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Abstract
Let f be an entire function of finite order, let n ≥ 1,m ≥ 1, L(z, f ) �≡ 0 be a linear
difference polynomial of f with small meromorphic coefficients, and Pd(z, f ) �≡ 0 be a
difference polynomial in f of degree d ≤ n – 1 with small meromorphic coefficients.
We consider the growth and zeros of f n(z)Lm(z, f ) + Pd(z, f ). And some
counterexamples are given to show that Theorem 3.1 proved by I. Laine (J. Math. Anal.
Appl. 469:808–826, 2019) is not valid. In addition, we study meromorphic solutions to
the difference equation of type f n(z) + Pd(z, f ) = p1eα1z + p2eα2z , where n ≥ 2,
Pd(z, f ) �≡ 0 is a difference polynomial in f of degree d ≤ n – 2 with small mromorphic
coefficients, pi , αi (i = 1, 2) are nonzero constants such that α1 �= α2. Our results are
improvements and complements of Laine 2019, Latreuch 2017, Liu and Mao 2018.
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1 Introduction and main results
In this paper, we assume familiarity with the basic results and standard notations of Nevan-
linna theory [7, 9, 21]. In addition, we use ρ(f ) to denote the order of growth of f and λ(f )
to denote the exponent of convergence of zeros’ sequence of f . For simplicity, we denote
by S(r, f ) any quantify satisfying S(r, f ) = o(T(r, f )), as r → ∞, outside of a possible ex-
ceptional set of finite logarithmic measure, we use S(f ) to denote the family of all small
functions with respect to f .

Nowadays, there has been substantial interest in Nevanlinna theory for differences, as
well as meromorphic solutions of difference and functional equations; see, e.g., [1–6, 10–
14, 18, 19, 22, 23]. With the establishment of difference analogue of Nevanlinna theory,
many outstanding achievements on the complex difference theory are accomplished.

Halburd and Korhonen [5] in 2006 and Chiang and Feng [3] in 2008 presented a differ-
ence analogue of the lemma on the logarithmic derivative as follows.

Lemma A (See [3, Corollary 2.5]) Let f be a meromorphic function of finite order ρ and
let η be a nonzero complex number. Then for each ε > 0, we have

m
(

r,
f (z + η)

f (z)

)
+ m

(
r,

f (z)
f (z + η)

)
= O

(
rρ–1+ε

)
.
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Halburd and Korhonen [5] also established the difference analogue of Clunie lemma.

Lemma B (See [5, Corollary 3.3]) Let f be a nonconstant finite-order meromorphic solu-
tion of

f n(z)P(z, f ) = Q(z, f ),

where P(z, f ) and Q(z, f ) are difference polynomials in f with small meromorphic coeffi-
cients, and let c ∈ C, δ < 1. If the total degree of Q(z, f ), as a polynomial in f and its shifts,
is ≤ n, then

m
(
r, P(z, f )

)
= o

(
T(r + |c|, f )

rδ

)
+ o

(
T(r, f )

)

for all r outside of a possible exceptional set E with finite logarithmic measure
∫

E
dr
r < ∞.

Using the same methods as in the proof of [9, Lemma 2.4.2] and Lemma B, we have a
similar conclusion as follows.

Lemma C Let f be a nonconstant finite-order meromorphic solution of

f n(z)P(z, f ) = Q(z, f ),

where P(z, f ) and Q(z, f ) are differential-difference polynomials in f with small meromor-
phic coefficients. If the total degree of Q(z, f ), as a polynomial in f , its derivatives, and its
shifts, is ≤ n, then

m
(
r, P(z, f )

)
= S(r, f )

for all r outside of a possible exceptional set with finite logarithmic measure.

This paper is organized as follows. In Sect. 2, we will consider the growth and zeros
of certain types of complex difference polynomials and complex difference equations. In
Sect. 3, we will study meromorphic solutions of certain type of nonlinear difference equa-
tions.

2 Zero distribution of some complex difference polynomials
We now recall the following result proved in [12]; see Theorem 2 therein:

Theorem D (See [12]) Let f be a transcendental entire function of finite order, and c be a
nonzero complex constant. Then for n ≥ 2, f nf (z + c) assumes every nonzero value a ∈ C

infinitely often.

This paper prompted many related investigations during the last 12 years, such as
[10, 14, 22]. In what follows, we use L(z, f ) :=

∑l
i=1 ai(z)f (z + λi) with small meromorphic

coefficients, without being otherwise specified.
In 2019, Laine [10, Theorem 2.1] presented an extension to Theorem D as follows:
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Theorem E (See [10]) Let f be a transcendental entire function of finite order ρ , b0 be a
nonvanishing small meromorphic function of f , L(z, f ) be nonvanishing and n ≥ 2, m ≥ 1.
Then F := f nLm(z, f ) – b0 has sufficiently many zeros to satisfy λ(F) = ρ .

