈ [0, 1);

1, otherwise.

Hence (X, dα) is a complete controlled metric space, where α : X × X → [1,∞) is defined
as

α(x, y) =

⎧⎨
⎩

1, if x, y ∈ [0, 1);

max{x, y}, otherwise.

Define a mapping T : X → CLD(X) by

T§ =

⎧⎨
⎩

[ x
3 , x

2 ], if x, y ∈ [0, 1);

{x}, if x ≥ 1.

Now, consider the mapping F defined by F(A) = lnA. Then T is multivalued almost F-
contraction with τ = ln 2 and γ = 10. As Hα(Tx, Ty) > 0 for x 	= y. So (20) is equivalent to
the following equation:

Hα(Tx, Ty) ≤ e–τ dα(x, y) + γ e–τ dα(y, Tx),
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and so

Hα(Tx, Ty) ≤ 1
2

dα(x, y)) + 5dα(y, Tx). (30)

Now, we will consider the following cases:
Case (1) If x, y ∈ [0, 1), then

Hα(Tx, Ty) = 1 = dα(x, y),

and hence (30) is satisfied.
Case (2) If x, y ≥ 1, then

Hα(Tx, Ty) = 1 = dα(x, y) = dα(y, Tx).

Clearly, (30) is satisfied.
Case (3) If x ≥ 1 and y ∈ [0, 1), then

Hα(Tx, Ty) =
1
x

= dα(x, y) = dα(y, Tx).

Equation (30) is satisfied.
Case (4) If y ≥ 1 and x ∈ [0, 1), then

Hα(Tx, Ty) =
1
y

= dα(x, y) = dα(y, Tx).

Hence (30) is satisfied.

3 Conclusion
In the present study, we defined the concept of a Pompeiu–Hausdorff metric on the class of
nonempty closed subsets of controlled metric spaces and we showed that if (X, dα) is com-
plete, then (Hα , CLD(X)) is also complete. Also, we analyzed some topological properties
of such spaces. Then we established some fixed point results for multivalued mappings sat-
isfying almost F-contractive condition on controlled metric spaces which generalize many
existing results in the literature. We think that different versions of contractive conditions
can be considered in such spaces by using a Pompeiu–Hausdorff metric. Also, this new
working area will be a powerful tool for the existence solution of the systems of integral
inclusions and fractional differential inclusions.
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