Remark 2.1 In Theorem E, a meromorphic function α is said to be small, relative to a given
meromorphic function f of finite order ρ , if for any ε > 0, and for some λ < ρ , T(r,α) =
O(rλ+ε) + S(r, f ) outside of a possible exceptional set of finite logarithmic measure.

In this section, our purpose is to improve and extend the results in [10] for an entire
function f by considering the zero distribution of f nLm(z, f ) + Pd(z, f ), where n ≥ 2, m ≥
1, Pd(z, f ) is a difference polynomial in f of degree d ≤ n – 2, with small meromorphic
coefficients. We obtain

Theorem 2.1 Let f be a transcendental entire function of finite order ρ , L(z, f ), Pd(z, f ) be
nonvanishing and n ≥ 2, m ≥ 1, d ≤ n – 2. Then F := f nLm(z, f ) + Pd(z, f ) has sufficiently
many zeros and satisfies λ(F) = ρ(F) = ρ .

Remark 2.2 The following examples show that our estimates in Theorem 2.1 are accurate,
and the condition d ≤ n – 2 is necessary in Theorem 2.1.

Example 2.1 If f (z) = 1 + ez , P1(z, f ) = –4f (z + log 2), L(z, f ) = f (z) + f (z + iπ ), then F :=
f 2(z)L2(z, f ) + P1(z, f ) = 4e2z has no zeros, and 0 = λ(F) < ρ(F) = ρ = 1.

Example 2.2 If f (z) = z + ez , P0(z, f ) = –z(z – log 2)m, L(z, f ) = 2f (z) – f (z + log 2), m ≥ 1,
then F := f (z)Lm(z, f ) + P0(z, f ) = (z – log 2)mez has finitely many zeros only, and 0 = λ(F) <
ρ(F) = ρ = 1.

Remark 2.3 Example 2.2 shows that the following result due to Laine [10] may be invalid.
Recently, I. Laine and Z. Latreuch [11] gave an extension and a complete version of [10,
Theorem 3.1].

Theorem F (See [10]) Let f be a transcendental entire function of finite order ρ , b0 be a
nonvanishing small function of f , and L(z, f ) be nonvanishing. If m ≥ 2, then F := fLm(z, f ) –
b0 satisfies λ(F) = ρ .

Examples 2.1 and 2.2 imply that F := f nLm(z, f ) + Pd(z, f ) may have no zeros or finitely
many zeros only under the condition d ≤ n – 1, where n ≥ 2, m ≥ 1. Enlightened by Ex-
amples 2.1–2.2 and Theorem F, we consider the growth and zeros of entire solutions of
the following equation:

f n(z)Lm(z, f ) + Pd(z, f ) = γ (z)eh(z), (2.1)

where n ≥ 1, m ≥ 1, Pd(z, f ) is a difference polynomial in f of degree d ≤ n – 1, with small
meromorphic coefficients, γ (z) is a small function relative to f , and h(z) is a polynomial.
Now we state our result as follows.

Theorem 2.2 Let f be a transcendental entire function of Eq. (2.1) with finite order ρ ,
where L(z, f ), Pd(z, f ) are nonvanishing. Then λ(f ) = deg h(z) = ρ .
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Before proving Theorems 2.1 and 2.2, we need the following lemmas.

Lemma 2.1 (See [20, Theorem 1.51]) Suppose that f1, f2, . . . , fn (n ≥ 2) are meromorphic
functions and g1, g2, . . . , gn are entire functions satisfying the following conditions:

(1)
∑n

j=1 fjegj ≡ 0.
(2) gj – gk are not constants for 1 ≤ j < k ≤ n.
(3) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T(r, fj) = o
(
T

(
r, egh–gk

))
(r → ∞, r /∈ E),

where E ⊂ [1,∞) has finite linear measure
∫

E dr < ∞ or finite logarithmic measure
∫

E
dr
r <

∞. Then fj ≡ 0 (j = 1, . . . , n).

Lemma 2.2 Let f be a transcendental entire function of finite order ρ , Pd(z, f ) be difference
polynomial in f of degree d ≤ n – 1, L(z, f ) :=

∑l
i=1 ai(z)f (z + λi), with small meromorphic

coefficients. Let L(z, f ), Pd(z, f ) be nonvanishing and n ≥ 1, m ≥ 1. Then F := f nLm(z, f ) +
Pd(z, f ) satisfies ρ(F) = ρ .

Proof Set

Pd(z, f ) =
∑
μ∈I

bμ(z)
tμ∏
j=1

f (z + δμj)lμj , (2.2)

where I is a finite set of the index μ, tμ, lμj (μ ∈ I , j = 1, . . . , tμ) are natural numbers, δμj (μ ∈
I , j = 1, . . . , tμ) are distinct complex constants. Denoting gμj(z) := f (z+δμj)

f (z) and substituting
this equality into (2.2) yields

Pd(z, f ) =
∑
μ∈I

(
bμ(z)

tμ∏
j=1

glμj
μj (z)

)
f lμ (z) =

d∑
k=0

ck(z)f k(z), (2.3)

where lμ =
∑tμ

j=1 lμj, d = maxμ∈I{lμ}, ck(z) =
∑

lμ=k(bμ(z)
∏tμ

j=1 glμj
μj (z)) (k = 0, . . . , d). By ap-

plying Lemma A, we have m(r, ck(z)) = S(r, f ) (k = 0, . . . , d), which gives

m
(
r, Pd(z, f )

) ≤ dm(r, f ) + S(r, f ) ≤ (n – 1)m(r, f ) + S(r, f ). (2.4)

From (2.4) and Lemma A, we obtain

T(r, F) = T
(
r, f nLm(z, f ) + Pd(z, f )

)
= m

(
r, f nLm(z, f ) + Pd(z, f )

)
+ S(r, f )

≤ m
(
r, f n) + m

(
r, Lm(z, f )/f m)

+ m
(
r, f m)

+ m
(
r, Pd(z, f )

)
+ S(r, f )

≤ (2n + m – 1)T(r, f ) + S(r, f ),

namely, T(r, F) ≤ (2n + m – 1)T(r, f ) + S(r, f ), and then ρ(F) ≤ ρ . If ρ(F) < ρ , then T(r, F) =
S(r, f ). Rewrite F = f nLm(z, f ) + Pd(z, f ) as

f nLm(z, f ) = F – Pd(z, f ).
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By applying Lemma B, we see that

m
(
r, Lm(z, f )

)
= S(r, f ), m

(
r, fLm(z, f )

)
= S(r, f ).

Note that L(z, f ) �≡ 0, which implies

T(r, f ) = m(r, f ) ≤ m
(
r, fLm(z, f )

)
+ m

(
r, 1/Lm(z, f )

)
≤ T

(
r, Lm(z, f )

)
+ S(r, f )

= m
(
r, Lm(z, f )

)
+ S(r, f ) = S(r, f ),

a contradiction. Thus ρ(F) = ρ . �

Proof of Theorem 2.1 Suppose that λ(F) = λ < ρ . By the Hadamard representation, we
assume that

F = f nLm(z, f ) + Pd(z, f ) = γ (z)eh(z), (2.5)

where h(z) is a polynomial of degree ≤ ρ and T(r,γ (z)) = O(rλ+ε) + S(r, f ), γ (z) �≡ 0, or
else, by using the same reasoning as in the proof of Lemma 2.1, we obtain T(r, f ) = S(r, f ),
a contradiction. If deg h(z) ≤ μ < ρ , then

T(r, F) = O
(
rλ+ε

)
+ O

(
rμ+ε

)
+ S(r, f ),

resulting in a contradiction ρ ≤ max{λ,μ} < ρ by Lemma 2.2. Thus deg h(z) = ρ . Denote
L(z, f ) := L and Pd(z, f ) = Pd . Differentiating (2.5) yields

nf n–1f ′Lm + mf nLm–1L′ + P′
d =

(
γ ′ + γ h′)eh. (2.6)

Eliminating eh from (2.5) and (2.6), we have

f n–1ψ = Qd(z, f ), (2.7)

where

ψ = nf ′Lm + mfLm–1L′ –
(

γ ′

γ
+ h′

)
fLm

and

Qd(z, f ) =
(

γ ′

γ
+ h′

)
Pd – P′

d,

while Qd(z, f ) is a differential-difference polynomial in f of degree ≤ n – 2. By applying
Lemma C, we get

m(r,ψ) = S(r, f ), m(r, f ψ) = S(r, f ).
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If ψ �≡ 0, we conclude that

T(r, f ) = m(r, f ) ≤ m(r, f ψ)) + m(r, 1/ψ)

≤ T(r,ψ) + S(r, f )

= m(r,ψ) + S(r, f ) = S(r, f ),

which is impossible. If ψ ≡ 0, then Qd(z, f ) ≡ 0. Thus Qd(z, f ) = ( γ ′
γ

+ h′)Pd – P′
d ≡ 0, and

we get Pd = Cγ (z)eh(z), where C ∈ C \ {0}. If C = 1, then Pd = γ (z)eh(z). Substituting this
equality into (2.5) yields f nLm ≡ 0, a contradiction. If C �= 1, then γ (z)eh(z) = 1

C Pd . Putting
this equality into (2.5), we have

f nLm(z, f ) =
1 – C

C
Pd(z, f ).

Recalling that d ≤ n – 2 and by applying Lemma B, we have

m
(
r, Lm(z, f )

)
= S(r, f ), m

(
r, fLm(z, f )

)
= S(r, f ).

Making using of the above two equalities and noting that L(z, f ) �≡ 0, we get

T(r, f ) = m(r, f ) ≤ m
(
r, fLm(z, f )

)
+ m

(
r, 1/Lm(z, f )

)
≤ T

(
r, Lm(z, f )

)
+ S(r, f )

= m
(
r, Lm(z, f )

)
+ S(r, f ) = S(r, f ),

resulting in a contradiction T(r, f ) = S(r, f ).
This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2 Let F := f nLm(z, f )+Pd(z, f ). It follows from Lemma 2.2 that ρ(F) = ρ .
On the other hand, f is a transcendental entire function to Eq. (2.1). So as in the begin-
ning of the proof of Theorem 2.1, we obtain deg h(z) = ρ . We now deduce that λ(f ) = ρ .
On the contrary, suppose that λ(f ) < ρ . By the Hadamard factorization theorem [20, The-
orem 2.5], we assume that

f (z) = P(z)eQ(z), (2.8)

where P(z) is the canonical product of f formed with the zeros of f , and satisfies λ(P) =
ρ(P) < ρ , Q(z) is a polynomial of degree ρ . Substituting (2.8) into Pd(z, f ) yields

Pd(z, f ) =
∑
μ∈I

bμ(z)
tμ∏
j=1

f (z + δμj)lμj

=
∑
μ∈I

bμ(z)
tμ∏
j=1

(
P(z + δμj)eQ(z+δμj)

)lμj

=
∑
μ∈I

bμ(z)
tμ∏
j=1

(
P(z + δμj)eQ(z+δμj)–Q(z))lμj elμjQ(z)
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=
∑
μ∈I

(
bμ(z)

tμ∏
j=1

(
P(z + δμj)eQ(z+δμj)–Q(z))lμj

)
elμQ(z)

=
d∑

k=0

ck(z)ekQ(z),

where lμ =
∑tμ

j=1 lμj, d = maxμ∈I{lμ}, ck(z) =
∑

lμ=k(bμ(z)
∏tμ

j=1(P(z +δμj)eQ(z+δμj)–Q(z))lμj ) (k =
0, . . . , d). Noting that T(r, P(z + δμj)) = S(r, f ), deg(Q(z + δμj) – Q(z)) = deg Q(z) – 1, we see
that T(r, ck(z)) = S(r, f )(k = 0, . . . , d). Substituting (2.8) into Lm(z, f ), we have

Lm(z, f ) =

( l∑
i=1

ai(z)f (z + λi)

)m

=

( l∑
i=1

ai(z)P(z + λi)eQ(z+λi)

)m

= (
l∑

i=1

(
ai(z)P(z + λi)eQ(z+λi)–Q(z)eQ(z))m

= (
l∑

i=1

(
ai(z)P(z + λi)eQ(z+λi)–Q(z))memQ(z)

= C(z)emQ(z).

Recalling that T(r, P(z + λi)) = S(r, f ), deg(Q(z + λi) – Q(z)) = deg Q(z) – 1, we see that
T(r, C(z)) = S(r, f ). Since L(z, f ) �≡ 0, one has C(z) �≡ 0. Rewrite (2.1) as

C(z)Pn(z)e(m+n)Q(z) +
d∑

k=0

ck(z)ekQ(z) = γ (z)eh(z). (2.9)

Noting that deg h(z) = ρ = deg Q(z), we consider two cases below:
(i) If deg(h(z)– jQ(z)) = ρ , j = 1, 2, . . . , d(≤ n–1), n+m, by applying Lemma 2.1, we obtain

C(z)Pn ≡ γ (z) ≡ 0,

then L(z, f ) ≡ 0 or f (z) ≡ 0, which is impossible.
(ii) If deg(h(z)– jQ(z)) < ρ , j = 1, 2, . . . , d(≤ n–1), n+m. We consider two subcases below:
Subcase (ii1). If deg(h(z) – (m + n)Q(z)) < ρ , then deg(h(z) – jQ(z)) = ρ , j = 1, 2, . . . , d(≤

n – 1), so rewriting (2.9) as

(
C(z)Pn(z) – γ (z)eh(z)–(m+n)Q(z))e(m+n)Q(z) +

d∑
k=0

ck(z)ekQ(z) = 0 (2.10)

and by applying Lemma 2.1, we obtain

ck(z) ≡ 0 (k = 0, 1, . . . , d ≤ n – 1),

so then Pd(z, f ) =
∑d

k=0 ck(z)ekQ(z) ≡ 0, which is impossible.



Chen and Cui Advances in Difference Equations         (2021) 2021:48 Page 8 of 16

Subcase (ii2). If there exists a j0, j0 ∈ {1, 2, . . . , d(≤ n – 1)} such that deg(h(z) – jQ(z)) < ρ ,
then deg(h(z) – (m + n)Q(z)) = ρ , so, by Lemma 2.1 and (2.9), we get C(z)Pn(z) ≡ 0, and
then L(z, f ) ≡ 0 or f (z) ≡ 0, a contradiction.

This completes the proof of Theorem 2.2. �

3 Meromorphic solutions of certain difference equations
Recently, there has been a renewed interest in the existence of entire or meromorphic solu-
tions for nonlinear differential or difference equations, or differential-difference equations
in the complex plane, see [1, 13, 15–19, 23].

In 2011, Li proved the following result, see [16], Theorem 2.

Theorem G (See [16]) Let n ≥ 2 be an integer, Qd(z, f ) be a differential polynomial in f of
degree d ≤ n–2, and p1, p2, α1, α2 be nonzero constants and α1 �= α2. If f is a transcendental
meromorphic solution of the following equation:

f n(z) + Qd(z, f ) = p1eα1z + p2eα2z, (3.1)

and satisfying N(r, f ) = S(r, f ), then one of the following holds:
(i) f (z) = c0 + c1eα1z/n;

(ii) f (z) = c0 + c2eα2z/n;
(iii) f (z) = c1eα1z/n + c2eα2z/n and α1 + α2 = 0,

where c0 is a small function of f and c1, c2 are constants satisfying c2
i = pi, i = 1, 2.

Replacing the differential polynomial Qd(z, f ) in Eq. (3.1) by a difference, or differential-
difference polynomial Pd(z, f ), many scholars considered the existence of solutions of the
following equation:

f n(z) + Pd(z, f ) = p1eα1z + p2eα2z, (3.2)

where n ≥ 2, Pd(z, f ) is a difference or differential-difference polynomial in f of degree
d ≤ n – 1, with small meromorphic coefficients.

In 2018, Liu and Mao [18] investigated the entire solutions of finite order of difference
Eq. (3.2) and obtained the following result corresponding to Theorem G.

Theorem H (See [18]) Let n ≥ 2 be an integer, Pd(z, f ) be a difference polynomial in f of
degree d ≤ n – 2 such that Pd(z, 0) �≡ 0, p1, p2 be nonzero small functions of ez , and let α1,
α2 be nonzero constants. If α1

α2
< 0, and Eq. (3.2) has an entire solution f of finite order,

then α1 + α2 = 0 and f (z) = γ1eα1z/n + γ2eα2z/n, where γ1, γ2 are constants satisfying γ 2
i = pi,

i = 1, 2.

It is natural to ask whether the conditions Pd(z, 0) �≡ 0 and α1
α2

< 0 in Theorem H can be
omitted or not. In this section, we give an affirmative answer to this question by proving
the following result.

Theorem 3.1 Let n ≥ 2 be an integer, Pd(z, f ) be a difference polynomial in f of degree
d ≤ n – 2, and p1, p2, α1, α2 be nonzero constants and α1 �= α2. If f is a transcendental
meromorphic solution of Eq. (3.2), and satisfying N(r, f ) = S(r, f ), then ρ(f ) = 1, and one of
the following holds:
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(i) f (z) = γ0 + γ1eα1z/n;
(ii) f (z) = γ0 + γ2eα2z/n;

(iii) f (z) = γ1eα1z/n + γ2eα2z/n and α1 + α2 = 0;
where γ0, γ1, γ2 are constants satisfying γ 2

i = pi, i = 1, 2.

Remark 3.1 The following examples show that the condition Pd(z, 0) �≡ 0 is not necessary
in Theorem 3.1.

Example 3.1 The difference equation

f 3(z) + f (z + log 2) – f (z) = e3z + ez.

has an entire solution f (z) = ez , where P1(z, f ) = f (z + log 2) – f (z) and P1(z, 0) = 0.

Example 3.2 The difference equation

f 3(z) – 3f (z) = e3z + e–3z.

has an entire solution f (z) = ez + e–z , where P1(z, f ) = –3f (z) and P1(z, 0) = 0.

The following lemmas will be used in the proof of Theorem 3.1.

Lemma 3.1 (See [16, Lemma 6]) Suppose that f is a transcendental meromorphic function,
a, b, c, d are small functions with respect to f and acd �≡ 0. If

af 2 + bff ′ + c
(
f ′)2 = d,

then

c
(
b2 – 4ac

)d′

d
+ b

(
b2 – 4ac

)
– c

(
b2 – 4ac

)′ +
(
b2 – 4ac

)
c′ = 0.

In particular, if a, b, c, d are constants and b2 – 4ac �= 0, then b = 0 and

f (z) = γ1eλz + γ2e–λz,

where γ1, γ2 and λ are nonzero constants.

Remark 3.2 The condition acd �≡ 0 in Lemma 3.1 is not necessary and it can be replaced
with cd �≡ 0.

Lemma 3.2 (See [8, p. 247]) Suppose that f (z) is a transcendental meromorphic func-
tion and K > 1. Then there exists a set M(K) of upper logarithmic density at most δ(K) =
min{(2eK–1 – 1)–1, (1 + e(K – 1)) exp(e(1 – K))} such that for every positive integer k, we have

lim sup
r→∞

r /∈M(K )

T(r, f )
T(r, f (k))

≤ 3eK .
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Remark 3.3 By Lemma 3.2, we see that if f is a transcendental meromorphic function, and
if ϕ satisfies T(r,ϕ(k)) = S1(r, f ), then T(r,ϕ) = S1(r, f ), where S1(r, f ) is defined to be any
quantity such that for any positive number ε there exists a set E(ε) whose upper logarith-
mic density is less than ε, and S1(r, f ) = o(T(r, f )) as r → ∞, r /∈ E(ε).

The proof given below for Theorem 3.1 is different from the proof previously given for
the preceding result in [18].

Proof of Theorem 3.1 Clearly, ρ(p1eα1z + p2eα2z) = 1, where α1 �= α2. Similar as in the be-
ginning of the proof of Lemma 2.2, we have

m
(
r, Pd(z, f )

) ≤ dm(r, f ) + S(r, f )

≤ (n – 2)m(r, f ) + S(r, f ) ≤ (n – 2)T(r, f ) + S(r, f ).

Noting that N(r, f ) = S(r, f ), by (3.2) and the above inequality, we have

T
(
r, p1eα1z + p2eα2z) = T

(
r, f n + Pd(z, f )

)
= m

(
r, f n + Pd(z, f )

)
+ S(r, f )

≤ m
(
r, f n) + m

(
r, Pd(z, f )

)
+ S(r, f )

≤ 2(n – 1)T(r, f ) + S(r, f )

and

T
(
r, p1eα1z + p2eα2z) = T

(
r, f n + Pd(z, f )

)
= m

(
r, f n + Pd(z, f )

)
+ S(r, f )

≥ m
(
r, f n) – m

(
r, Pd(z, f )

)
+ S(r, f )

≥ 2T(r, f ) + S(r, f ).

From the above two inequalities, we derive

2T(r, f ) + S(r, f ) ≤ T
(
r, p1eα1z + p2eα2z) ≤ 2(n – 1)T(r, f ) + S(r, f ),

thus ρ(f ) = 1. Denote Pd := Pd(z, f ). Suppose that f is a transcendental meromorphic so-
lution of Eq. (3.2) which satisfies N(r, f ) = S(r, f ). By differentiating (3.2), we have

nf n–1f ′ + P′
d = α1p1eα1z + α2p2eα2z. (3.3)

Eliminating eα1z and eα2z from (3.2) and (3.3), respectively, we have

α1f n – nf n–1f ′ + α1Pd – P′
d = (α1 – α2)p2eα2z, (3.4)

α2f n – nf n–1f ′ + α2Pd – P′
d = (α2 – α1)p1eα1z. (3.5)
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Differentiating (3.5) yields

nα2f n–1f ′ – n(n – 1)f n–2(f ′)2 – nf n–1f ′′ + α2P′
d – P′′

d = α1(α2 – α1)p1eα1z. (3.6)

Eliminating eα1z from (3.5) and (3.6), we get

f n–2ϕ(z) = –Qd(z, f ), (3.7)

where

ϕ(z) = α1α2f 2 – n(α1 + α2)ff ′ + n(n – 1)
(
f ′)2 + nff ′′ (3.8)

and

Qd(z, f ) = α1α2Pd – (α1 + α2)P′
d + P′′

d , (3.9)

while Qd(z, f ) is a differential-difference polynomial in f of degree ≤ n – 2. By (3.7) and
Lemma C, we have m(r,ϕ) = S(r, f ). Note that N(r, f ) = S(r, f ), thus T(r,ϕ) = S(r, f ). We
distinguish two cases below:

Case 1. If ϕ ≡ 0, then Qd(z, f ) ≡ 0. Since α1 �= α2, we see that α1Pd – P′
d ≡ 0 and α2Pd –

P′
d ≡ 0 cannot hold simultaneously. Suppose that α2Pd – P′

d �≡ 0. By (3.9), we have

α2Pd – P′
d = Aeα1z, (3.10)

where A is a nonzero constant. Substituting (3.10) into (3.5), we have

f n–1(α2f – nf ′) =
[(α2 – α1)p1 – A]α2

A
Pd –

(α2 – α1)p1 – A
A

P′
d. (3.11)

Since the right-hand side of (3.11) is a differential-difference polynomial in f of degree ≤
n – 2, by Lemma C, we have m(r,α2f – nf ′) = S(r, f ) and m(r, f (α2f – nf ′)) = S(r, f ), and
then α2f – nf ′ ≡ 0. Otherwise, α2f – nf ′ �≡ 0, thus we have

T(r, f ) = m(r, f ) + S(r, f ) ≤ m
(
r, f

(
α2f – nf ′)) + m

(
r, 1/

(
α2f – nf ′)) + S(r, f )

≤ T
(
r,α2f – nf ′) + S(r, f )

= m
(
r,α2f – nf ′) + S(r, f ) = S(r, f ),

resulting in a contradiction T(r, f ) ≤ S(r, f ). Since α2f – nf ′ ≡ 0, one gets f n = p̃2eα2z , p̃2 ∈
C \ {0}. Substituting this equality and (3.10) into (3.2) yields

(
1 –

p2

p̃2

)
f n =

α2p1 – A
A

Pd –
p1

A
P′

d.

If p2 �= p̃2, by Lemma C, we have T(r, f ) = m(r, f ) + N(r, f ) = S(r, f ), a contradiction. There-
fore p2 = p̃2, f (z) = γ2e

α2
n z, γ n

2 = p2. Similarly, if α1Pd – P′
d �≡ 0, then we obtain f (z) = γ1e

α1
n z ,

γ n
1 = p1.
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Case 2. If ϕ �≡ 0, by applying T(r,ϕ) = S(r, f ) and the lemma on the logarithmic derivative,
we have

2m
(

r,
1
f

)
= m

(
r,

1
f 2

)
≤ m

(
r,

ϕ

f 2

)
+ m

(
r,

1
ϕ

)

≤ T(r,ϕ) + S(r, f ) = S(r, f ).
(3.12)

By (3.8), if z0 is a multiple zero of f , then z0 must be a zero of ϕ. Hence N(2(r, 1
f ) = S(r, f ),

where N(2(r, 1
f ) denotes the counting function of multiple zeros of f , which implies

T(r, f ) = N1)

(
r,

1
f

)
+ S(r, f ), (3.13)

where N1)(r, 1
f ) denotes the counting function of simple zeros of f , and we deduce that f

has infinitely many simple zeros. Differentiating (3.8) gives

ϕ′ = 2α1α2ff ′ – n(α1 + α2)ff ′′ – n(α1 + α2)
(
f ′)2 + n(2n – 1)f ′f ′′ + nff ′′′. (3.14)

If z0 is a simple zero of f , it follows from (3.8) and (3.14) that z0 is a zero of (2n – 1)ϕf ′′ –
[(n – 1)ϕ′ + (α1 + α2)ϕ]f ′. Define

α :=
(2n – 1)ϕf ′′ – [(n – 1)ϕ′ + (α1 + α2)ϕ]f ′

f
, (3.15)

then we have T(r,α) = S(r, f ). It follows that

f ′′ =
1

2n – 1

[
(n – 1)

ϕ′

ϕ
+ (α1 + α2)

]
f ′ +

α

(2n – 1)ϕ
f . (3.16)

Substituting (3.16) into (3.8) yields

af 2 + bff ′ + c
(
f ′)2 = ϕ, (3.17)

where a = α1α2 + nα
(2n–1)ϕ , b = n(n–1)

2n–1 [ ϕ′
ϕ

– 2(α1 + α2)], c = n(n – 1). By Lemma 3.1, we have

c
(
4ac – b2)ϕ′

ϕ
= c

(
4ac – b2)′ – b

(
4ac – b2). (3.18)

We consider two subcases as follows.
Subcase 2.1. Suppose that 4ac – b2 �≡ 0. It follows from (3.18) that

2n
ϕ′

ϕ
= (2n – 1)

(4ac – b2)′

4ac – b2 + 2(α1 + α2). (3.19)

By integration, we see that there exists a C ∈C \ {0} such that

e2(α1+α2)z = Cϕ2n(4ac – b2)–(2n–1), (3.20)
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which implies e2(α1+α2)z ∈ S(f ), then α1 + α2 = 0. It follows from (3.4) and (3.5) that

f 2n–2ψ + R(z, f ) = –(α1 – α2)2p1p2, (3.21)

where ψ = α1α2f 2 +n2(f ′)2, R(z, f ) is a differential-difference polynomial of degree ≤ 2n–2.
By applying Lemma C, we have m(r,ψ) = S(r, f ), then T(r,ψ) = S(r, f ). We deduce that
ψ �≡ 0. Otherwise, we assume that ψ = α1α2f 2 + n2(f ′)2 ≡ 0. Then ( f ′

f )2 ≡ – α1α2
n2 , which

implies that

0 = N
(

r, –
α1α2

n2

)
= 2N

(
r,

f ′

f

)

= 2
[
N(r, f ) + N(r, 1/f )

]
= 2N1)(r, 1/f ) + S(r, f ),

combining with (3.13), we have T(r, f ) = S(r, f ), a contradiction. By Lemma 3.1 and (3.2),
we see that ψ must be constant and f (z) = γ1eα1z/n + γ2eα2z/n, α1 + α2 = 0, where γ1, γ2 are
constants satisfying γ 2

i = pi, i = 1, 2.
Subcase 2.2. Suppose that 4ac – b2 ≡ 0. Differentiating (3.17) yields

ϕ′ = a′f 2 +
(
2a + b′)ff ′ + b

(
f ′)2 + bff ′′ + 2cf ′f ′′. (3.22)

Suppose z0 is a simple zero of f which is not a zero of a, b. It follows from (3.17) and (3.22)
that z0 is a zero of 2ϕf ′′ – (ϕ′ – b

c ϕ)f ′. Denote

β :=
2ϕf ′′ – (ϕ′ – b

c ϕ)f ′

f
, (3.23)

then we have T(r,β) = S(r, f ). It follows that

f ′′ =
(

1
2

ϕ′

ϕ
–

b
2c

)
f ′ +

β

2ϕ
f . (3.24)

Substituting (3.24) into (3.22) yields

ϕ′ = df 2 + hff ′ + c
ϕ′

ϕ

(
f ′)2, (3.25)

where d = a′ + bβ

2ϕ
, h = 2a + b′ + b

2
ϕ′
ϕ

– b2

2c + cβ
ϕ

. Eliminating (f ′)2 from (3.17) and (3.25), we
have

Af + Bf ′ ≡ 0, (3.26)

where

A = d – a
ϕ′

ϕ
= a′ +

bβ

2ϕ
– a

ϕ′

ϕ
,

B = h – b
ϕ′

ϕ
= 2a + b′ –

b
2

ϕ′

ϕ
–

b2

2c
+

cβ
ϕ

.
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Note that A and B are small functions of f . If z0 is a simple zero of f and not a zero of A,
B, it follows from (3.26) that A = B ≡ 0. By (3.24), we have

f ′′ =
(

1
2

ϕ′

ϕ
–

b
2c

)
f ′ –

1
b

(
a′ – a

ϕ′

ϕ

)
f , (3.27)

where b = n(n–1)
2n–1 [ ϕ′

ϕ
– 2(α1 + α2)] �≡ 0. Otherwise, b ≡ 0, by 4ac – b2 ≡ 0, and then a ≡ 0. It

follows from (3.17) that c(f ′)2 ≡ ϕ, then T(r, f ′) = S(r, f ). By Lemma 3.2 and Remark 3.3,
we obtain that T(r, f ) = S1(r, f ), a contradiction. Substituting 4ac – b2 ≡ 0 into (3.27) yields

f ′′ =
1

2n – 1

[
(n – 1)

ϕ′

ϕ
+ (α1 + α2)

]
f ′

–
1

2(2n – 1)

[(
ϕ′

ϕ

)′
–

1
2

(
ϕ′

ϕ

)2

+ (α1 + α2)
ϕ′

ϕ

]
f .

(3.28)

It follows from (3.16) and (3.28) that

α

ϕ
= –

1
2

[(
ϕ′

ϕ

)′
–

1
2

(
ϕ′

ϕ

)2

+ (α1 + α2)
ϕ′

ϕ

]
. (3.29)

If ϕ′ ≡ 0, then α
ϕ

≡ 0. Substituting this identity into 4ac – b2 ≡ 0 yields

n(n – 1)
(

α1

α2

)2

–
[
n2 + (n – 1)2]α1

α2
+ n(n – 1) = 0,

which implies that α1
α2

= n–1
n or α1

α2
= n

n–1 . By substituting ϕ′ ≡ 0 into (3.28), we obtain

f ′′ =
1

2n – 1
(α1 + α2)f ′,

then

f =
(2n – 1)C1

α1 + α2
e

(α1+α2)z
2n–1 + C2,

where C1, C2 ∈C\{0}. Otherwise, one of C1 and C2 is equal to zero, then N(r, 1/f ) = S(r, f ).
It follows from (3.13) that T(r, f ) = S(r, f ), a contradiction. As α1

α2
= n–1

n , then

f =
nC1

α2
e

α2
n z + C2.

As α1
α2

= n
n–1 , then

f =
nC1

α1
e

α1
n z + C2.

If ϕ′ �≡ 0, differentiating (3.29) gives

(
α

ϕ

)′
= –

1
2

[(
ϕ′

ϕ

)′′
–

(
ϕ′

ϕ

)′
ϕ′

ϕ
+ (α1 + α2)

(
ϕ′

ϕ

)′]
. (3.30)
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It follows from 4ac – b2 ≡ 0 that bb′ = 2ca′, namely,

(
α

ϕ

)′
=

n – 1
2(2n – 1)

(
ϕ′

ϕ

)′[
ϕ′

ϕ
– 2(α1 + α2)

]
. (3.31)

Denoting γ := ϕ′
ϕ

and combining (3.30) with (3.31) yields

(α1 + α2)γ ′ = nγ γ ′ – (2n – 1)γ ′′. (3.32)

If γ ′ ≡ 0, then ϕ = C3eC4z , C3, C4 ∈ C. It follows from ϕ′ �≡ 0 that C3C4 �= 0, which implies
that ϕ /∈ S(f ), a contradiction. If γ ′ �≡ 0, it follows from (3.32) that

e(α1+α2)z = C5ϕ
n
((

ϕ′

ϕ

)′)–(2n–1)

, C5 ∈C \ {0},

which implies that e(α1+α2)z ∈ S(f ), and then α1 + α2 = 0. Using similar reasoning as in Sub-
case 2.1, we obtain f (z) = γ1eα1z/n +γ2eα2z/n, α1 +α2 = 0, where γ1, γ2 are constants satisfying
γ 2

i = pi, i = 1, 2.
This completes the proof of Theorem 3.1. �
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